Primary Energy Use and Environmental Effects of Electric Vehicles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Electric Battery Car Competition Rules
Colorado Middle School Car Competition Electric Battery Division The Colorado Middle School Car Competition is a classroom-based, hands-on educational program for 6th – 8th grade students. Student teams apply math, science, and creativity to construct and race model lithium-ion powered cars. The primary goals of the programs are to: • Generate enthusiasm for science and engineering at a crucial stage in the educational development of young people; • Improve students' understanding of scientific concepts and renewable energy technologies; and • Encourage young people to consider technical careers at an early age. Program description: • Students use mathematics and science principles together with their creativity in a fun, hands-on educational program. • Using engineering principles, students get excited about generating ideas in a group and then building and modifying models based on these ideas. • Students can see for themselves how changes in design are reflected in car performance. • Students work together on teams to apply problem solving and project management skills. The car competition challenges students to use scientific know-how, creative thinking, experimentation, and teamwork to design and build high-performance model electric battery vehicles. Rules Competition Structure: The Colorado competition will use preliminary time trials before progressing to a double elimination tournament for the finals. Each team will have three time trials to achieve their fastest time. Any car that does not finish in 40 seconds will be considered a Did Not Finish (DNF). Only the fastest 16 teams will progress to the double elimination tournament. In the event of a tie, teams will have a race-off to qualify for the double elimination round. -
Modeling, Testing and Economic Analysis of Wind-Electric Battery
NREL/CP-500-24920 · UC Category: 1213 Modeling, Testing and Economic Analysis of a Wind-Electric Battery Charging Station Vahan Gevorgian, David A. Corbus, Stephen Drouilhet, Richard Holz National Renewable Energy Laboratory Karen E. Thomas University of California at Berkeley Presented at Windpower '98 Bakersfield, CA April 27-May 1, 1998 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 A national laboratory of the U.S. Department of Energy Managed by Midwest Research Institute for the U.S. Department of Energy under contract No. DE-AC36-83CH10093 Work performed under task number WE802230 July 1998 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercialproduct, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authord expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available to DOE and DOE contractors from: Office of Scientific and Technical Information (OSTI) P.O. Box 62 Oak Ridge, TN 37831 Prices available by calling (423) 576-8401 Available to the public from: National Technical Information Service (NTIS) U.S. -
DESIGN of a WATER TOWER ENERGY STORAGE SYSTEM a Thesis Presented to the Faculty of Graduate School University of Missouri
DESIGN OF A WATER TOWER ENERGY STORAGE SYSTEM A Thesis Presented to The Faculty of Graduate School University of Missouri - Columbia In Partial Fulfillment of the Requirements for the Degree Master of Science by SAGAR KISHOR GIRI Dr. Noah Manring, Thesis Supervisor MAY 2013 The undersigned, appointed by the Dean of the Graduate School, have examined he thesis entitled DESIGN OF A WATER TOWER ENERGY STORAGE SYSTEM presented by SAGAR KISHOR GIRI a candidate for the degree of MASTER OF SCIENCE and hereby certify that in their opinion it is worthy of acceptance. Dr. Noah Manring Dr. Roger Fales Dr. Robert O`Connell ACKNOWLEDGEMENT I would like to express my appreciation to my thesis advisor, Dr. Noah Manring, for his constant guidance, advice and motivation to overcome any and all obstacles faced while conducting this research and support throughout my degree program without which I could not have completed my master’s degree. Furthermore, I extend my appreciation to Dr. Roger Fales and Dr. Robert O`Connell for serving on my thesis committee. I also would like to express my gratitude to all the students, professors and staff of Mechanical and Aerospace Engineering department for all the support and helping me to complete my master’s degree successfully and creating an exceptional environment in which to work and study. Finally, last, but of course not the least, I would like to thank my parents, my sister and my friends for their continuous support and encouragement to complete my program, research and thesis. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS ............................................................................................ ii ABSTRACT .................................................................................................................... v LIST OF FIGURES ....................................................................................................... -
2017 2030 a Forward Looking Primary Energy Factor for A
A forward looking Primary Energy Factor for a greener European Future What is the Primary Energy Factor and why does it exist? The Primary Energy Factor (PEF) connects primary and final energy. It indicates how much primary energy is used to generate a unit of electricity or a unit of useable thermal energy. It allows for comparison between the primary energy consumption of products with the same functionality (e.g. heating) using different energy carriers (particularly electricity vs. fossil fuels). Electricity is a final energy carrier, produced from different primary energy sources like fossil fuels (gas, coal), nuclear and renewables (hydro, wind, solar). Currently a PEF of 2.5 is used as a “conversion factor" to express electricity consumption/savings in primary energy consumption/savings, regardless of the type of energy source used to produce it (also when the electricity comes from renewables). The current conversion factor implies that 1 unit of electricity requires an input of 2.5 units of primary energy. This assumes all power generation in the EU to have a 40% efficiency (100 / 2.5 = 40) – even non-dispatchable renewables from which energy is harnessed without the combustion of fuel. A PEF of 2.5 is too high and does not reflect the reality of power generation. The need to update the PEF to 2.0 The Commission has decided to review the PEF value and methodology in the Energy Efficiency Directive to better reflect the EU energy mix, in particular today’s share of renewable energy in electricity generation and its strong increase in the near future . -
Total Energy Consumption by Fuel, EU-27
EN26 Total Primary Energy Consumption by Fuel Key message Fossil fuels continue to dominate total energy consumption, but environmental pressures have been reduced, partly due to a significant switch from coal and lignite to relatively cleaner natural gas in the 1990s. The share of renewable energy sources remains small despite an increase in absolute terms. Overall, total primary energy consumption increased by an average of 0.6 % per annum during the period 1990-2005 (9.8 % overall) thus counteracting some of the environmental benefits from fuel switching. Rationale The indicator provides an indication of the environmental pressures originating from energy consumption. The environmental impacts such as resource depletion, greenhouse gas emissions, air pollutant emissions and radioactive waste generation strongly depend on the type and amount of fuel consumed. Fig. 1: Total energy consumption by fuel, EU-27 1800 1600 1400 1200 Renewables Nuclear 1000 Coal and lignite Gas 800 Oil 600 400 Million tonnes of oil equivalents 200 0 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 Data source: EEA, Eurostat (historic data) 1. Indicator assessment Total primary energy consumption in the EU-27 increased by 9.8 % between 1990 and 2005. Over the same period, the share of fossil fuels, including coal, lignite, oil and natural gas, in primary energy consumption declined slightly from 83 % in 1990 to 79.0 % in 2005, although fossil fuel consumption increased in absolute terms (by more than 4 %). The use of fossil fuels has considerable impact on the environment and is the main cause of greenhouse gas emissions. -
The Pennsylvania State University Schreyer Honors College
THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE SCHOOL OF SCIENCE, ENGINEERING AND TECHNOLOGY EFFECT ON CHARGING EFFICIENCY USING GALLIUM NITRIDE DEVICES THIEN NHIEN HUYNH Fall 2014 A thesis submitted in partial fulfillment of the requirements for a baccalaureate degree in Electrical Engineering with honors in Electrical Engineering Reviewed and approved* by the following: Seth Wolpert, Ph.D Associate Professor of Electrical Engineering Thesis Supervisor Peter Idowu, Ph.D Professor of Electrical Engineering Faculty Reader Ronald Walker, Ph. D Associate Professor of Mathematics Honors Advisor * Signatures are on file in the Schreyer Honors College. i ABSTRACT Electric vehicles (EVs) and hybrid electric vehicles (HEVs) were created to lessen our dependence on natural resources. EVs and HEVs run on battery packs and the pack can be recharged from a household outlet. Because the vehicles are charged using energy draw from the grid, the problem of efficiency on a large scale become a concern. For conventional chargers, the charging efficiency may be improved due to enhanced in battery technology, charging protocol, or charging circuitry. Recently, Gallium Nitride (GaN) devices were introduced that have better performance than other semiconductors used in charging circuits. GaN has a higher bandgap than conventional materials which allows it to withstand high level of voltage. GaN can also operate at higher frequency resulting in much faster switching capability. The ability to withstand higher temperature allows GaN devices to require smaller heat sinks which effectively reduce the cost of the devices. In this thesis, a DC-DC converter as used in battery charger will be designed using Gallium Nitride devices and tested for efficiency. -
Electric Potential and Potential Energy
Electric Potential and Potential Energy Electric Potential Work-energy theorem: Change in potential energy = work done m Higher PE Gravitational Potential Energy It requires a certain amount of work to raise an object • Chapter 17 (Giancoli) of mass m from the ground to some distance above the • All sections except 17.6 (electric m Lower PE ground. dipoles) i.e. We have increased the potential energy of the object. PE=W=Force x Displacement Electric Potential Energy ⎛ kqQ ⎞ Find the work done in bringing a charge q from infinitely ∆ W = − F∆ r = −⎜ 2 ⎟⋅∆ r far away to a distance R from charge Q. ⎝ r ⎠ Q R R ∆r kqQ PE = ∆W = - ∆r F ∫ ∫ r 2 + +q ∞ ∞ R R ⎡1⎤ Charge is moved towards R = kqQ⎢ ⎥ by increments of ∆r ⎣ r ⎦∞ kqQ For a small displacement ∆r, the work done is: PE = *Note: PE = 0 when R ∞ R ∆W = force x displacement = -F • ∆r (we have a negative sign as the direction of the force is This is the PE of a charge q when it is a distance R from Q. opposite to the direction of the displacement) • PE is a scalar quantity If the PE is negative (when the charges have opposite signs), then the work is done by the charge, decreasing its PE. • The sign of the charges must be kept in all calculations Displacement + F q • Depending on the signs of Q and q, the PE could be positive or negative If the PE is positive (when the charges are both positive or both negative), then work must be done on the charge q to bring it closer to Q, increasing its PE. -
Electric Potential Difference Between Two Points
We are used to voltage in our lives—a 12-volt car battery, 110 V or 220 V at home, 1.5-volt flashlight batteries, and so on. Here we see displayed the voltage produced across a human heart, known as an electrocardiogram. Voltage is the same as electric potential difference between two points. Electric potential is defined as the potential energy per unit charge. We discuss voltage and its relation to electric field, as well as electric energy storage, capacitors, and applications including the ECG shown here, binary numbers and digital electronics, TV and computer monitors, and digital TV. P T A E H R C Electric Potential 17 CHAPTER-OPENING QUESTION—Guess now! CONTENTS When two positively charged small spheres are pushed toward each other, what 17–1 Electric Potential Energy and happens to their potential energy? Potential Difference (a) It remains unchanged. 17–2 Relation between Electric (b) It decreases. Potential and Electric Field (c) It increases. 17–3 Equipotential Lines and (d) There is no potential energy in this situation. Surfaces 17–4 The Electron Volt, a Unit of Energy e saw in Chapter 6 that the concept of energy was extremely valuable 17–5 Electric Potential Due to in dealing with the subject of mechanics. For one thing, energy is a Point Charges W conserved quantity and is thus an important tool for understanding *17–6 Potential Due to Electric nature. Furthermore, we saw that many Problems could be solved using the Dipole; Dipole Moment energy concept even though a detailed knowledge of the forces involved was not 17–7 Capacitance possible, or when a calculation involving Newton’s laws would have been too 17–8 Dielectrics difficult. -
Thermophotovoltaic Energy in Space Applications: Review and Future Potential A
Thermophotovoltaic energy in space applications: Review and future potential A. Datas , A. Marti ABSTRACT This article reviews the state of the art and historical development of thermophotovoltaic (TPV) energy conversion along with that of the main competing technologies, i.e. Stirling, Brayton, thermoelectrics, and thermionics, in the field of space power generation. Main advantages of TPV are the high efficiency, the absence of moving parts, and the fact that it directly generates DC power. The main drawbacks are the unproven reliability and the low rejection temperature, which makes necessary the use of relatively large radiators. This limits the usefulness of TPV to small/medium power applications (100 We-class) that includes radioisotope (RTPV) and small solar thermal (STPV) generators. In this article, next generation TPV concepts are also revisited in order to explore their potential in future space power applications. Among them, multiband TPV cells are found to be the most promising in the short term because of their higher conversion efficiencies at lower emitter temperatures; thus significantly reducing the amount of rejected heat and the required radiator mass. 1. Introduction into electricity. A few of them enable a direct conversion process (e.g. PV and fuel cells), but the majority require the intermediate generation A number of technological options exist for power generation in of heat, which is subsequently converted into electricity by a heat space, which are selected depending on the mission duration and the engine. Thus, many kinds of heat engines have been developed within electric power requirements. For very short missions, chemical energy the frame of international space power R&D programs. -
Coupled Electric and Thermal Batteries Models Using Energetic Macroscopic Representation (EMR) for Range Estimation in Electric Vehicles Ronan German, N
Coupled electric and thermal batteries models using energetic macroscopic representation (EMR) for range estimation in electric vehicles Ronan German, N. Solis, L. Reyes, L. Silva, F.-A. Lebel, Joao Trovao, A. Bouscayrol To cite this version: Ronan German, N. Solis, L. Reyes, L. Silva, F.-A. Lebel, et al.. Coupled electric and thermal batteries models using energetic macroscopic representation (EMR) for range estimation in electric vehicles. 19th European Conference on Power Electronics and Applications (EPE’17), Sep 2017, Varsovie, Poland. 10.23919/EPE17ECCEEurope.2017.8099372. hal-01948592 HAL Id: hal-01948592 https://hal.archives-ouvertes.fr/hal-01948592 Submitted on 10 Dec 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Coupled Electric and Thermal Batteries Models using Energetic Macroscopic Representation (EMR) for Range Estimation in Electric Vehicles R. German1 , N. Solis1,2, L. Reyes1,3, L. Silva4, F.-A. LeBel3, João P. Trovão3, A. Bouscayrol1, 1 Univ. Lille, Centrale Lille, Arts et Métiers Paris Tech, HEI, EA 2697 – L2EP - Laboratoire d'Electrotechnique et d'Electronique de Puissance, F-59000 Lille, France. 2 Universidad Nacional de Río Cuarto, Córdoba – Argentina. 3 e-TESC Lab, University of Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada. -
Energy Efficiency in Transportation: …A Key Element of the World’S Energy Future…
Energy efficiency in transportation: …a key element of the world’s energy future… Issues are global …and so is much of the rest of the world… Weizmann Institute January 9. 2012 Updated August 23, 2012 Energy efficiency in transportation: …a key element of the world’s energy future… …and so is much of the rest of the world… Dr. Fred Schlachter Energy is a non-recyclable resource. Lawrence Berkeley National Laboratory Use it and it is gone. American Physical Society Thailand Center of Excellence in Physics USAID Eco-Asia 1982 Who I am… Atomic and molecular physics. Particle Energy efficiency. Transportation. Public outreach and education. accelerators. Synchrotron radiation. Renewable resources. Radiation, mobile phones…. 2008 “Are microwaves the new tobacco?” “K-shell x-ray spectroscopy of atomic nitrogen.” 2011 Physical Review Letters 2011 1998 “Photoexcitation of a volume plasmon in C60 ions.” 2011 Physical Review Letters 2005 Energy efficiency in transportation: outline …we are on the wrong road… • Energy resource issues Source (renewable?) of energy • Technology issues Science and technology needs • Social/political issues Economic/political/policy needs Transportation and energy: key points What stands in our way on the path to a brighter energy future? Resource • Energy resource options limited… issues • Fossil fuels not a viable path… • Renewable sources generally intermittent, thus… • Energy storage: a key technology. • Energy efficiency best approach. • Barriers: public apathy, perceived cost, short- term thinking, poor urban -
G-2: Total Primary Energy Supply
G-2: Total primary energy supply 1) General description ............................................................................................................................. 1 1.1) Brief definition .................................................................................................................................. 2 1.2) Units of measurement ................................................................................................................... 2 1.3) Context………………………………………………………………………………………………………………………………………………2 2) Relevance for environmental policy ......................................................................................... 2 2.1) Purpose ................................................................................................................................................ 2 2.2) Issue ....................................................................................................................................................... 2 2.3) International agreements and targets ................................................................................. 3 a) Global level ............................................................................................................................................ 3 b) Regional level ........................................................................................................................................ 3 c) Subregional level .................................................................................................................................