Our Place in the Solar System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
April's Super "Pink" Moon Will Be the Brightest Full Moon of 2020
April’s super "pink" moon will be the brightest full moon of 2020 By Theresa Machemer, Smithsonian.com, adapted by Newsela staff on 04.05.20 Word Count 590 Level MAX Image 1. This supermoon on March 9, 2020, called a Worm Moon, was the first of three supermoons in a row. Here, it rises behind the U.S. Capitol in Washington, D.C. A supermoon occurs when the moon's orbit is closest to Earth. Photo: Joel Kowsky/NASA Avid stargazers and newcomers to the nighttime hobby can look forward to a lunar event in April. A super "pink" moon will rise into the night sky on April 7. It will be the brightest supermoon of 2020. A supermoon occurs when a full moon happens on the same night the moon reaches perigee. Perigee is the closest point to Earth in its orbit. Apogee is its farthest point from Earth in its orbit. In April, the full moon peaks at 10:35 p.m. Eastern Daylight Time. Though the moon is called a "pink" moon, its color won't be any different than normal. It will be golden orange when low in the sky. It will brighten to white as it rises. The name comes from pink wildflowers called creeping phlox that bloom in early spring, under April's full moon, according to Catherine Boeckmann at the "Old Farmer's Almanac." Supermoons are only about 7 percent bigger and 15 percent brighter than the average full moon. The difference between a supermoon and an average moon may not be obvious. -
Moons Phases and Tides
Moon’s Phases and Tides Moon Phases Half of the Moon is always lit up by the sun. As the Moon orbits the Earth, we see different parts of the lighted area. From Earth, the lit portion we see of the moon waxes (grows) and wanes (shrinks). The revolution of the Moon around the Earth makes the Moon look as if it is changing shape in the sky The Moon passes through four major shapes during a cycle that repeats itself every 29.5 days. The phases always follow one another in the same order: New moon Waxing Crescent First quarter Waxing Gibbous Full moon Waning Gibbous Third (last) Quarter Waning Crescent • IF LIT FROM THE RIGHT, IT IS WAXING OR GROWING • IF DARKENING FROM THE RIGHT, IT IS WANING (SHRINKING) Tides • The Moon's gravitational pull on the Earth cause the seas and oceans to rise and fall in an endless cycle of low and high tides. • Much of the Earth's shoreline life depends on the tides. – Crabs, starfish, mussels, barnacles, etc. – Tides caused by the Moon • The Earth's tides are caused by the gravitational pull of the Moon. • The Earth bulges slightly both toward and away from the Moon. -As the Earth rotates daily, the bulges move across the Earth. • The moon pulls strongly on the water on the side of Earth closest to the moon, causing the water to bulge. • It also pulls less strongly on Earth and on the water on the far side of Earth, which results in tides. What causes tides? • Tides are the rise and fall of ocean water. -
College of Arts and Sciences
College of Arts and Sciences ANNUAL REPORT 2004·05 awards won · books published · research findings announced programs implemented · research · teaching · learning new collaborations · development of promising initiatives preparation · dedication · vision ultimate success 1 Message from the Dean . 3 Arts and Sciences By the Numbers . 6 Highlights Education . 8 Research . 12 Public Events . 15 Faculty Achievements . 17 Grants . 20 Financial Resources . 22 Appendices . 23 Editor: Catherine Varga Printing: Lake Erie Graphics 2 MESSAGE FROM THE DEAN I have two stories to tell. The first story is a record of tangible accomplishments: awards won, books published, research findings announced, programs implemented. I trust that you will be as impressed as I am by the array of excellence—on the part of both students and faculty—on display in these pages. The second story is about achievements in the making. I mean by this the ongoing activity of research, teaching, and learning; the forging of new collaborations; and the development of promising initiatives. This is a story of preparation, dedication, and vision, all of which are essential to bringing about our ultimate success. 3 As I look back on 2004-05, several examples of achievement and visionary planning emerge with particular clarity: Faculty and Student Recruitment. The College undertook a record number of faculty searches in 2004-05. By tapping the superb networking capabili- ties developed under the leadership of chief informa- SAGES. Under the College’s leadership, SAGES com- tion officer Thomas Knab, our departments were pleted its third year as a pilot program and prepared able to extend these searches throughout the world, for full implementation in fall 2005. -
Introduction to Astronomy from Darkness to Blazing Glory
Introduction to Astronomy From Darkness to Blazing Glory Published by JAS Educational Publications Copyright Pending 2010 JAS Educational Publications All rights reserved. Including the right of reproduction in whole or in part in any form. Second Edition Author: Jeffrey Wright Scott Photographs and Diagrams: Credit NASA, Jet Propulsion Laboratory, USGS, NOAA, Aames Research Center JAS Educational Publications 2601 Oakdale Road, H2 P.O. Box 197 Modesto California 95355 1-888-586-6252 Website: http://.Introastro.com Printing by Minuteman Press, Berkley, California ISBN 978-0-9827200-0-4 1 Introduction to Astronomy From Darkness to Blazing Glory The moon Titan is in the forefront with the moon Tethys behind it. These are two of many of Saturn’s moons Credit: Cassini Imaging Team, ISS, JPL, ESA, NASA 2 Introduction to Astronomy Contents in Brief Chapter 1: Astronomy Basics: Pages 1 – 6 Workbook Pages 1 - 2 Chapter 2: Time: Pages 7 - 10 Workbook Pages 3 - 4 Chapter 3: Solar System Overview: Pages 11 - 14 Workbook Pages 5 - 8 Chapter 4: Our Sun: Pages 15 - 20 Workbook Pages 9 - 16 Chapter 5: The Terrestrial Planets: Page 21 - 39 Workbook Pages 17 - 36 Mercury: Pages 22 - 23 Venus: Pages 24 - 25 Earth: Pages 25 - 34 Mars: Pages 34 - 39 Chapter 6: Outer, Dwarf and Exoplanets Pages: 41-54 Workbook Pages 37 - 48 Jupiter: Pages 41 - 42 Saturn: Pages 42 - 44 Uranus: Pages 44 - 45 Neptune: Pages 45 - 46 Dwarf Planets, Plutoids and Exoplanets: Pages 47 -54 3 Chapter 7: The Moons: Pages: 55 - 66 Workbook Pages 49 - 56 Chapter 8: Rocks and Ice: -
Glossary Glossary
Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts. -
Syzygies a Conjunction Or an Opposition of the Sun with the Moon Occurs When the Elongation Between the Two Luminaries Is 0° Or
CHAPTER THIRTEEN SYZYGIES A conjunction or an opposition of the Sun with the Moon occurs when the elongation between the two luminaries is 0° or 180°, respec- tively. Syzygy is an astronomical term that refers both to conjunction and opposition. At mean syzygy, the double elongation, 2η ̄ = 0°, where ̄ ̄ ̄ ̄ η ̄ = λm – λs, and λm and λs are the mean longitudes of the Moon and the Sun. Analogously, at true syzygy, the double elongation, 2η = 0°, where η = λm – λs, and λm and λs are the true longitudes of the Moon and the Sun. The determination of the time from mean to true syzygy, ∆t, an essential step in the calculation of eclipses, was historically one of the major problems considered in computational astronomy (Chabás and Goldstein 1992 and 1997). Figure 20 represents a mean conjunction of the Sun and the Moon (indicated by the direction of S ̄ and M̄ ) and its corresponding true conjunction (indicated by the direction of S´ and M´). In this case, the ̄ ̄ mean conjunction (when λs = λm), which takes place at time t, comes M S̅ M̅ S S’ M’ λ’ = λ’s O m Aries 0° ̅̅ λλm = s Figure 20: Mean and true syzygies 140 chapter thirteen Table 13.1A: Some historical values of the mean synodic month Mean synodic month 29;31,50,7,37,27,8,25d Parisian Alfonsine Tables 29;31,50,7,54,25,3,32d Levi ben Gerson 29;31,50,8,9,20d al-Ḥajjāj’s Arabic trans. of the Almagest, Copernicus 29;31,50,8,9,24d Ibn Yūnus, al-Bitrūjị̄ 29;31,50,8,14,38d Ibn al-Kammād 29;31,50,8,19,50d al-Battānī 29;31,50,8,20d Almagest, Toledan Tables after the true conjunction λ( s´ = λm´), which occurs at time t´, so that ∆t = t´ – t < 0. -
Rev 06/2018 ASTRONOMY EXAM CONTENT OUTLINE the Following
ASTRONOMY EXAM INFORMATION CREDIT RECOMMENDATIONS This exam was developed to enable schools to award The American Council on Education’s College credit to students for knowledge equivalent to that learned Credit Recommendation Service (ACE CREDIT) by students taking the course. This examination includes has evaluated the DSST test development history of the Science of Astronomy, Astrophysics, process and content of this exam. It has made the Celestial Systems, the Science of Light, Planetary following recommendations: Systems, Nature and Evolution of the Sun and Stars, Galaxies and the Universe. Area or Course Equivalent: Astronomy Level: 3 Lower Level Baccalaureate The exam contains 100 questions to be answered in 2 Amount of Credit: 3 Semester Hours hours. Some of these are pretest questions that will not Minimum Score: 400 be scored. Source: www.acenet.edu Form Codes: SQ500, SR500 EXAM CONTENT OUTLINE The following is an outline of the content areas covered in the examination. The approximate percentage of the examination devoted to each content area is also noted. I. Introduction to the Science of Astronomy – 5% a. Nature and methods of science b. Applications of scientific thinking c. History of early astronomy II. Astrophysics - 15% a. Kepler’s laws and orbits b. Newtonian physics and gravity c. Relativity III. Celestial Systems – 10% a. Celestial motions b. Earth and the Moon c. Seasons, calendar and time keeping IV. The Science of Light – 15% a. The electromagnetic spectrum b. Telescopes and the measurement of light c. Spectroscopy d. Blackbody radiation V. Planetary Systems: Our Solar System and Others– 20% a. Contents of our solar system b. -
The Formation of Brown Dwarfs 459
Whitworth et al.: The Formation of Brown Dwarfs 459 The Formation of Brown Dwarfs: Theory Anthony Whitworth Cardiff University Matthew R. Bate University of Exeter Åke Nordlund University of Copenhagen Bo Reipurth University of Hawaii Hans Zinnecker Astrophysikalisches Institut, Potsdam We review five mechanisms for forming brown dwarfs: (1) turbulent fragmentation of molec- ular clouds, producing very-low-mass prestellar cores by shock compression; (2) collapse and fragmentation of more massive prestellar cores; (3) disk fragmentation; (4) premature ejection of protostellar embryos from their natal cores; and (5) photoerosion of pre-existing cores over- run by HII regions. These mechanisms are not mutually exclusive. Their relative importance probably depends on environment, and should be judged by their ability to reproduce the brown dwarf IMF, the distribution and kinematics of newly formed brown dwarfs, the binary statis- tics of brown dwarfs, the ability of brown dwarfs to retain disks, and hence their ability to sustain accretion and outflows. This will require more sophisticated numerical modeling than is presently possible, in particular more realistic initial conditions and more realistic treatments of radiation transport, angular momentum transport, and magnetic fields. We discuss the mini- mum mass for brown dwarfs, and how brown dwarfs should be distinguished from planets. 1. INTRODUCTION form a smooth continuum with those of low-mass H-burn- ing stars. Understanding how brown dwarfs form is there- The existence of brown dwarfs was first proposed on the- fore the key to understanding what determines the minimum oretical grounds by Kumar (1963) and Hayashi and Nakano mass for star formation. In section 3 we review the basic (1963). -
Planetarian Index
Planetarian Cumulative Index 1972 – 2008 Vol. 1, #1 through Vol. 37, #3 John Mosley [email protected] The PLANETARIAN (ISSN 0090-3213) is published quarterly by the International Planetarium Society under the auspices of the Publications Committee. ©International Planetarium Society, Inc. From the Compiler I compiled the first edition of this index 25 years ago after a frustrating search to find an article that I knew existed and that I really needed. It was a long search without even annual indices to help. By the time I found it, I had run across a dozen other articles that I’d forgotten about but was glad to see again. It was clear that there are a lot of good articles buried in back issues, but that without some sort of index they’d stay lost. I had recently bought an Apple II computer and was receptive to projects that would let me become more familiar with its word processing program. A cumulative index seemed a reasonable project that would be instructive while not consuming too much time. Hah! I did learn some useful solutions to word-processing problems I hadn’t previously known exist, but it certainly did consume more time than I’d imagined by a factor of a dozen or so. You too have probably reached the point where you’ve invested so much time in a project that it’s psychologically easier to finish it than admit defeat. That’s how the first index came to be, and that’s why I’ve kept it up to date. -
Elements of Astronomy and Cosmology Outline 1
ELEMENTS OF ASTRONOMY AND COSMOLOGY OUTLINE 1. The Solar System The Four Inner Planets The Asteroid Belt The Giant Planets The Kuiper Belt 2. The Milky Way Galaxy Neighborhood of the Solar System Exoplanets Star Terminology 3. The Early Universe Twentieth Century Progress Recent Progress 4. Observation Telescopes Ground-Based Telescopes Space-Based Telescopes Exploration of Space 1 – The Solar System The Solar System - 4.6 billion years old - Planet formation lasted 100s millions years - Four rocky planets (Mercury Venus, Earth and Mars) - Four gas giants (Jupiter, Saturn, Uranus and Neptune) Figure 2-2: Schematics of the Solar System The Solar System - Asteroid belt (meteorites) - Kuiper belt (comets) Figure 2-3: Circular orbits of the planets in the solar system The Sun - Contains mostly hydrogen and helium plasma - Sustained nuclear fusion - Temperatures ~ 15 million K - Elements up to Fe form - Is some 5 billion years old - Will last another 5 billion years Figure 2-4: Photo of the sun showing highly textured plasma, dark sunspots, bright active regions, coronal mass ejections at the surface and the sun’s atmosphere. The Sun - Dynamo effect - Magnetic storms - 11-year cycle - Solar wind (energetic protons) Figure 2-5: Close up of dark spots on the sun surface Probe Sent to Observe the Sun - Distance Sun-Earth = 1 AU - 1 AU = 150 million km - Light from the Sun takes 8 minutes to reach Earth - The solar wind takes 4 days to reach Earth Figure 5-11: Space probe used to monitor the sun Venus - Brightest planet at night - 0.7 AU from the -
Moons, Planets, Solar System, Stars, Galaxies, in Our Universe - an Introduction by Rick Kang Education/Public Outreach Coord
Moons, Planets, Solar System, Stars, Galaxies, in our Universe - An introduction by Rick Kang Education/Public Outreach Coord. Oregon Astrophysics Outreach HIERARCHY: one within another n Moons ORBIT Planets n Planets ORBIT Stars (Suns) n Stars orbited by Planets are Solar Systems (all Stars?) n Solar Systems form from Nebulas and recyle back into Nebulas (dust & gas) n Nebulas and Solar Systems ORBIT within Galaxies (huge Star Cities) n Many Galaxies fill our Universe Moons Our Solar System’s Planets Our Star (the Sun) Our Galaxy (Milky Way) edge-on from within the pancake (STAR CITY) Stars: distant Suns – Birth, Life, Death (Nebulas, Clusters) Solar System Formation Recycling Stars Heavy Duty Recycling: SUPERNOVA – elements galore DRAWING of our Milky Way Galaxy Looking toward Cygnus and toward galactic center Reality Check: n Visualize SOLAR SYSTEM vs. GALAXY Reality Check: n Visualize SOLAR SYSTEM vs. GALAXY n A Solar System is a VERY TINY DOT within a GALAXY…microscopic! n A ¼” paper punchout vs. a huge disk about 150 MILES WIDE (Coast to Bend or Portland to Roseburg!) Our Sister Galaxy, Andromeda, M31 Other Galaxies in Deep Space The HUBBLE ULTRA-DEEP FIELD a tiny swatch of sky-galaxies galore Hundreds of Billions of GALAXIES in our UNIVERSE n We don’t have enough data to figure out where we are within the UNIVERSE nor how big our Universe might be…evidence is it’s expanding! n We are a member of a cluster and a supercluster of galaxies. How do we know that? n If you leave from a place, how far could you travel in a given amount of time? How old is our Universe, how would that relate to its size? . -
A Review on Substellar Objects Below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs Or What?
geosciences Review A Review on Substellar Objects below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs or What? José A. Caballero Centro de Astrobiología (CSIC-INTA), ESAC, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Cañada, Madrid, Spain; [email protected] Received: 23 August 2018; Accepted: 10 September 2018; Published: 28 September 2018 Abstract: “Free-floating, non-deuterium-burning, substellar objects” are isolated bodies of a few Jupiter masses found in very young open clusters and associations, nearby young moving groups, and in the immediate vicinity of the Sun. They are neither brown dwarfs nor planets. In this paper, their nomenclature, history of discovery, sites of detection, formation mechanisms, and future directions of research are reviewed. Most free-floating, non-deuterium-burning, substellar objects share the same formation mechanism as low-mass stars and brown dwarfs, but there are still a few caveats, such as the value of the opacity mass limit, the minimum mass at which an isolated body can form via turbulent fragmentation from a cloud. The least massive free-floating substellar objects found to date have masses of about 0.004 Msol, but current and future surveys should aim at breaking this record. For that, we may need LSST, Euclid and WFIRST. Keywords: planetary systems; stars: brown dwarfs; stars: low mass; galaxy: solar neighborhood; galaxy: open clusters and associations 1. Introduction I can’t answer why (I’m not a gangstar) But I can tell you how (I’m not a flam star) We were born upside-down (I’m a star’s star) Born the wrong way ’round (I’m not a white star) I’m a blackstar, I’m not a gangstar I’m a blackstar, I’m a blackstar I’m not a pornstar, I’m not a wandering star I’m a blackstar, I’m a blackstar Blackstar, F (2016), David Bowie The tenth star of George van Biesbroeck’s catalogue of high, common, proper motion companions, vB 10, was from the end of the Second World War to the early 1980s, and had an entry on the least massive star known [1–3].