Sean Solomon
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Copyrighted Material
Index Abulfeda crater chain (Moon), 97 Aphrodite Terra (Venus), 142, 143, 144, 145, 146 Acheron Fossae (Mars), 165 Apohele asteroids, 353–354 Achilles asteroids, 351 Apollinaris Patera (Mars), 168 achondrite meteorites, 360 Apollo asteroids, 346, 353, 354, 361, 371 Acidalia Planitia (Mars), 164 Apollo program, 86, 96, 97, 101, 102, 108–109, 110, 361 Adams, John Couch, 298 Apollo 8, 96 Adonis, 371 Apollo 11, 94, 110 Adrastea, 238, 241 Apollo 12, 96, 110 Aegaeon, 263 Apollo 14, 93, 110 Africa, 63, 73, 143 Apollo 15, 100, 103, 104, 110 Akatsuki spacecraft (see Venus Climate Orbiter) Apollo 16, 59, 96, 102, 103, 110 Akna Montes (Venus), 142 Apollo 17, 95, 99, 100, 102, 103, 110 Alabama, 62 Apollodorus crater (Mercury), 127 Alba Patera (Mars), 167 Apollo Lunar Surface Experiments Package (ALSEP), 110 Aldrin, Edwin (Buzz), 94 Apophis, 354, 355 Alexandria, 69 Appalachian mountains (Earth), 74, 270 Alfvén, Hannes, 35 Aqua, 56 Alfvén waves, 35–36, 43, 49 Arabia Terra (Mars), 177, 191, 200 Algeria, 358 arachnoids (see Venus) ALH 84001, 201, 204–205 Archimedes crater (Moon), 93, 106 Allan Hills, 109, 201 Arctic, 62, 67, 84, 186, 229 Allende meteorite, 359, 360 Arden Corona (Miranda), 291 Allen Telescope Array, 409 Arecibo Observatory, 114, 144, 341, 379, 380, 408, 409 Alpha Regio (Venus), 144, 148, 149 Ares Vallis (Mars), 179, 180, 199 Alphonsus crater (Moon), 99, 102 Argentina, 408 Alps (Moon), 93 Argyre Basin (Mars), 161, 162, 163, 166, 186 Amalthea, 236–237, 238, 239, 241 Ariadaeus Rille (Moon), 100, 102 Amazonis Planitia (Mars), 161 COPYRIGHTED -
Eminescu and the Transition to Peak-Ring Basins on Mercury
41st Lunar and Planetary Science Conference (2010) 1263.pdf EMINESCU AND THE TRANSITION TO PEAK-RING BASINS ON MERCURY. S. C. Schon,1 J. W. Head,1 L. M. Prockter2, and the MESSENGER Science Team.3 1Dept. of Geological Sciences, Brown University, Providence, RI 02906 USA; 2JHU/APL, Laurel, MD; 3http://messenger.jhuapl.edu/who_we_are/science_team.html. Introduction: The MESSENGER [1] flybys have yielded a range of new scientific findings for Mercury [2] including evidence of embayment relationships indicative of volcanic plains activity [3,4] and an im- proved size estimate for the Caloris basin [5]. These new data reveal a broad continuum of Mercurian crater morphologies [6] in greater detail than prior studies that relied on Mariner 10 or Earth-based radar observa- tions [7]. This study focuses on mapping the interior deposits of Eminescu, a central peak-ring basin, and is part of a larger comparative analysis of transitional crater morphologies observed on Mercury and the Moon in new data sets [8]. Impacts on Mercury occur at much higher veloci- ties than lunar impacts and correspondingly generate more impact melt. Cintala [9] estimated that for a given projectile, the velocity difference will lead to twice as much impact melt on Mercury than on the Moon. Here we examine images at ~150 m/pixel reso- Figure 1: Eminescu Crater, ~125-km in diameter (10.8°N, lution of the fresh impact crater Eminescu to document 114.1°E), imaged during the first MESSENGER flyby. the nature of fresh crater interiors on Mercury at the transition from complex to peak-ring morphology. -
Mercury's Low-Reflectance Material: Constraints from Hollows
Mercury’s low-reflectance material: Constraints from hollows Rebecca Thomas, Brian Hynek, David Rothery, Susan Conway To cite this version: Rebecca Thomas, Brian Hynek, David Rothery, Susan Conway. Mercury’s low-reflectance material: Constraints from hollows. Icarus, Elsevier, 2016, 277, pp.455-465. 10.1016/j.icarus.2016.05.036. hal-02271739 HAL Id: hal-02271739 https://hal.archives-ouvertes.fr/hal-02271739 Submitted on 27 Aug 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Mercury’s Low-Reflectance Material: Constraints from Hollows Rebecca J. Thomas , Brian M. Hynek , David A. Rothery , Susan J. Conway PII: S0019-1035(16)30246-9 DOI: 10.1016/j.icarus.2016.05.036 Reference: YICAR 12084 To appear in: Icarus Received date: 23 February 2016 Revised date: 9 May 2016 Accepted date: 24 May 2016 Please cite this article as: Rebecca J. Thomas , Brian M. Hynek , David A. Rothery , Susan J. Conway , Mercury’s Low-Reflectance Material: Constraints from Hollows, Icarus (2016), doi: 10.1016/j.icarus.2016.05.036 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. -
ARTICLE in PRESS EPSL-09719; No of Pages 8 Earth and Planetary Science Letters Xxx (2009) Xxx–Xxx
ARTICLE IN PRESS EPSL-09719; No of Pages 8 Earth and Planetary Science Letters xxx (2009) xxx–xxx Contents lists available at ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl 1 Regular articles 2 Could Pantheon Fossae be the result of the Apollodorus crater^-forming impact within 3 the Caloris Basin, Mercury? 4 Andrew M. Freed a,⁎, Sean C. Solomon b, Thomas R. Watters c, Roger J. Phillips d, Maria T. Zuber e 5 a Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, IN 47907, USA 6 b Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015, USA 7 c Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC 20560, USA 8 d Planetary Science Directorate, Southwest Research Institute, Boulder, CO 80302, USA 9 e Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 10 article info abstract OOF 11 12 Article history: 25 The ^~40^-km-diameter Apollodorus impact crater lies near the center of Pantheon Fossae, a complex of 13 Accepted 20 February 2009 radiating linear troughs itself at the approximate center of the 1500-km-diameter Caloris basin on Mercury. 26 14 Available online xxxx Here we use a series of finite element models to explore the idea that the Apollodorus crater-forming impact 27 15 induced the formation of radially oriented graben by altering a pre-existing extensional stress state. Graben 28 16 Editor: T. Spohn in the outer portions of the Caloris basin, which displayPR predominantly circumferential orientations, have 29 191718 been taken as evidence that the basin interior was in a state of horizontal extensional stress as a result of 30 20 Keywords: fi 31 21 Mercury uplift. -
Impact Melt Emplacement on Mercury
Western University Scholarship@Western Electronic Thesis and Dissertation Repository 7-24-2018 2:00 PM Impact Melt Emplacement on Mercury Jeffrey Daniels The University of Western Ontario Supervisor Neish, Catherine D. The University of Western Ontario Graduate Program in Geology A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Jeffrey Daniels 2018 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Geology Commons, Physical Processes Commons, and the The Sun and the Solar System Commons Recommended Citation Daniels, Jeffrey, "Impact Melt Emplacement on Mercury" (2018). Electronic Thesis and Dissertation Repository. 5657. https://ir.lib.uwo.ca/etd/5657 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Impact cratering is an abrupt, spectacular process that occurs on any world with a solid surface. On Earth, these craters are easily eroded or destroyed through endogenic processes. The Moon and Mercury, however, lack a significant atmosphere, meaning craters on these worlds remain intact longer, geologically. In this thesis, remote-sensing techniques were used to investigate impact melt emplacement about Mercury’s fresh, complex craters. For complex lunar craters, impact melt is preferentially ejected from the lowest rim elevation, implying topographic control. On Venus, impact melt is preferentially ejected downrange from the impact site, implying impactor-direction control. Mercury, despite its heavily-cratered surface, trends more like Venus than like the Moon. -
Geologic Map of the Victoria Quadrangle (H02), Mercury
H01 - Borealis Geologic Map of the Victoria Quadrangle (H02), Mercury 60° Geologic Units Borea 65° Smooth plains material 1 1 2 3 4 1,5 sp H05 - Hokusai H04 - Raditladi H03 - Shakespeare H02 - Victoria Smooth and sparsely cratered planar surfaces confined to pools found within crater materials. Galluzzi V. , Guzzetta L. , Ferranti L. , Di Achille G. , Rothery D. A. , Palumbo P. 30° Apollonia Liguria Caduceata Aurora Smooth plains material–northern spn Smooth and sparsely cratered planar surfaces confined to the high-northern latitudes. 1 INAF, Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy; 22.5° Intermediate plains material 2 H10 - Derain H09 - Eminescu H08 - Tolstoj H07 - Beethoven H06 - Kuiper imp DiSTAR, Università degli Studi di Napoli "Federico II", Naples, Italy; 0° Pieria Solitudo Criophori Phoethontas Solitudo Lycaonis Tricrena Smooth undulating to planar surfaces, more densely cratered than the smooth plains. 3 INAF, Osservatorio Astronomico di Teramo, Teramo, Italy; -22.5° Intercrater plains material 4 72° 144° 216° 288° icp 2 Department of Physical Sciences, The Open University, Milton Keynes, UK; ° Rough or gently rolling, densely cratered surfaces, encompassing also distal crater materials. 70 60 H14 - Debussy H13 - Neruda H12 - Michelangelo H11 - Discovery ° 5 3 270° 300° 330° 0° 30° spn Dipartimento di Scienze e Tecnologie, Università degli Studi di Napoli "Parthenope", Naples, Italy. Cyllene Solitudo Persephones Solitudo Promethei Solitudo Hermae -30° Trismegisti -65° 90° 270° Crater Materials icp H15 - Bach Australia Crater material–well preserved cfs -60° c3 180° Fresh craters with a sharp rim, textured ejecta blanket and pristine or sparsely cratered floor. 2 1:3,000,000 ° c2 80° 350 Crater material–degraded c2 spn M c3 Degraded craters with a subdued rim and a moderately cratered smooth to hummocky floor. -
Thomas Robert Watters
THOMAS ROBERT WATTERS Address: Center for Earth and Planetary Studies National Air and Space Museum Smithsonian Institution P. O. Box 37012, Washington, DC 20013-7012 Education: George Washington University, Ph.D., Geology (1981-1985). Bryn Mawr College, M.A., Geology (1977-1979). West Chester University, B.S. (magna cum laude), Earth Sciences (1973-1977). Experience: Senior Scientist, Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution (1998-present). Chairman, Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution (1989-1998). Research Geologist, Center for Earth and Planetary Studies, Smithsonian Institution, Planetary Geology and Tectonics, Structural Geology, Tectonophysics (1981-1989). Research Assistant, Department of Terrestrial Magnetism, Carnegie Institution of Washington, Chemical Analysis and Fission Track Studies of Meteorites (1980-1981). Research Fellowship, American Museum of Natural History, Electron Microprobe and Petrographic Study of Aubrites and Related Meteorites (1978-1980). Teaching Assistant, Bryn Mawr College (1977-1979), Physical and Historical Geology, Crystallography and Optical Crystallography. Undergraduate Assistant, West Chester University (1973-1977), Teaching Assistant in General and Advanced Astronomy, Physical and Historical Geology. Honors: William P. Phillips Memorial Scholarship (West Chester University); National Air and Space Museum Certificate of Award 1983, 1986, 1989, 1991, 1992, 2002, 2004; American Geophysical Union Editor's Citation for Excellence in Refereeing - Journal Geophysical Research-Planets, 1992; Smithsonian Exhibition Award - Earth Today: A Digital View of Our Dynamic Planet, 1999; Certificate of Appreciation, Geological Society of America, 2005, 2006; Elected to Fellowship in the Geological Society of America, 2007. The Johns Hopkins University Applied Physics Laboratory 2009 Publication Award - Outstanding Research Paper, “Return to Mercury: A Global Perspective on MESSENGER’s First Mercury Flyby (S.C. -
Back Matter (PDF)
Index Page numbers in italic denote Figures. Page numbers in bold denote Tables. ‘a’a lava 15, 82, 86 Belgica Rupes 272, 275 Ahsabkab Vallis 80, 81, 82, 83 Beta Regio, Bouguer gravity anomaly Aino Planitia 11, 14, 78, 79, 83 332, 333 Akna Montes 12, 14 Bhumidevi Corona 78, 83–87 Alba Mons 31, 111 Birt crater 378, 381 Alba Patera, flank terraces 185, 197 Blossom Rupes fold-and-thrust belt 4, 274 Albalonga Catena 435, 436–437 age dating 294–309 amors 423 crater counting 296, 297–300, 301, 302 ‘Ancient Thebit’ 377, 378, 388–389 lobate scarps 291, 292, 294–295 anemone 98, 99, 100, 101 strike-slip kinematics 275–277, 278, 284 Angkor Vallis 4,5,6 Bouguer gravity anomaly, Venus 331–332, Annefrank asteroid 427, 428, 433 333, 335 anorthosite, lunar 19–20, 129 Bransfield Rift 339 Antarctic plate 111, 117 Bransfield Strait 173, 174, 175 Aphrodite Terra simple shear zone 174, 178 Bouguer gravity anomaly 332, 333, 335 Bransfield Trough 174, 175–176 shear zones 335–336 Breksta Linea 87, 88, 89, 90 Apollinaris Mons 26,30 Brumalia Tholus 434–437 apollos 423 Arabia, mantle plumes 337, 338, 339–340, 342 calderas Arabia Terra 30 elastic reservoir models 260 arachnoids, Venus 13, 15 strike-slip tectonics 173 Aramaiti Corona 78, 79–83 Deception Island 176, 178–182 Arsia Mons 111, 118, 228 Mars 28,33 Artemis Corona 10, 11 Caloris basin 4,5,6,7,9,59 Ascraeus Mons 111, 118, 119, 205 rough ejecta 5, 59, 60,62 age determination 206 canali, Venus 82 annular graben 198, 199, 205–206, 207 Canary Islands flank terraces 185, 187, 189, 190, 197, 198, 205 lithospheric flexure -
Geology of the Caloris Basin, Mercury: Ysis and Spectral Ratios Were Used to Highlight the Most Important Trends in the Data (17)
SPECIALSECTION photometrically corrected to normalized re- REPORT flectance at a standard geometry (30° incidence angle, 0° emission angle) and map-projected. From the 11-color data, principal component anal- Geology of the Caloris Basin, Mercury: ysis and spectral ratios were used to highlight the most important trends in the data (17). The first A View from MESSENGER principal component dominantly represents bright- ness variations, whereas the second principal com- Scott L. Murchie,1 Thomas R. Watters,2 Mark S. Robinson,3 James W. Head,4 Robert G. Strom,5 ponent (PC2) isolates the dominant color variation: Clark R. Chapman,6 Sean C. Solomon,7 William E. McClintock,8 Louise M. Prockter,1 the slope of the spectral continuum. Several higher Deborah L. Domingue,1 David T. Blewett1 components isolate fresh craters; a simple color ratio combines these and highlights all fresh The Caloris basin, the youngest known large impact basin on Mercury, is revealed in MESSENGER craters. PC2 and a 480-nm/1000-nm color ratio images to be modified by volcanism and deformation in a manner distinct from that of lunar thus represent the major observed spectral var- impact basins. The morphology and spatial distribution of basin materials themselves closely match iations (Fig. 1B). lunar counterparts. Evidence for a volcanic origin of the basin's interior plains includes embayed The images show that basin exterior materials, craters on the basin floor and diffuse deposits surrounding rimless depressions interpreted to be including the Caloris Montes, Nervo, and von of pyroclastic origin. Unlike lunar maria, the volcanic plains in Caloris are higher in albedo than Eyck Formations, all share similar color proper- surrounding basin materials and lack spectral evidence for ferrous iron-bearing silicates. -
A Two-Dimensional, Linear–Elastic Model to Explain Radial Extensional Fractures, Pantheon Fossae, Caloris Basin, Mercury Brianne Mcdonough
Undergraduate Review Volume 6 Article 21 2010 A Two-Dimensional, Linear–Elastic Model to Explain Radial Extensional Fractures, Pantheon Fossae, Caloris Basin, Mercury Brianne McDonough Follow this and additional works at: http://vc.bridgew.edu/undergrad_rev Part of the Geology Commons, and the The unS and the Solar System Commons Recommended Citation McDonough, Brianne (2010). A Two-Dimensional, Linear–Elastic Model to Explain Radial Extensional Fractures, Pantheon Fossae, Caloris Basin, Mercury. Undergraduate Review, 6, 107-112. Available at: http://vc.bridgew.edu/undergrad_rev/vol6/iss1/21 This item is available as part of Virtual Commons, the open-access institutional repository of Bridgewater State University, Bridgewater, Massachusetts. Copyright © 2010 Brianne McDonough A Two-Dimensional, Linear– Elastic Model to Explain Radial Extensional Fractures, Pantheon Fossae, Caloris Basin, Mercury BRIANNE MCDONOUGH Brianne McDonough n this study, two-dimensional linear elasticity theory is used to model the lithospheric stress field that produces radial extensional fractures observed is a graduating Earth at Pantheon Fossae in the Caloris Basin of Mercury. These fractures were Science major with imaged by the MESSENGER mission flyby of Mercury on January 14, 2008 a concentration in Iand show radial fractures extending outward from a 40-kilometer impact crater Geology. Through named Apollodorus. Recent studies have proposed several different mechanisms to explain these fractures, including magmatic processes, central basin uplift, and the Adrian Tinsley Program, Brianne stresses produced by the formation of the impact crater itself. completed her project titled, A Two- Dimensional, Linear-Elastic Model to The model presented here attempts to describe the state of the stress field, independent of the physical mechanism that produced it. -
ARCA, Nr. 2 / 2020
nr. 2 (359), 2020 revistă lunară de literatură, eseu, arte vizuale, muzică, fondată în februarie 1990 la Arad Redactor-şef fondator: Vasile Dan Editor: CONSILIUL JUDEŢEAN ARAD prin CENTRUL CULTURAL JUDEŢEAN ARAD Apare sub egida Uniunii Scriitorilor din România Anul XXXI, nr. 2 (359), 2020 REDACŢIA: Romulus Bucur (redactor-şef adjunct), Ioan Matiuţ, Carmen Neamţu, Andrei Mocuţa, Onisim Colta (prezentare artistică), Călin Chendea (DTP, design, web development şi administrare site), Horia Ungureanu (corectură) REDACTORI ASOCIAŢI: Lajos Nótáros, Gheorghe Schwartz, Ciprian Vălcan ADRESA: Bulevardul Revoluţiei, 103, 310122 Arad, România www.uniuneascriitorilorarad.ro/revistaarca e-mail: [email protected] Revista „Arca” este membră a Asociaţiei Revistelor, Imprimeriilor şi Editurilor Literare (A.R.I.E.L.), asociaţie cu statut juridic, recunoscută de către Ministerul Culturii. I.S.S.N. 1221-5104 Tipărit la TRINOM SRL Arad Pe coperta I: Onisim Colta, Arca cu manuscrise (detaliu) Responsabilitatea opiniilor, ideilor şi atitudinilor exprimate în articolele publicate în „Arca” revine exclusiv autorilor lor. Sumar JURNAL Vasile Dan Cum am ratat sfîrşitul lumii ...................................................................7 CRONICA LITERARĂ Lucia Cuciureanu De la o problemă la alta (despre Gheorghe Schwartz) .............................. 23 Maria Niţu Psalmi moderni (despre Costel Stancu) .................................................... 28 Andrei Mocuța Game. Set. Meci: un schimb poetic de mingi (despre Claus Ankersen & Andrei Zbîrnea)............................................... -
Rest of the Solar System” As We Have Covered It in MMM Through the Years
As The Moon, Mars, and Asteroids each have their own dedicated theme issues, this one is about the “rest of the Solar System” as we have covered it in MMM through the years. Not yet having ventured beyond the Moon, and not yet having begun to develop and use space resources, these articles are speculative, but we trust, well-grounded and eventually feasible. Included are articles about the inner “terrestrial” planets: Mercury and Venus. As the gas giants Jupiter, Saturn, Uranus, and Neptune are not in general human targets in themselves, most articles about destinations in the outer system deal with major satellites: Jupiter’s Io, Europa, Ganymede, and Callisto. Saturn’s Titan and Iapetus, Neptune’s Triton. We also include past articles on “Space Settlements.” Europa with its ice-covered global ocean has fascinated many - will we one day have a base there? Will some of our descendants one day live in space, not on planetary surfaces? Or, above Venus’ clouds? CHRONOLOGICAL INDEX; MMM THEMES: OUR SOLAR SYSTEM MMM # 11 - Space Oases & Lunar Culture: Space Settlement Quiz Space Oases: Part 1 First Locations; Part 2: Internal Bearings Part 3: the Moon, and Diferent Drums MMM #12 Space Oases Pioneers Quiz; Space Oases Part 4: Static Design Traps Space Oases Part 5: A Biodynamic Masterplan: The Triple Helix MMM #13 Space Oases Artificial Gravity Quiz Space Oases Part 6: Baby Steps with Artificial Gravity MMM #37 Should the Sun have a Name? MMM #56 Naming the Seas of Space MMM #57 Space Colonies: Re-dreaming and Redrafting the Vision: Xities in