Genetic Management of Fragmented Animal and Plant Populations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Global Assessment of Parasite Diversity in Galaxiid Fishes
diversity Article A Global Assessment of Parasite Diversity in Galaxiid Fishes Rachel A. Paterson 1,*, Gustavo P. Viozzi 2, Carlos A. Rauque 2, Verónica R. Flores 2 and Robert Poulin 3 1 The Norwegian Institute for Nature Research, P.O. Box 5685, Torgarden, 7485 Trondheim, Norway 2 Laboratorio de Parasitología, INIBIOMA, CONICET—Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche 8400, Argentina; [email protected] (G.P.V.); [email protected] (C.A.R.); veronicaroxanafl[email protected] (V.R.F.) 3 Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; [email protected] * Correspondence: [email protected]; Tel.: +47-481-37-867 Abstract: Free-living species often receive greater conservation attention than the parasites they support, with parasite conservation often being hindered by a lack of parasite biodiversity knowl- edge. This study aimed to determine the current state of knowledge regarding parasites of the Southern Hemisphere freshwater fish family Galaxiidae, in order to identify knowledge gaps to focus future research attention. Specifically, we assessed how galaxiid–parasite knowledge differs among geographic regions in relation to research effort (i.e., number of studies or fish individuals examined, extent of tissue examination, taxonomic resolution), in addition to ecological traits known to influ- ence parasite richness. To date, ~50% of galaxiid species have been examined for parasites, though the majority of studies have focused on single parasite taxa rather than assessing the full diversity of macro- and microparasites. The highest number of parasites were observed from Argentinean galaxiids, and studies in all geographic regions were biased towards the highly abundant and most widely distributed galaxiid species, Galaxias maculatus. -
LONG-LIVED AQUATIC INSECTS ACCUMULATE CALCIUM CARBONATE DEPOSITS in a MONTANE DESERT STREAM Eric K
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Natural Resources Natural Resources, School of 2016 CAUGHT BETWEEN A ROCK AND A HARD MINERAL ENCRUSTATION: LONG-LIVED AQUATIC INSECTS ACCUMULATE CALCIUM CARBONATE DEPOSITS IN A MONTANE DESERT STREAM Eric K. Moody Arizona State University Jessica R. Corman University of Nebraska - Lincoln, [email protected] Michael T. Bogan University of California - Berkeley Follow this and additional works at: http://digitalcommons.unl.edu/natrespapers Part of the Natural Resources and Conservation Commons, Natural Resources Management and Policy Commons, and the Other Environmental Sciences Commons Moody, Eric K.; Corman, Jessica R.; and Bogan, Michael T., "CAUGHT BETWEEN A ROCK AND A HARD MINERAL ENCRUSTATION: LONG-LIVED AQUATIC INSECTS ACCUMULATE CALCIUM CARBONATE DEPOSITS IN A MONTANE DESERT STREAM" (2016). Papers in Natural Resources. 796. http://digitalcommons.unl.edu/natrespapers/796 This Article is brought to you for free and open access by the Natural Resources, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Natural Resources by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Western North American Naturalist 76(2), © 2016, pp. 172–179 CAUGHT BETWEEN A ROCK AND A HARD MINERAL ENCRUSTATION: LONG-LIVED AQUATIC INSECTS ACCUMULATE CALCIUM CARBONATE DEPOSITS IN A MONTANE DESERT STREAM Eric K. Moody1, Jessica R. Corman1,2, and Michael T. Bogan3 ABSTRACT.—Aquatic ecosystems overlying regions of limestone bedrock can feature active deposition of calcium carbonate in the form of travertine or tufa. Although most travertine deposits form a cement-like layer on stream sub- strates, mineral deposits can also form on benthic invertebrates. -
Multi-National Conservation of Alligator Lizards
MULTI-NATIONAL CONSERVATION OF ALLIGATOR LIZARDS: APPLIED SOCIOECOLOGICAL LESSONS FROM A FLAGSHIP GROUP by ADAM G. CLAUSE (Under the Direction of John Maerz) ABSTRACT The Anthropocene is defined by unprecedented human influence on the biosphere. Integrative conservation recognizes this inextricable coupling of human and natural systems, and mobilizes multiple epistemologies to seek equitable, enduring solutions to complex socioecological issues. Although a central motivation of global conservation practice is to protect at-risk species, such organisms may be the subject of competing social perspectives that can impede robust interventions. Furthermore, imperiled species are often chronically understudied, which prevents the immediate application of data-driven quantitative modeling approaches in conservation decision making. Instead, real-world management goals are regularly prioritized on the basis of expert opinion. Here, I explore how an organismal natural history perspective, when grounded in a critique of established human judgements, can help resolve socioecological conflicts and contextualize perceived threats related to threatened species conservation and policy development. To achieve this, I leverage a multi-national system anchored by a diverse, enigmatic, and often endangered New World clade: alligator lizards. Using a threat analysis and status assessment, I show that one recent petition to list a California alligator lizard, Elgaria panamintina, under the US Endangered Species Act often contradicts the best available science. -
1 Large-Scale Geographic Survey Provides Insights Into the Colonization History of a Major
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.11.421644; this version posted December 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Large-scale geographic survey provides insights into the colonization history of a major 2 aphid pest on its cultivated apple host in Europe, North America and North Africa 3 4 Olvera-Vazquez S.G.1, Remoué C.1, Venon A.1, Rousselet A.1, Grandcolas O.1, Azrine M.1, 5 Momont L.1, Galan M.2, L. Benoit2, David G.3, Alhmedi A.4, Beliën T.4, Alins G.5, Franck 6 P.6, Haddioui A.7, Jacobsen S.K.8, Andreev R.9, Simon S.10, Sigsgaard L. 8, Guibert E.11, 7 Tournant L.12, Gazel F.13, Mody K.14, Khachtib Y. 7, Roman A.15, Ursu T.M.15, Zakharov I.A. 8 16, Belcram H.1, Harry M.17, Roth M.18, Simon J.C.19, Oram S.20, Ricard J.M.11, Agnello A.21, 9 Beers E. H.22, Engelman J.23, Balti I.24, Salhi-Hannachi A24, Zhang H.25, Tu H. 25, Mottet C.26, 10 Barrès B.26, Degrave A.27, Razmjou J. 28, Giraud T.3, Falque M.1, Dapena E.29, Miñarro, M.29, 11 Jardillier L.3, Deschamps P.3, Jousselin E.2, Cornille, A.1 12 13 1. Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91190 14 Gif-sur-Yvette, France 15 2. -
Oat Aphid, Rhopalosiphum Padi
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Dundee Online Publications University of Dundee The price of protection Leybourne, Daniel; Bos, Jorunn; Valentine, Tracy A.; Karley, Alison Published in: Insect Science DOI: 10.1111/1744-7917.12606 Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link to publication in Discovery Research Portal Citation for published version (APA): Leybourne, D., Bos, J., Valentine, T. A., & Karley, A. (2020). The price of protection: a defensive endosymbiont impairs nymph growth in the bird cherryoat aphid, Rhopalosiphum padi. Insect Science, 69-85. https://doi.org/10.1111/1744-7917.12606 General rights Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain. • You may freely distribute the URL identifying the publication in the public portal. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 24. Dec. 2019 Insect Science (2020) 27, 69–85, DOI 10.1111/1744-7917.12606 ORIGINAL ARTICLE The price of protection: a defensive endosymbiont impairs nymph growth in the bird cherry-oat aphid, Rhopalosiphum padi Daniel J. -
Dwarf Galaxias
Threatened Species Link www.tas.gov.au SPECIES MANAGEMENT PROFILE Galaxiella pusilla Eastern Dwarf Galaxias Group: Chordata (vertebrates), Actinopterygii (bony fish), Salmoniformes (salmonids), Galaxiidae Status: Threatened Species Protection Act 1995: vulnerable Environment Protection and Biodiversity Conservation Act 1999: Vulnerable Endemic Found in Tasmania and elsewhere Status: A complete species management profile is not currently available for this species. Check for further information on this page and any relevant Activity Advice. Key Points Important: Is this species in your area? Do you need a permit? Ensure you’ve covered all the issues by checking the Planning Ahead page. Important: Different threatened species may have different requirements. For any activity you are considering, read the Activity Advice pages for background information and important advice about managing around the needs of multiple threatened species. Further information Check also for listing statement or notesheet pdf above (below the species image). Recovery Plan Cite as: Threatened Species Section (2021). Galaxiella pusilla (Eastern Dwarf Galaxias): Species Management Profile for Tasmania's Threatened Species Link. https://www.threatenedspecieslink.tas.gov.au/Pages/Dwarf-Galaxias.aspx. Department of Primary Industries, Parks, Water and Environment, Tasmania. Accessed on 29/9/2021. Contact details: Threatened Species Section, Department of Primary Industries, Parks, Water and Environment, GPO Box 44, Hobart, Tasmania, Australia, 7001. Phone (1300 368 550). Permit: A permit is required under the Tasmanian Threatened Species Protection Act 1995 to 'take' (which includes kill, injure, catch, damage, destroy and collect), keep, trade in or process any specimen or products of a listed species. Additional permits may also be required under other Acts or regulations to take, disturb or interfere with any form of wildlife or its products, (e.g. -
Coleoptera: Dytiscidae) on Larval Culex Quinquefasciatus (Diptera: Culicidae)
The University of Southern Mississippi The Aquila Digital Community Honors Theses Honors College Spring 5-2014 Differences In Consumption Rates Between Juvenile and Adult Laccophilus fasciatus rufus (Coleoptera: Dytiscidae) On Larval Culex quinquefasciatus (Diptera: Culicidae) Carmen E. Bofill University of Southern Mississippi Follow this and additional works at: https://aquila.usm.edu/honors_theses Part of the Biology Commons Recommended Citation Bofill, Carmen E., "Differences In Consumption Rates Between Juvenile and Adult Laccophilus fasciatus rufus (Coleoptera: Dytiscidae) On Larval Culex quinquefasciatus (Diptera: Culicidae)" (2014). Honors Theses. 254. https://aquila.usm.edu/honors_theses/254 This Honors College Thesis is brought to you for free and open access by the Honors College at The Aquila Digital Community. It has been accepted for inclusion in Honors Theses by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. The University of Southern Mississippi Differences in consumption rates between juvenile and adult Laccophilus fasciatus rufus (Coleoptera: Dytiscidae) on larval Culex quinquefasciatus (Diptera: Culicidae) by Carmen Bofill A Thesis Submitted to the Honors College of The University of Southern Mississippi in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in the Department of Biological Sciences May 2014 ii Approved by ______________________________ Donald Yee, Ph.D., Thesis Adviser Assistant Professor of Biology ______________________________ Shiao Wang, Ph.D., Chair Department of Biological Sciences ______________________________ David R. Davies, Ph.D., Dean Honors College iii Abstract With the increase of global temperature and human populations, prevalence of vector-borne diseases is becoming an issue for public health. Over the years these vectors have been notorious for developing resistance to human regulated insecticides. -
AFSS 2014 Abstract Booklet
Oral abstracts Oral abstracts The evolution of ASFB – reflections on 35 years of membership Seeing with sound – the behaviour and movements of fish in estuaries 1 2 1 2 01 Martin Gomon1 04 Alistair Becker , Iain M Suthers , Alan K Whitfield 1. Museum Victoria, Melbourne, VIC, Australia 1. University of New South Wales, Sydney, NSW, Australia 2. South African Institute for Aquatic Biodiversity, Grahamstown, South Africa The Australian Society for Fish Biology had as its inception early meetings organised by the ichthyological staff of the Australian Museum and New South Fisheries intended as a mechanism for sharing advances in fish related science and the development of Underwater video techniques have progressed rapidly over the past ten years, and are now used in a diverse range of habitats initiatives leading to the better understanding of the diversity and biology of Australia’s ichthyofauna. Although the enthusiasm from small creeks to the ocean depths. A limitation of underwater video cameras is they rely on high levels of water clarity and and casual nature of this now incorporated body has remained, the various focuses of the Society and its annual conferences have require artificial lighting if used in low light conditions. In systems such as estuaries, turbidity levels often restrict the use of changed over the decades in line with the evolving directions of the institutions and authorities charged with addressing fish conventional video. Acoustic cameras (DIDSON) overcome this problem as they rely on sound to produce near video, flowing studies and management, as well as the transient influences of the many characters that have been the Society’s driving force. -
Wheat Aphid CP
INDUSTRY BIOSECURITY PLAN FOR THE GRAINS INDUSTRY Threat Specific Contingency Plan Wheat aphid Sitobion avenae Prepared by Rob Weppler and Plant Health Australia March 2009 PLANT HEALTH AUSTRALIA | Contingency Plan – Wheat aphid (Sitobion avenae) Disclaimer The scientific and technical content of this document is current to the date published and all efforts were made to obtain relevant and published information on the pest. New information will be included as it becomes available, or when the document is reviewed. The material contained in this publication is produced for general information only. It is not intended as professional advice on any particular matter. No person should act or fail to act on the basis of any material contained in this publication without first obtaining specific, independent professional advice. Plant Health Australia and all persons acting for Plant Health Australia in preparing this publication, expressly disclaim all and any liability to any persons in respect of anything done by any such person in reliance, whether in whole or in part, on this publication. The views expressed in this publication are not necessarily those of Plant Health Australia. Further information For further information regarding this contingency plan, contact Plant Health Australia through the details below. Address: Suite 5, FECCA House 4 Phipps Close DEAKIN ACT 2600 Phone: +61 2 6215 7700 Fax: +61 2 6260 4321 Email: [email protected] Website: www.planthealthaustralia.com.au | PAGE 2 PLANT HEALTH AUSTRALIA | Contingency Plan – Wheat -
Sitobion) Miscanthi (Takahashi) (Homoptera: Aphididae
International Journal of Research Studies in Biosciences (IJRSB) Volume 2, Issue 9, October 2014, PP 17-41 ISSN 2349-0357 (Print) & ISSN 2349-0365 (Online) www.arcjournals.org Systematics, Nymphal Characteristics and Food Plants of Sitobion (Sitobion) Miscanthi (Takahashi) (Homoptera: Aphididae) Abhilasha Srivastava Rajendra Singh Department of Zoology Department of Zoology D.D.U. Gorakhpur University D.D.U. Gorakhpur University Gorakhpur, India Gorakhpur, India [email protected] [email protected] Abstract: The wheat aphid, Sitobion miscanthi (Takahashi) (Aphididae: Hemiptera) is a destructive aphid, native to Formosa but now distributed in many wheat growing countries of the world. It is a small (apterae 3.05-3.45 mm, alatae 2.35–2.92 mm) greenish to brownish aphid with dark siphunculi and light coloured cauda. Young ones are yellowish green in colour while grown-ups are light brownish to blackish brown. In India, it is reported on 84 plant species belonging to 13 plant families. It infests especially plant families Poaceae (Graminae). In northeastern Uttar Pradesh it was observed on feeding five host plants: Avena sativa L., Hordeum vulgare L., Pennisetum glaucum (L.) R. Br., Phalaris minor Retz, and Triticum aestivum L. In this article the taxonomic status, synonymy, economic importance, distribution, life history, and food plants of S. miscanthi were described. The adult parthenogenetic viviparous apterae and alatae as well as alate male (sexual morph, not recorded in the study area) were morphologically described giving the morphometry of all taxonomic characters along with illustrations. Several taxonomic characters of the first to fourth instar nymphs of apterous morph of S. -
Karyotype of Karoophasma Biedouwense (Austrophasmatidae)
Eur. J. Entomol. 112(4): 599–605, 2015 doi: 10.14411/eje.2015.093 ISSN 1210-5759 (print), 1802-8829 (online) First chromosomal study of Mantophasmatodea: Karyotype of Karoophasma biedouwense (Austrophasmatidae) DOROTA LACHOWSKA-CIERLIK1, ANNA MARyAńSKA-Nadachowska2, VALENTINA KuZNETSOvA3 and MIKE PICKER4 1 Institute of Zoology, Jagiellonian university, Cracow, Poland; e-mail: [email protected] 2 Institute of Systematic and Evolution of Animals, PAS, Cracow, Poland; e-mail: [email protected] 3 Zoological Institute Russian Academy of Sciences, St. Petersburg, Russia; e-mail: [email protected] 4 Department of Biological Sciences, university of Cape Town, Rondebosch, Cape Town, South Africa; e-mail: [email protected] Key words. Mantophasmatodea, Karoophasma biedouwense, FISH, heterochromatin, heelwalkers, meiosis, ribosomal genes, sex determination system, telomeres Abstract. We have investigated for the first time the chromosomes of Karoophasma biedouwense, a species belonging to the Manto- phasmatodea, a recently discovered order of carnivorous insects. Our study has revealed that males of this species display testes with numerous seminal tubes (follicles), as in other Polyneoptera, and short tubular seminal vesicles embedded in a utricular gland. The karyotype consists of 2n = 12A + X monocentric and biarmed, meta/submetacentric chromosomes (fundamental number of arms: FN = 26) with blocks of heterochromatin around centromeres. The autosomes are classified into two size groups, one represented by a single, very large pair of autosomes, the other by five smaller pairs which constitute a continuous series gradually decreasing in size. Among “monocentric” orders of Polyneoptera, K. biedouwense shares its low chromosome number, 2n = 13, as also found with some Orthoptera (Acridoidea, Grylloidea, Gryllacridoidea). -
Deficiencies in Our Understanding of the Hydro-Ecology of Several Native Australian Fish: a Rapid Evidence Synthesis
Marine and Freshwater Research, 2018, 69, 1208–1221 © CSIRO 2018 https://doi.org/10.1071/MF17241 Supplementary material Deficiencies in our understanding of the hydro-ecology of several native Australian fish: a rapid evidence synthesis Kimberly A. MillerA,D, Roser Casas-MuletB,A, Siobhan C. de LittleA, Michael J. StewardsonA, Wayne M. KosterC and J. Angus WebbA,E ADepartment of Infrastructure Engineering, The University of Melbourne, Parkville, Vic. 3010, Australia. BWater Research Institute, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK. CArthur Rylah Institute for Environmental Research, Department of Environment, Land, Water and Planning, Heidelberg, Vic. 3084, Australia. DPresent address: Healesville Sanctuary, Badger Creek Road, Healesville, Vic. 3777, Australia. ECorresponding author. Email address: [email protected] Page 1 of 30 Marine and Freshwater Research © CSIRO 2018 https://doi.org/10.1071/MF17241 Table S1. All papers located by standardised searches and following citation trails for the two rapid evidence assessments All papers are marked as Relevant or Irrelevant based on a reading of the title and abstract. Those deemed relevant on the first screen are marked as Relevant or Irrelevant based on a full assessment of the reference.The table contains incomplete citation details for a number of irrelevant papers. The information provided is as returned from the different evidence databases. Given that these references were not relevant to our review, we have not sought out the full citation details. Source Reference Relevance Relevance (based on title (after reading and abstract) full text) Pygmy perch & carp gudgeons Search hit Anon (1998) Soy protein-based formulas: recommendations for use in infant feeding.