Chapter 7 Our Planetary System What Does the Solar System Look Like? What Can We Learn by Comparing the Planets to One Another?

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 7 Our Planetary System What Does the Solar System Look Like? What Can We Learn by Comparing the Planets to One Another? Chapter 7 7.1 Studying the Solar System Our Planetary System • Our goals for learning • What does the solar system look like? • What can we learn by comparing the planets to one another? • What are the major features of the Sun and planets? Earth, as viewed by the Voyager spacecraft What does the solar system look • Eight major like? planets with nearly circular orbits • Pluto is smaller than the major planets and has a more elliptical orbit What can we learn by comparing the planets to one another? • Planets all orbit in same direction and nearly in same plane 1 Comparative Planetology • Comparing the planets reveals patterns among • We can learn more about a world like our them Earth by studying in context with other worlds in the solar system. • Those patterns • Stay focused on processes common to provide insights multiple worlds instead of individual facts that help us specific to a particular world. understand our own planet What are the major features of Planets are very tiny the Sun and planets? compared to distances between them. Sun and planets to scale Sun Mercury • Over 99.9% of solar system’s mass • Made of metal and rock; large iron core • Made mostly of H/He gas (plasma) • Desolate, cratered; long, tall, steep cliffs • Converts 4 million tons of mass into energy each second • Very hot and very cold: 425°C (day), –170°C (night) 2 Venus Earth Earth and Moon to scale • Nearly identical in size to Earth; surface hidden by clouds • Hellish conditions due to an extreme greenhouse effect: • An oasis of life • Even hotter than Mercury: 470°C, day and night • The only surface liquid water in the solar system • A surprisingly large moon Jupiter Mars • Much farther from Sun than inner planets • Mostly H/He; no solid surface • 300 times more massive than • Looks almost Earth-like, but don’t go without a spacesuit! Earth • Giant volcanoes, a huge canyon, polar caps, more… • Water flowed in the distant past; could there have been • Many moons, life? rings … Saturn Jupiter’s moons can be as interesting as planets themselves, especially Jupiter’s four Galilean moons • Io (shown here): Active volcanoes all over • Giant and gaseous like Jupiter • Europa: Possible subsurface ocean • Spectacular rings • Ganymede: Largest moon in solar system • Many moons, including cloudy Titan • Callisto: A large, cratered “ice ball” • Cassini spacecraft currently studying it 3 Rings are NOT solid; Cassini probe they are made arrived July of countless 2004 small chunks of ice and (Launched in rock, each 1997) orbiting like a tiny moon. Artist’s conception Uranus Neptune • Smaller than Jupiter/Saturn; • Similar to Uranus much larger than (except for axis Earth tilt) • Made of H/He gas & hydrogen • Many moons compounds (including Triton) (H2O, NH3, CH4) • Extreme axis tilt • Moons & rings Pluto • Much smaller than other planets • Icy, comet-like composition • Its moon Charon is similar in size 4 What have we learned? What have we learned? • What does the solar system look like? • What are the major features of the Sun and planets? – Planets orbit Sun in the same direction and in – Sun: Over 99.9% of the mass nearly the same plane. – Mercury: A hot rock • What can we learn by comparing the planets to – Venus: Same size as Earth but much hotter one another? – Earth: Only planet with liquid water on surface – Mars: Could have had liquid water in past – Comparative planetology looks for patterns – Jupiter: A gaseous giant among the planets. – Saturn: Gaseous with spectacular rings – Those patterns give us insight into the general – Uranus: A gas giant with a highly tilted axis processes that govern planets – Neptune: Similar to Uranus but with normal axis – Studying other worlds in this way tells us – Pluto: An icy “misfit” more like a comet than a planet about our own Earth What features of the solar system 7.2 Patterns in the Solar System provide clues to how it formed? • Our goals for learning • What features of the solar system provide clues to how it formed? Motion of Large Bodies Two Main Planet Types • All large bodies • Terrestrial in the solar planets are system orbit in rocky, relatively the same small, and close direction and in to the Sun nearly the same • Jovian planets plane are gaseous, • Most also rotate larger, and in that direction farther from Sun 5 Swarms of Smaller Bodies Notable Exceptions • Many rocky • Several asteroids and exceptions to icy comets the normal populate the patterns need to solar system be explained Special Topic: How did we learn the scale of the Transit of Venus solar system? • Apparent position of Venus on Sun during transit depends on distances in solar system and your position on Earth Transit of Venus: June 8, 2004 What have we learned? Measuring Distance to Venus • What features of the solar system provide clues • Measure apparent to how it formed? position of Venus – Motions of large bodies: All in same on Sun from two direction and plane locations on Earth – Two main planet types: Terrestrial and jovian • Use trigonometry – Swarms of small bodies: Asteroids and to determine comets Venus’ distance – Notable exceptions: Rotation of Uranus, from the distance Earth’s large moon, etc. between the two locations on Earth 6 7.3 Spacecraft Exploration of the Solar How do robotic spacecraft work? System • Our goals for learning • How do robotic spacecraft work? Flybys Orbiters • A flyby mission • Go into orbit around another world flies by a planet • More time to gather data but cannot obtain just once detailed information about world’s surface • Cheaper than other mission but have less time to gather data Probes or Landers Sample Return Missions • Land on surface of another world • Gather samples • Spacecraft designed to blast off other world and return to Earth • Land on surface of another world • Apollo missions to Moon are only sample • Explore surface in detail return missions to date 7 What have we learned? Combination Spacecraft • How do robotic spacecraft work? – Flyby: Flies by another world only once. – Orbiter: Goes into orbit around another world – Probe/Lander: Lands on surface – Sample Return Mission: Returns a sample of another world’s surface to Earth • Cassini/Huygens mission contains both an orbiter (Cassini) and a lander (Huygens) 8.
Recommended publications
  • Planetarian Index
    Planetarian Cumulative Index 1972 – 2008 Vol. 1, #1 through Vol. 37, #3 John Mosley [email protected] The PLANETARIAN (ISSN 0090-3213) is published quarterly by the International Planetarium Society under the auspices of the Publications Committee. ©International Planetarium Society, Inc. From the Compiler I compiled the first edition of this index 25 years ago after a frustrating search to find an article that I knew existed and that I really needed. It was a long search without even annual indices to help. By the time I found it, I had run across a dozen other articles that I’d forgotten about but was glad to see again. It was clear that there are a lot of good articles buried in back issues, but that without some sort of index they’d stay lost. I had recently bought an Apple II computer and was receptive to projects that would let me become more familiar with its word processing program. A cumulative index seemed a reasonable project that would be instructive while not consuming too much time. Hah! I did learn some useful solutions to word-processing problems I hadn’t previously known exist, but it certainly did consume more time than I’d imagined by a factor of a dozen or so. You too have probably reached the point where you’ve invested so much time in a project that it’s psychologically easier to finish it than admit defeat. That’s how the first index came to be, and that’s why I’ve kept it up to date.
    [Show full text]
  • Moons, Planets, Solar System, Stars, Galaxies, in Our Universe - an Introduction by Rick Kang Education/Public Outreach Coord
    Moons, Planets, Solar System, Stars, Galaxies, in our Universe - An introduction by Rick Kang Education/Public Outreach Coord. Oregon Astrophysics Outreach HIERARCHY: one within another n Moons ORBIT Planets n Planets ORBIT Stars (Suns) n Stars orbited by Planets are Solar Systems (all Stars?) n Solar Systems form from Nebulas and recyle back into Nebulas (dust & gas) n Nebulas and Solar Systems ORBIT within Galaxies (huge Star Cities) n Many Galaxies fill our Universe Moons Our Solar System’s Planets Our Star (the Sun) Our Galaxy (Milky Way) edge-on from within the pancake (STAR CITY) Stars: distant Suns – Birth, Life, Death (Nebulas, Clusters) Solar System Formation Recycling Stars Heavy Duty Recycling: SUPERNOVA – elements galore DRAWING of our Milky Way Galaxy Looking toward Cygnus and toward galactic center Reality Check: n Visualize SOLAR SYSTEM vs. GALAXY Reality Check: n Visualize SOLAR SYSTEM vs. GALAXY n A Solar System is a VERY TINY DOT within a GALAXY…microscopic! n A ¼” paper punchout vs. a huge disk about 150 MILES WIDE (Coast to Bend or Portland to Roseburg!) Our Sister Galaxy, Andromeda, M31 Other Galaxies in Deep Space The HUBBLE ULTRA-DEEP FIELD a tiny swatch of sky-galaxies galore Hundreds of Billions of GALAXIES in our UNIVERSE n We don’t have enough data to figure out where we are within the UNIVERSE nor how big our Universe might be…evidence is it’s expanding! n We are a member of a cluster and a supercluster of galaxies. How do we know that? n If you leave from a place, how far could you travel in a given amount of time? How old is our Universe, how would that relate to its size? .
    [Show full text]
  • A Review on Substellar Objects Below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs Or What?
    geosciences Review A Review on Substellar Objects below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs or What? José A. Caballero Centro de Astrobiología (CSIC-INTA), ESAC, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Cañada, Madrid, Spain; [email protected] Received: 23 August 2018; Accepted: 10 September 2018; Published: 28 September 2018 Abstract: “Free-floating, non-deuterium-burning, substellar objects” are isolated bodies of a few Jupiter masses found in very young open clusters and associations, nearby young moving groups, and in the immediate vicinity of the Sun. They are neither brown dwarfs nor planets. In this paper, their nomenclature, history of discovery, sites of detection, formation mechanisms, and future directions of research are reviewed. Most free-floating, non-deuterium-burning, substellar objects share the same formation mechanism as low-mass stars and brown dwarfs, but there are still a few caveats, such as the value of the opacity mass limit, the minimum mass at which an isolated body can form via turbulent fragmentation from a cloud. The least massive free-floating substellar objects found to date have masses of about 0.004 Msol, but current and future surveys should aim at breaking this record. For that, we may need LSST, Euclid and WFIRST. Keywords: planetary systems; stars: brown dwarfs; stars: low mass; galaxy: solar neighborhood; galaxy: open clusters and associations 1. Introduction I can’t answer why (I’m not a gangstar) But I can tell you how (I’m not a flam star) We were born upside-down (I’m a star’s star) Born the wrong way ’round (I’m not a white star) I’m a blackstar, I’m not a gangstar I’m a blackstar, I’m a blackstar I’m not a pornstar, I’m not a wandering star I’m a blackstar, I’m a blackstar Blackstar, F (2016), David Bowie The tenth star of George van Biesbroeck’s catalogue of high, common, proper motion companions, vB 10, was from the end of the Second World War to the early 1980s, and had an entry on the least massive star known [1–3].
    [Show full text]
  • Size and Scale Attendance Quiz II
    Size and Scale Attendance Quiz II Are you here today? Here! (a) yes (b) no (c) are we still here? Today’s Topics • “How do we know?” exercise • Size and Scale • What is the Universe made of? • How big are these things? • How do they compare to each other? • How can we organize objects to make sense of them? What is the Universe made of? Stars • Stars make up the vast majority of the visible mass of the Universe • A star is a large, glowing ball of gas that generates heat and light through nuclear fusion • Our Sun is a star Planets • According to the IAU, a planet is an object that 1. orbits a star 2. has sufficient self-gravity to make it round 3. has a mass below the minimum mass to trigger nuclear fusion 4. has cleared the neighborhood around its orbit • A dwarf planet (such as Pluto) fulfills all these definitions except 4 • Planets shine by reflected light • Planets may be rocky, icy, or gaseous in composition. Moons, Asteroids, and Comets • Moons (or satellites) are objects that orbit a planet • An asteroid is a relatively small and rocky object that orbits a star • A comet is a relatively small and icy object that orbits a star Solar (Star) System • A solar (star) system consists of a star and all the material that orbits it, including its planets and their moons Star Clusters • Most stars are found in clusters; there are two main types • Open clusters consist of a few thousand stars and are young (1-10 million years old) • Globular clusters are denser collections of 10s-100s of thousand stars, and are older (10-14 billion years
    [Show full text]
  • Brown Dwarf Desert Evolved Systems Atmospheres And
    Irradiated brown dwarfs - hot Jupiter analogues? Sarah L Casewell1* STFC Ernest Rutherford Research Fellow 1. University of Leicester, Department of Physics and Astronomy, Leicester, UK *email: [email protected] As brown dwarfs have atmospheres similar to those we see in Jupiter and in hot Jupiter exoplanets, irradiated brown dwarfs have been described as “filling the fourth corner of parameter space between the solar system planets, hot Jupiter exoplanets and isolated brown dwarfs”. Irradiated brown dwarfs are however, rare. There are only about 22 known around main sequence stars, and even fewer that have survived the evolution of their host star to form close, post-common envelope systems where the brown dwarf orbits a white dwarf. These systems are however, extremely useful. The white dwarf emits more at shorter wavelengths, where the brown dwarf is brightest in the infrared, meaning it is possible to directly observe the brown dwarf – something that is extremely challenging for the main sequence star-brown dwarf systems. BROWN DWARF DESERT ATMOSPHERES AND IRRADIATION Despite there being a plethora of Hot Jupiters known, there are very few The brown dwarfs in these systems are highly irradiated leading to emission brown dwarfs discovered in similar orbits, a phenomenon known as the lines being seen from hydrogen, Ca I, Na I, K I, Ti I and Fe in the systems with brown dwarf desert. This is thought to be caused by the difference in white dwarfs hotter than 13000 K. The hottest primaries show fewer emission formation mechanisms, planets forming via core accretion around stars, lines due to dissociation, but large day- night temperature differences of ~500 but brown dwarfs forming via gravitational instabilty .
    [Show full text]
  • Brown Dwarfs: at Last Filling the Gap Between Stars and Planets
    Perspective Brown dwarfs: At last filling the gap between stars and planets Ben Zuckerman* Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 Until the mid-1990s a person could not point to any celestial object and say with assurance known (refs. 5–9), the vast majority of that ‘‘here is a brown dwarf.’’ Now dozens are known, and the study of brown dwarfs has brown dwarfs are freely floating among come of age, touching upon major issues in astrophysics, including the nature of dark the stars (2–4). Indeed, the contrast be- matter, the properties of substellar objects, and the origin of binary stars and planetary tween the scarcity of companion brown systems. dwarfs and the plentitude of free floaters was totally unexpected; this dichotomy Stars, Brown Dwarfs, and Dark Matter superplanet from a brown dwarf, such as now constitutes a major unsolved problem in stellar physics (see below). lanets (Greek ‘‘wanderers’’) and stars how they formed, so that the dividing line Surveys for free floaters, both within have been known for millennia, but need not necessarily fall at 13 Jovian P ϳ100 light years of the Sun and in (more the physics underlying their differences masses. distant) clusters such as the Pleiades (The became understood only during the 20th Low-mass stars spend a lot of time, tens Seven Sisters), are still in their early century. Stars fuse protons into helium of billions to trillions of years, fusing pro- stages. But the picture is becoming clear. nuclei in their hot interiors and planets do tons into helium on the so-called ‘‘main Currently, it is estimated that there are not.
    [Show full text]
  • GEORGE HERBIG and Early Stellar Evolution
    GEORGE HERBIG and Early Stellar Evolution Bo Reipurth Institute for Astronomy Special Publications No. 1 George Herbig in 1960 —————————————————————– GEORGE HERBIG and Early Stellar Evolution —————————————————————– Bo Reipurth Institute for Astronomy University of Hawaii at Manoa 640 North Aohoku Place Hilo, HI 96720 USA . Dedicated to Hannelore Herbig c 2016 by Bo Reipurth Version 1.0 – April 19, 2016 Cover Image: The HH 24 complex in the Lynds 1630 cloud in Orion was discov- ered by Herbig and Kuhi in 1963. This near-infrared HST image shows several collimated Herbig-Haro jets emanating from an embedded multiple system of T Tauri stars. Courtesy Space Telescope Science Institute. This book can be referenced as follows: Reipurth, B. 2016, http://ifa.hawaii.edu/SP1 i FOREWORD I first learned about George Herbig’s work when I was a teenager. I grew up in Denmark in the 1950s, a time when Europe was healing the wounds after the ravages of the Second World War. Already at the age of 7 I had fallen in love with astronomy, but information was very hard to come by in those days, so I scraped together what I could, mainly relying on the local library. At some point I was introduced to the magazine Sky and Telescope, and soon invested my pocket money in a subscription. Every month I would sit at our dining room table with a dictionary and work my way through the latest issue. In one issue I read about Herbig-Haro objects, and I was completely mesmerized that these objects could be signposts of the formation of stars, and I dreamt about some day being able to contribute to this field of study.
    [Show full text]
  • Binary Star Hypothesis of Origin of Solar System
    B.A. PART - 1 ( PHYSICAL GEOGRAPHY : PAPER - 1) TOPIC : BINARY STAR HYPOTHESIS OF ORIGIN OF SOLAR SYSTEM - Prof. KUMARI NISHA RANI (DATE: 21/07/2020) Binary Star Hypothesis of Russell: It may be pointed out that the hypothesis based on dualistic concept failed to explain the high amount of angular momentum of the planets of present solar system, high atomic weight of the constituent elements of the planets of inner circle and lighter atomic weight of the planets of outer circle of the solar system and the distances of different planets from the sun. In order to solve these problems the scientists tried to explain the origin of the earth and the solar system with the help of three heavenly bodies. H.N. Russell, an American astronomer, propounded his ‘binary star hypothesis’ in the year 1937 to remove the shortcomings of tidal hypothesis of Sir James Jeans. Russell opined that there were two stars near the primitive sun in the universe. In the beginning the ‘companion star’ was revolving around the primitive sun. Later on one giant star (the third one) named as ‘approaching star’ came near the companion star but the direction of revolution of the approaching star was opposite to that of the companion star. It was believed that the distance between two stars might have been about 48,00,000 to 64,00,000 km. 1 It means that the approaching star might have been at a far greater distance from the primitive sun. Thus, there would have been no effect of tidal force of the giant approaching star on the primitive sun but large amount of matter of the companion star was attracted towards the giant approaching star because of its massive tidal force (gravitational pull).
    [Show full text]
  • Newsleiter I
    + THE NEWSLEITER I VOLUME IV NO. 1 1981 THE OLIVER CHALLENGE T he Monterey I nstitute for Research in Ast ronomy will soon become an important center for stellar astronorny due in large part to the determination of its staff and the generous st^pport of many individuals and companies. Thanks to donations of equipment, f oundation grants, and personal contributions, M IRA now possesses a telescope and instrumentat ion. With a use permit for Chews Ridge in the Los Padres National Forest, MIRA has access to one of the finest sites for optical astronorny in North America. But, one component of MIRA's observatory is still missing: the observatory building. ln December 1980, Dr. Bbrnard M. Oliver, recently retired Vice-President for Research and Development at Hewlett- Packard, pledged a personal challenge grant of $200,000 for the construction of M IRA's observatory building. For every dollar contributed to the building fund between now and the end of the year, Dr. oliver will donate a matching dollar. The matching of ttre Oliver Challenge by MIRA's Friends will be a maior step toward the construction of the observatory building on Chews Ridge. A native Californian educated at Stanford and the California lnstitute of Technology, Dr. oliver's interest in M IRA dates back several years. tast June, he visited Monterey to give a lecture m the 'Search for Extraterrestrial I ntelligence' to the Friends of MIRA. At that time, he visited the MIRA shop to assess the staf f 's work on the Ret icon Spect rophotqmeter and related instrumentation.
    [Show full text]
  • Pocket Solar System
    Pocket Solar System Building scale models of the solar system is a challenge because of the vast distances and huge size differences involved. This is a simple little model to give you an overview of the distances between the orbits of the planets and other objects in our solar system. (It is also a good tool for reviewing fractions.) Materials needed: ÿ At least 1 meter of paper tape per person, such as adding machine paper ÿ Pen or pencil each Just to review, the order of the planets and large objects going out from the Sun and their average distances are: Object Distance in kilometers Distance in AUÅ Mercury 58 million 0.39 Venus 108 million 0.72 Earth 150 million 1 Mars 228 million 1.52 Asteroid Belt (including Ceres Ç) 416 million 2.77 Jupiter 778 million 5.2 Saturn 1,427 million 9.54 Uranus 2,870 million 19.2 Neptune 4,497 million 30.1 Pluto Ç and the 5,850 million 39.5 inner edge of the Kuiper belt ErisÇ 10,200 million 67.8 ÅAU stands for Astronomical Unit and is defined as the average distance between the Sun and the Earth (about 93 million miles or 150 million kilometers). ÇThe International Astronomical Union (IAU), the organization in charge of naming celestial objects, classified these objects as “dwarf planets” in 2006. Making Your Pocket Solar System Make sure everyone has a strip of register tape at least a meter long and at most, the length of the person’s body. Cut or fold over the ends so they are straight.
    [Show full text]
  • Solar System Scavenger Hunt Activity
    Solar System Scavenger Hunt Activity Materials: Solar system questions worksheet (pages 2-3) 18 solar system fact cards (pages 4-8) Tape and scissors Preparation Print the fact cards on card stock or brightly-colored paper and cut them apart along the dotted lines. Make copies of the solar system questions worksheet (2-sided). Each student will need his or her own copy. Hide all 18 solar system fact cards around your classroom where students will be able to find them. You can put them on the back of your classroom door, on chairs, on the computer keyboard, on the sides of student desks, or wherever you like. Activity Students receive copies of the question worksheet. They have to search the classroom to find the fact cards to answer the questions. After they have completed the question sheet, you can go over the answers together with the class. Management tips You may want to make this a silent activity so students don't share answers with each other. You can have the kids work by themselves or with partners. Don't be afraid to hide the facts in tough places. Kids think it's more fun when they have to search around a little. Examples of good hiding spots might include: • sticking out of a book, like a bookmark • the back of the classroom door • laying flat on the bookshelf • on the back of the teacher's chair • on the side of your computer monitor Have a plan for students who finish early. You may want to have an assignment for them to complete when they're done, or you may have them help other students find fact cards.
    [Show full text]
  • Solar System Our Solar System Is the System of Planets and Other Objects
    Name__________________________ Date_________________ Solar System Our solar system is the system of planets and other objects that orbit our sun. It has many parts. Our sun, the star of our solar system, holds everything in place by its gravity. There are eight planets and many moons. There are asteroids and comets. There are meteoroids and tiny particles of rock and dust. The sun, which is actually a star, is the largest object in the solar system. It contains more than 99% of the mass of the solar system. What is a star? A star is a huge body in space made of gases that is held together by its own gravity. It makes heat and light by the chemical process of nuclear fusion. This process combines hydrogen atoms by joining them or fusing them together. When this happens, a huge amount of energy is released. Our sun is an average-sized star that is about half way through its life cycle. It should continue making heat and light for another 5 billion years! Our sun provides all the energy for life on Earth. Without its heat, Earth would be too cold to live on. Without its light, plants could not grow, and there would be no food for people and animals. Our solar system formed about 4.6 billion years ago. It formed from dust and gas in the universe left over from the Big Bang. The sun began as a cloud of gases and dust, which began condensing until it was big enough to begin nuclear fusion. As its heat and light burst forth, more matter began to clump together.
    [Show full text]