Additions to the Turkish Aphid Fauna (Hemiptera: Aphidoidea: Aphididae)

Total Page:16

File Type:pdf, Size:1020Kb

Additions to the Turkish Aphid Fauna (Hemiptera: Aphidoidea: Aphididae) NORTH-WESTERN JOURNAL OF ZOOLOGY 7 (2): 318-321 ©NwjZ, Oradea, Romania, 2011 Article No.: 111206 www.herp-or.uv.ro/nwjz Additions to the Turkish Aphid fauna (Hemiptera: Aphidoidea: Aphididae) Gazi GÖRÜR*, İlker TEPECİK, Hayal AKYILDIRIM and Gülay OLCABEY Nigde University, Department of Biology, 51100 Nigde-Turkey. *Corresponding author, G. Görür’s e-mail: [email protected] Received: 12. July 2010 / Accepted: 10. April 2011 / Available online: 30.April 2011 Abstract. As a result of the study carried out between 2007 and 2009 in far Eastern part of the Black Sea Re- gion of Turkey to determine aphid species on herbaceous plants, 17 species were determined as new records for Turkey aphid fauna. New recorded species are Aphis acanthoidis (Börner 1940), Aphis brunellae Schouteden 1903, Aphis genistae Scopoli 1763, Aphis longituba Hille Ris Lambers 1966, Aphis molluginis (Börner 1950), Aphis pseudocomosa Stroyan 1972, Aphis thomasi (Börner 1950), Capitophorus inulae (Passerini 1860), Metopolophium tenerum Hille Ris Lambers 1947, Microlophium sibiricum (Mordvilko 1914), Sitobion miscanthi (Takahashi 1921), Uroleucon ambrosiae (Thomas 1878), Uroleucon compositae (Theobald 1915), Uroleucon kikioense (Shinji 1941), Uroleucon pulicariae (Hille Ris Lambers 1933), Uroleucon scorzonerae Danielsson 1973, Uroleucon siculum Barba- gallo & Stroyan 1980. With these new records, the number of the species increased to 472 in Turkey aphid fauna. Key words: Aphid, Aphidoidea, herbaceous plants, Turkey. The known world aphid fauna consists of about (2008), Eser et al. (2009), Görür et al. (2009), 4500 species and 250 of those species are thought Akyürek et al. (2010) and Barjadze et al. (2011) to be serious pests around the world, and also in added 36 new records and the total number of the Turkey, where they cause economically important aphid species increased to 455. crop damage (Remaudière & Remaudière 1997, Main materials of the study were aphid sam- Blackman & Eastop 2006, Holman 2009). For ex- ples collected on herbaceous plants from the Far ample, pest-caused losses of yield are estimated to East part of the Black Sea Region of Turkey. The average about 30% annually, despite using the study area was the wettest part of the Turkey and best pest control technology available in USA. richest area of the country in terms of herbaceous However, in the developing countries to which plants diversity. Both apterous and alate vivipa- Turkey belongs, pest-caused crops losses are even rous females were sampled and about 30-40 indi- higher, about 50% or more (Ruberson 1999). viduals were taken on each herbaceous host plant Turkey, one of the largest countries in Europe, (for each sampling) as much as possible. A per- is a bridge between old world and new world con- manent slide of each sample was done according tinents. It has the richest flora in Europe, particu- to the principles of Martin (1983). lar geographical features and also has a various All samples were identified according to types of climates. Turkey as a homeland to a lot of Blackman & Eastop (2006). Taxonomic status, crops has a very large agricultural landscape and a world distribution and host plants of identified tremendous amount of the crop production. In species were confirmed by checking through contrast to various conditions available for aphid Blackman & Eastop (2006), Remaudière & Re- infestation and diversity, research of the Turkey maudière (1997), Holman (2009) and Fauna Eu- aphid fauna was limited up to last decade. Pre- ropaea (2011), Aphid Species File (2011), Aphids liminary studies performed at the beginning of the on the World’s Plants (2011). Sampled specimens 1900’s and only focused on very small parts of the are kept at the Biology Department of Nigde Uni- Turkey. Çanakcıoğlu (1975) reviewed the previous versity. studies and listed 258 species. In addition, Toros et As a result of the identification of about 1500 al. (2003), Görür (2002, 2004a, b), Özdemir et al. samples on herbaceous plants from the study area, (2005) have added more than 40 new aphid spe- 70 aphid species were determined. Of these spe- cies to Turkey aphid fauna. Remaudière et al. cies, 17 of them are new records for Turkey aphid (2006) revised studies carried out on Turkey aphid fauna. Taxonomic status, host plants, collection fauna and listed about 417 species despite some sites, collection date and distribution were given controversies. More recently Toper Kaygin et al. in alphabetical order for each new record. Turkish Aphid fauna 319 Aphididae, Aphidinae A. thomasi (Börner, 1950) Material examined: One sample was collected I. Aphidini on stem of Knautia integrifolia from Artvin-Hopa I.1. Aphis Linnaeus, 1758 on 01.V.2008, four apterous viviparous individuals A. acanthoidis (Börner, 1940) were examined. Material examined: Two samples of A. acan- Distribution: Germany, Bulgaria, Czech Re- thoidis were collected on stem of two different Cir- public, England, Spain, Switzerland, Italy, Russia, sium arvense from Trabzon–Long Lake on Slovakia and Ukraine (Blackman & Eastop 2006, 26.VII.2008, five apterous viviparous and two alate Holman 2009). viviparous individuals were examined. Distribution: Germany, Austria, Czech Repub- II. Macrosiphini lic, The Netherlands, Slovakia, Poland, Romania , II.1. Capitophorus van der Goot, 1913 Russia and Ukraine (Holman 2009). C. inulae (Passerini, 1860) A. brunellae Schouteden, 1903 Material examined: One sample of Capitopho- Material examined: Only one sample of A. rus inulae was collected from under the receptacle brunellae was collected on flowers of Prunella orien- of Inula sp. from Trabzon-Sumela on 02.V.2008, talis from Rize-Ayder Kavrun plato on seven apterous viviparous and only one alate vi- 15.VIII.2009, three apterous viviparous individuals viparous individuals were examined. were examined. Distribution: The Mediterranean Sea, East Distribution: Europe (Blackman & Eastop Asia, Europe, Australia, Azerbaijan, South Eng- 2006, Holman 2009). land, Uzbekistan and Jordan (Blackman & Eastop A. genistae Scopoli, 1763 2006, Holman 2009). Material examined: Three samples of A. gen- II.2. Metopolophium Mordvilko, 1911 istae were collected on both stem and flower parts M. tenerum Hille Ris Lambers, 1947 of Spartium junceum from Trabzon-Carsıbası on Material examined: Two samples of Metopolo- 21.VI.2009, eight apterous viviparous and only one phium tenerum were collected on Poaceae from alate viviparous individuals were examined. Rize-Anzer plato on 16.VIII.2009, four apterous Distribution: Europe and Ukraine (Blackman viviparous individuals were examined. & Eastop 2006). Distribution: North-West and North Europe A. longituba Hille Ris Lambers, 1966 (Blackman & Eastop 2006). Material examined: Two samples of A. longi- II.3. Microlophium Mordvilko, 1914 tuba were collected on both under leaves and M. sibiricum (Mordvilko, 1914) flowers of Clematis vitalba from Trabzon-Carsıbası Material examined: Three samples were col- on 21.VI.2009, 20 apterous viviparous and four lected on stem of Urtica sp. from Trabzon-Sumela alate viviparous individuals were examined. Monastery and Trabzon-Sümela on 29.IV.2008, 11 Distribution: India and Pakistan (Blackman & apterous viviparous and three alate viviparous in- Eastop 2006). dividuals were examined. A. molluginis (Börner, 1950) Distribution: In all Europe except United Material examined: Three samples of A. mol- Kingdom, Asia, USA and probably Japan (Black- luginis samples were collected on the upper stem man & Eastop 2006). of Galium aparine from Trabzon- Yomra on 23.VI.2009, 12 apterous viviparous individuals II.4. Sitobion Mordvilko, 1914 were examined. S. miscanthi (Takahashi, 1921) Material examined: Six Sitobion miscanthi sam- Distribution: North and North-West Europe (Blackman & Eastop 2006). ples were collected on ear and stem of Poaceae on A. pseudocomosa Stroyan, 1972 14.VIII.2009 from Artvin-Kafkasor, Ranunculus sp. from Trabzon-Surmene on 23.VI.2008, Triticum aes- Material examined: Two samples were col- tivum from Trabzon-Salpazarı on 05.V.2009, Triti- lected on flowers of Lathyrus vernus and Lathyrus pratensis Trabzon-Duzkoy- Cal cave on 21.VI.2009, cum sp. from Trabzon-Yomra on 07.V.2009, Avena 15 apterous viviparous and two alate viviparous sativa from Trabzon-Of on 09.V.2009, Bromus sp. from Trabzon-Tonya on 20.VI.2009, 20 apterous individuals were examined. viviparous and five alate viviparous individuals Distribution: Widely distributed in Europe (Blackman & Eastop 2006). were examined. 320 Görür, G. et al. Distribution: Australia, East and Southeast Distribution: Italy-Sicily (Barbagallo & Patti Asia, India, New Zealand and Pacific islands 1998). (Blackman & Eastop 2006). Findings of the presented study added 17 spe- II.5. Uroleucon Mordvilko, 1914 cies to the Turkish aphid fauna and with these U. ambrosiae (Thomas, 1878) new records number of the aphid species occur- Material examined: Two U. ambrosiae samples ring in Turkey rose to 472. Considering the par- were collected on the stem and receptacle of Se- ticular ecological, geographical, climatic, floristic, necio sp. from Trabzon-Caykara on 08.V.2009, agricultural and continental position of Turkey, eight apterous viviparous and three alate vivipa- current aphid species do not sufficiently reflect a rous individuals were examined. real number of the Turkish aphid fauna compared Distribution: America (Blackman & Eastop with some neighboring countries. For example, It- 2006). aly has 6000 plant species but Italian aphid fauna U. compositae (Theobald,
Recommended publications
  • 1 Large-Scale Geographic Survey Provides Insights Into the Colonization History of a Major
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.11.421644; this version posted December 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Large-scale geographic survey provides insights into the colonization history of a major 2 aphid pest on its cultivated apple host in Europe, North America and North Africa 3 4 Olvera-Vazquez S.G.1, Remoué C.1, Venon A.1, Rousselet A.1, Grandcolas O.1, Azrine M.1, 5 Momont L.1, Galan M.2, L. Benoit2, David G.3, Alhmedi A.4, Beliën T.4, Alins G.5, Franck 6 P.6, Haddioui A.7, Jacobsen S.K.8, Andreev R.9, Simon S.10, Sigsgaard L. 8, Guibert E.11, 7 Tournant L.12, Gazel F.13, Mody K.14, Khachtib Y. 7, Roman A.15, Ursu T.M.15, Zakharov I.A. 8 16, Belcram H.1, Harry M.17, Roth M.18, Simon J.C.19, Oram S.20, Ricard J.M.11, Agnello A.21, 9 Beers E. H.22, Engelman J.23, Balti I.24, Salhi-Hannachi A24, Zhang H.25, Tu H. 25, Mottet C.26, 10 Barrès B.26, Degrave A.27, Razmjou J. 28, Giraud T.3, Falque M.1, Dapena E.29, Miñarro, M.29, 11 Jardillier L.3, Deschamps P.3, Jousselin E.2, Cornille, A.1 12 13 1. Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91190 14 Gif-sur-Yvette, France 15 2.
    [Show full text]
  • Oat Aphid, Rhopalosiphum Padi
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Dundee Online Publications University of Dundee The price of protection Leybourne, Daniel; Bos, Jorunn; Valentine, Tracy A.; Karley, Alison Published in: Insect Science DOI: 10.1111/1744-7917.12606 Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link to publication in Discovery Research Portal Citation for published version (APA): Leybourne, D., Bos, J., Valentine, T. A., & Karley, A. (2020). The price of protection: a defensive endosymbiont impairs nymph growth in the bird cherryoat aphid, Rhopalosiphum padi. Insect Science, 69-85. https://doi.org/10.1111/1744-7917.12606 General rights Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain. • You may freely distribute the URL identifying the publication in the public portal. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 24. Dec. 2019 Insect Science (2020) 27, 69–85, DOI 10.1111/1744-7917.12606 ORIGINAL ARTICLE The price of protection: a defensive endosymbiont impairs nymph growth in the bird cherry-oat aphid, Rhopalosiphum padi Daniel J.
    [Show full text]
  • Aphid Species (Hemiptera: Aphididae) Infesting Medicinal and Aromatic Plants in the Poonch Division of Azad Jammu and Kashmir, Pakistan
    Amin et al., The Journal of Animal & Plant Sciences, 27(4): 2017, Page:The J.1377 Anim.-1385 Plant Sci. 27(4):2017 ISSN: 1018-7081 APHID SPECIES (HEMIPTERA: APHIDIDAE) INFESTING MEDICINAL AND AROMATIC PLANTS IN THE POONCH DIVISION OF AZAD JAMMU AND KASHMIR, PAKISTAN M. Amin1, K. Mahmood1 and I. Bodlah 2 1 Faculty of Agriculture, Department of Entomology, University of Poonch, 12350 Rawalakot, Azad Jammu and Kashmir, Pakistan 2Department of Entomology, PMAS-Arid Agriculture University, 46000 Rawalpindi, Pakistan Corresponding Author Email: [email protected] ABSTRACT This study conducted during 2015-2016 presents first systematic account of the aphids infesting therapeutic herbs used to cure human and veterinary ailments in the Poonch Division of Azad Jammu and Kashmir, Pakistan. In total 20 aphid species, representing 12 genera, were found infesting 35 medicinal and aromatic plant species under 31 genera encompassing 19 families. Aphis gossypii with 17 host plant species was the most polyphagous species followed by Myzus persicae and Aphis fabae that infested 15 and 12 host plant species respectively. Twenty-two host plant species had multiple aphid species infestation. Sonchus asper was infested by eight aphid species and was followed by Tagetes minuta, Galinosoga perviflora and Chenopodium album that were infested by 7, 6 and 5 aphid species respectively. Asteraceae with 11 host plant species under 10 genera, carrying 13 aphid species under 8 genera was the most aphid- prone plant family. A preliminary systematic checklist of studied aphids and list of host plant species are provided. Key words: Aphids, Medicinal/Aromatic plants, checklist, Poonch, Kashmir, Pakistan.
    [Show full text]
  • Mantar Dergisi
    11 6845 - Volume: 20 Issue:1 JOURNAL - E ISSN:2147 - April 20 e TURKEY - KONYA - FUNGUS Research Center JOURNAL OF OF JOURNAL Selçuk Selçuk University Mushroom Application and Selçuk Üniversitesi Mantarcılık Uygulama ve Araştırma Merkezi KONYA-TÜRKİYE MANTAR DERGİSİ E-DERGİ/ e-ISSN:2147-6845 Nisan 2020 Cilt:11 Sayı:1 e-ISSN 2147-6845 Nisan 2020 / Cilt:11/ Sayı:1 April 2020 / Volume:11 / Issue:1 SELÇUK ÜNİVERSİTESİ MANTARCILIK UYGULAMA VE ARAŞTIRMA MERKEZİ MÜDÜRLÜĞÜ ADINA SAHİBİ PROF.DR. GIYASETTİN KAŞIK YAZI İŞLERİ MÜDÜRÜ DR. ÖĞR. ÜYESİ SİNAN ALKAN Haberleşme/Correspondence S.Ü. Mantarcılık Uygulama ve Araştırma Merkezi Müdürlüğü Alaaddin Keykubat Yerleşkesi, Fen Fakültesi B Blok, Zemin Kat-42079/Selçuklu-KONYA Tel:(+90)0 332 2233998/ Fax: (+90)0 332 241 24 99 Web: http://mantarcilik.selcuk.edu.tr http://dergipark.gov.tr/mantar E-Posta:[email protected] Yayın Tarihi/Publication Date 27/04/2020 i e-ISSN 2147-6845 Nisan 2020 / Cilt:11/ Sayı:1 / / April 2020 Volume:11 Issue:1 EDİTÖRLER KURULU / EDITORIAL BOARD Prof.Dr. Abdullah KAYA (Karamanoğlu Mehmetbey Üniv.-Karaman) Prof.Dr. Abdulnasır YILDIZ (Dicle Üniv.-Diyarbakır) Prof.Dr. Abdurrahman Usame TAMER (Celal Bayar Üniv.-Manisa) Prof.Dr. Ahmet ASAN (Trakya Üniv.-Edirne) Prof.Dr. Ali ARSLAN (Yüzüncü Yıl Üniv.-Van) Prof.Dr. Aysun PEKŞEN (19 Mayıs Üniv.-Samsun) Prof.Dr. A.Dilek AZAZ (Balıkesir Üniv.-Balıkesir) Prof.Dr. Ayşen ÖZDEMİR TÜRK (Anadolu Üniv.- Eskişehir) Prof.Dr. Beyza ENER (Uludağ Üniv.Bursa) Prof.Dr. Cvetomir M. DENCHEV (Bulgarian Academy of Sciences, Bulgaristan) Prof.Dr. Celaleddin ÖZTÜRK (Selçuk Üniv.-Konya) Prof.Dr. Ertuğrul SESLİ (Trabzon Üniv.-Trabzon) Prof.Dr.
    [Show full text]
  • A Contribution to the Aphid Fauna of Greece
    Bulletin of Insectology 60 (1): 31-38, 2007 ISSN 1721-8861 A contribution to the aphid fauna of Greece 1,5 2 1,6 3 John A. TSITSIPIS , Nikos I. KATIS , John T. MARGARITOPOULOS , Dionyssios P. LYKOURESSIS , 4 1,7 1 3 Apostolos D. AVGELIS , Ioanna GARGALIANOU , Kostas D. ZARPAS , Dionyssios Ch. PERDIKIS , 2 Aristides PAPAPANAYOTOU 1Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Nea Ionia, Magnesia, Greece 2Laboratory of Plant Pathology, Department of Agriculture, Aristotle University of Thessaloniki, Greece 3Laboratory of Agricultural Zoology and Entomology, Agricultural University of Athens, Greece 4Plant Virology Laboratory, Plant Protection Institute of Heraklion, National Agricultural Research Foundation (N.AG.RE.F.), Heraklion, Crete, Greece 5Present address: Amfikleia, Fthiotida, Greece 6Present address: Institute of Technology and Management of Agricultural Ecosystems, Center for Research and Technology, Technology Park of Thessaly, Volos, Magnesia, Greece 7Present address: Department of Biology-Biotechnology, University of Thessaly, Larissa, Greece Abstract In the present study a list of the aphid species recorded in Greece is provided. The list includes records before 1992, which have been published in previous papers, as well as data from an almost ten-year survey using Rothamsted suction traps and Moericke traps. The recorded aphidofauna consisted of 301 species. The family Aphididae is represented by 13 subfamilies and 120 genera (300 species), while only one genus (1 species) belongs to Phylloxeridae. The aphid fauna is dominated by the subfamily Aphidi- nae (57.1 and 68.4 % of the total number of genera and species, respectively), especially the tribe Macrosiphini, and to a lesser extent the subfamily Eriosomatinae (12.6 and 8.3 % of the total number of genera and species, respectively).
    [Show full text]
  • Aphids (Hemiptera, Aphididae)
    A peer-reviewed open-access journal BioRisk 4(1): 435–474 (2010) Aphids (Hemiptera, Aphididae). Chapter 9.2 435 doi: 10.3897/biorisk.4.57 RESEARCH ARTICLE BioRisk www.pensoftonline.net/biorisk Aphids (Hemiptera, Aphididae) Chapter 9.2 Armelle Cœur d’acier1, Nicolas Pérez Hidalgo2, Olivera Petrović-Obradović3 1 INRA, UMR CBGP (INRA / IRD / Cirad / Montpellier SupAgro), Campus International de Baillarguet, CS 30016, F-34988 Montferrier-sur-Lez, France 2 Universidad de León, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 – León, Spain 3 University of Belgrade, Faculty of Agriculture, Nemanjina 6, SER-11000, Belgrade, Serbia Corresponding authors: Armelle Cœur d’acier ([email protected]), Nicolas Pérez Hidalgo (nperh@unile- on.es), Olivera Petrović-Obradović ([email protected]) Academic editor: David Roy | Received 1 March 2010 | Accepted 24 May 2010 | Published 6 July 2010 Citation: Cœur d’acier A (2010) Aphids (Hemiptera, Aphididae). Chapter 9.2. In: Roques A et al. (Eds) Alien terrestrial arthropods of Europe. BioRisk 4(1): 435–474. doi: 10.3897/biorisk.4.57 Abstract Our study aimed at providing a comprehensive list of Aphididae alien to Europe. A total of 98 species originating from other continents have established so far in Europe, to which we add 4 cosmopolitan spe- cies of uncertain origin (cryptogenic). Th e 102 alien species of Aphididae established in Europe belong to 12 diff erent subfamilies, fi ve of them contributing by more than 5 species to the alien fauna. Most alien aphids originate from temperate regions of the world. Th ere was no signifi cant variation in the geographic origin of the alien aphids over time.
    [Show full text]
  • Ubiquity of the Symbiont Serratia Symbiotica in the Aphid Natural Environment
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.18.440331; this version posted April 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Ubiquity of the Symbiont Serratia symbiotica in the Aphid Natural Environment: 2 Distribution, Diversity and Evolution at a Multitrophic Level 3 4 Inès Pons1*, Nora Scieur1, Linda Dhondt1, Marie-Eve Renard1, François Renoz1, Thierry Hance1 5 6 1 Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, 1348, 7 Louvain-la-Neuve, Belgium. 8 9 10 * Corresponding author: 11 Inès Pons 12 Croix du Sud 4-5, bte L7.07.04, 1348 Louvain la neuve, Belgique 13 [email protected] 14 15 16 17 18 19 20 21 22 23 24 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.04.18.440331; this version posted April 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 25 ABSTRACT 26 Bacterial symbioses are significant drivers of insect evolutionary ecology. However, despite recent 27 findings that these associations can emerge from environmentally derived bacterial precursors, there 28 is still little information on how these potential progenitors of insect symbionts circulates in the trophic 29 systems. The aphid symbiont Serratia symbiotica represents a valuable model for deciphering 30 evolutionary scenarios of bacterial acquisition by insects, as its diversity includes intracellular host- 31 dependent strains as well as gut-associated strains that have retained some ability to live independently 32 of their hosts and circulate in plant phloem sap.
    [Show full text]
  • Wheat Aphid CP
    INDUSTRY BIOSECURITY PLAN FOR THE GRAINS INDUSTRY Threat Specific Contingency Plan Wheat aphid Sitobion avenae Prepared by Rob Weppler and Plant Health Australia March 2009 PLANT HEALTH AUSTRALIA | Contingency Plan – Wheat aphid (Sitobion avenae) Disclaimer The scientific and technical content of this document is current to the date published and all efforts were made to obtain relevant and published information on the pest. New information will be included as it becomes available, or when the document is reviewed. The material contained in this publication is produced for general information only. It is not intended as professional advice on any particular matter. No person should act or fail to act on the basis of any material contained in this publication without first obtaining specific, independent professional advice. Plant Health Australia and all persons acting for Plant Health Australia in preparing this publication, expressly disclaim all and any liability to any persons in respect of anything done by any such person in reliance, whether in whole or in part, on this publication. The views expressed in this publication are not necessarily those of Plant Health Australia. Further information For further information regarding this contingency plan, contact Plant Health Australia through the details below. Address: Suite 5, FECCA House 4 Phipps Close DEAKIN ACT 2600 Phone: +61 2 6215 7700 Fax: +61 2 6260 4321 Email: [email protected] Website: www.planthealthaustralia.com.au | PAGE 2 PLANT HEALTH AUSTRALIA | Contingency Plan – Wheat
    [Show full text]
  • Sitobion) Miscanthi (Takahashi) (Homoptera: Aphididae
    International Journal of Research Studies in Biosciences (IJRSB) Volume 2, Issue 9, October 2014, PP 17-41 ISSN 2349-0357 (Print) & ISSN 2349-0365 (Online) www.arcjournals.org Systematics, Nymphal Characteristics and Food Plants of Sitobion (Sitobion) Miscanthi (Takahashi) (Homoptera: Aphididae) Abhilasha Srivastava Rajendra Singh Department of Zoology Department of Zoology D.D.U. Gorakhpur University D.D.U. Gorakhpur University Gorakhpur, India Gorakhpur, India [email protected] [email protected] Abstract: The wheat aphid, Sitobion miscanthi (Takahashi) (Aphididae: Hemiptera) is a destructive aphid, native to Formosa but now distributed in many wheat growing countries of the world. It is a small (apterae 3.05-3.45 mm, alatae 2.35–2.92 mm) greenish to brownish aphid with dark siphunculi and light coloured cauda. Young ones are yellowish green in colour while grown-ups are light brownish to blackish brown. In India, it is reported on 84 plant species belonging to 13 plant families. It infests especially plant families Poaceae (Graminae). In northeastern Uttar Pradesh it was observed on feeding five host plants: Avena sativa L., Hordeum vulgare L., Pennisetum glaucum (L.) R. Br., Phalaris minor Retz, and Triticum aestivum L. In this article the taxonomic status, synonymy, economic importance, distribution, life history, and food plants of S. miscanthi were described. The adult parthenogenetic viviparous apterae and alatae as well as alate male (sexual morph, not recorded in the study area) were morphologically described giving the morphometry of all taxonomic characters along with illustrations. Several taxonomic characters of the first to fourth instar nymphs of apterous morph of S.
    [Show full text]
  • Aphid Transmission of Potyvirus: the Largest Plant-Infecting RNA Virus Genus
    Supplementary Aphid Transmission of Potyvirus: The Largest Plant-Infecting RNA Virus Genus Kiran R. Gadhave 1,2,*,†, Saurabh Gautam 3,†, David A. Rasmussen 2 and Rajagopalbabu Srinivasan 3 1 Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA 2 Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27606, USA; [email protected] 3 Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA; [email protected] * Correspondence: [email protected]. † Authors contributed equally. Received: 13 May 2020; Accepted: 15 July 2020; Published: date Abstract: Potyviruses are the largest group of plant infecting RNA viruses that cause significant losses in a wide range of crops across the globe. The majority of viruses in the genus Potyvirus are transmitted by aphids in a non-persistent, non-circulative manner and have been extensively studied vis-à-vis their structure, taxonomy, evolution, diagnosis, transmission and molecular interactions with hosts. This comprehensive review exclusively discusses potyviruses and their transmission by aphid vectors, specifically in the light of several virus, aphid and plant factors, and how their interplay influences potyviral binding in aphids, aphid behavior and fitness, host plant biochemistry, virus epidemics, and transmission bottlenecks. We present the heatmap of the global distribution of potyvirus species, variation in the potyviral coat protein gene, and top aphid vectors of potyviruses. Lastly, we examine how the fundamental understanding of these multi-partite interactions through multi-omics approaches is already contributing to, and can have future implications for, devising effective and sustainable management strategies against aphid- transmitted potyviruses to global agriculture.
    [Show full text]
  • Host-Microbe Relations: a Phylogenomics-Driven Bioinformatic Approach to the Characterization of Microbial DNA from Heterogeneous Sequence Data
    Host-Microbe Relations: A Phylogenomics-Driven Bioinformatic Approach to the Characterization of Microbial DNA from Heterogeneous Sequence Data Timothy Patrick Driscoll Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Genetics, Bioinformatics, and Computational Biology Joseph J Gillespie David R Bevan Madhav V Marathe T M Murali May 1st, 2013 Blacksburg, Virginia Keywords: phylogenomics, genome-mining, host-microbe interactions, genomics, bioinformatics, symbiosis, bacteria, lateral gene transfer Copyright 2013 Host-Microbe Relations: A Phylogenomics-Driven Bioinformatic Approach to the Characterization of Microbial DNA from Heterogeneous Sequence Data Timothy Patrick Driscoll ABSTRACT Plants and animals are characterized by intimate, enduring, often indispensable, and always complex associations with microbes. Therefore, it should come as no surprise that when the genome of a eukaryote is sequenced, a medley of bacterial sequences are produced as well. These sequences can be highly informative about the interactions between the eukaryote and its bacterial cohorts; unfortunately, they often comprise a vanishingly small constituent within a heterogeneous mixture of microbial and host sequences. Genomic analyses typically avoid the bacterial sequences in order to obtain a genome sequence for the host. Metagenomic analysis typically avoid the host sequences in order to analyze community composition and functional diversity of the bacterial component. This dissertation describes the development of a novel approach at the intersection of genomics and metagenomics, aimed at the extraction and characterization of bacterial sequences from heterogeneous sequence data using phylogenomic and bioinformatic tools. To achieve this objective, three interoperable workflows were constructed as modular computational pipelines, with built-in checkpoints for periodic interpretation and refinement.
    [Show full text]
  • THE MODERNIZATION of the OTTOMAN NAVY DURING the REIGN of SULTAN ABDÜLAZİZ (1861-1876) By
    THE MODERNIZATION OF THE OTTOMAN NAVY DURING THE REIGN OF SULTAN ABDÜLAZİZ (1861-1876) by DİLARA DAL A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY Centre for Byzantine, Ottoman and Modern Greek Studies Department of Classics, Ancient History and Archaeology College of Arts and Law The University of Birmingham April, 2015 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT The main focus of this study is to examine the modernization of the Ottoman navy during the reign of Sultan Abdülaziz, exploring naval administration, education, and technology. Giving a summary of the transformation of shipbuilding technologies and bureaucratic institutions of the Ottoman naval forces between 1808 and 1861, it analyses the structure of the Ottoman navy, its level of development in comparison to previous periods of time, and the condition of the vessels making up the naval fleet from 1861 to 1876. It also intends to evaluate the character of existing administrative structures at the outset of Abdülaziz’s reign in 1861 and the nature of subsequent changes, including structural reorganization of the Imperial Naval Arsenal, the Ministry of Marine, and the Naval Academy, as well as advancements in military training and seafaring; all within the context of the impact of these changes on the military, political, and economic condition of the Empire during the reign of Sultan Abdülaziz.
    [Show full text]