Population Viability Analysis for Endangered Roanoke Logperch

Total Page:16

File Type:pdf, Size:1020Kb

Population Viability Analysis for Endangered Roanoke Logperch Georgia Southern University Digital Commons@Georgia Southern Biology Faculty Publications Biology, Department of 6-4-2016 Population Viability Analysis for Endangered Roanoke Logperch James Henry Roberts Georgia Southern University, [email protected] Paul L. Angermeier U.S. Geological Survey, [email protected] Gregory B. Anderson Virginia Polytechnic Institute and State University Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/biology-facpubs Part of the Biochemistry, Biophysics, and Structural Biology Commons, and the Biology Commons Recommended Citation Roberts, James Henry, Paul L. Angermeier, Gregory B. Anderson. 2016. "Population Viability Analysis for Endangered Roanoke Logperch." Journal of Fish and Wildlife Management, 7 (1): 46-64. doi: 10.3996/ 032015-JFWM-026 https://digitalcommons.georgiasouthern.edu/biology-facpubs/127 This article is brought to you for free and open access by the Biology, Department of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Biology Faculty Publications by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. Articles Population Viability Analysis for Endangered Roanoke Logperch James H. Roberts,* Paul L. Angermeier, Gregory B. Anderson J.H. Roberts Department of Biology, Georgia Southern University, 4324 Old Register Road, Statesboro, Georgia 30458 P.L. Angermeier U.S. Geological Survey, Virginia Cooperative Fish and Wildlife Research Unit, Virginia Tech, Blacksburg, Virginia 24061 G.B. Anderson Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, Virginia 24061 Abstract A common strategy for recovering endangered species is ensuring that populations exceed the minimum viable population size (MVP), a demographic benchmark that theoretically ensures low long-term extinction risk. One method of establishing MVP is population viability analysis, a modeling technique that simulates population trajectories and forecasts extinction risk based on a series of biological, environmental, and management assumptions. Such models also help identify key uncertainties that have a large influence on extinction risk. We used stochastic count-based simulation models to explore extinction risk, MVP, and the possible benefits of alternative management strategies in populations of Roanoke logperch Percina rex, an endangered stream fish. Estimates of extinction risk were sensitive to the assumed population growth rate and model type, carrying capacity, and catastrophe regime (frequency and severity of anthropogenic fish kills), whereas demographic augmentation did little to reduce extinction risk. Under density-dependent growth, the estimated MVP for Roanoke logperch ranged from 200 to 4200 individuals, depending on the assumed severity of catastrophes. Thus, depending on the MVP threshold, anywhere from two to all five of the logperch populations we assessed were projected to be viable. Despite this uncertainty, these results help identify populations with the greatest relative extinction risk, as well as management strategies that might reduce this risk the most, such as increasing carrying capacity and reducing fish kills. Better estimates of population growth parameters and catastrophe regimes would facilitate the refinement of MVP and extinction-risk estimates, and they should be a high priority for future research on Roanoke logperch and other imperiled stream-fish species. Keywords: endangered species; extinction; fish; population viability analysis; risk Received: March 20, 2015; Accepted: February 3, 2016; Published Online Early: February 2016; Published: June 2016 Citation: Roberts JH, Angermeier PL, Anderson GB. 2016. Population viability analysis for endangered Roanoke logperch. Journal of Fish and Wildlife Management 7(1):46-64; e1944-687X. doi: 10.3996/032015-JFWM-026 Copyright: All material appearing in the Journal of Fish and Wildlife Management is in the public domain and may be reproduced or copied without permission unless specifically noted with the copyright symbol &. Citation of the source, as given above, is requested. The findings and conclusions in this article are those of the author(s) and do not necessarily represent the views of the U.S. Fish and Wildlife Service. * Corresponding author: [email protected] Introduction Small populations are more susceptible to catastrophes; inbreeding depression; and environmental, demographic, Population size is often considered the primary and genetic stochasticity (Groom et al. 2006). Such risks determinant of long-term viability (Shaffer 1981). This are exacerbated in small populations with weak density association results from a variety of intrinsic and extrinsic dependence, a low exponential growth rate, or a small factors that have stronger effects when abundance is low. carrying capacity (K) (Hanski 1990; Lande 1993). Journal of Fish and Wildlife Management | www.fwspubs.org June 2016 | Volume 7 | Issue 1 | 46 Population Viability for Endangered Roanoke Logperch J.H. Roberts et al. Figure 1. Photograph of an adult male Roanoke logperch Percina rex, approximately 135 mm in total length. Copyright Chris Crippen, Virginia Living Museum, November 2012. In theory, there exists a minimum viable population parameters, we can assess the influence on extinction of size (MVP) above which a given population’s risk of demographic, life-history, environmental, and manage- extinction from all of these factors is acceptably low ment factors, as well as uncertainty about these (Shaffer 1981). Therefore, despite some criticisms (e.g., quantities. Model outputs can then be incorporated into Flather et al. 2011), the MVP has long been a popular tool conservation plans to enhance their cost-effectiveness. for setting quantitative abundance targets for recovery Roanoke logperch Percina rex is a stream fish that of poorly studied, nonexploited fish and wildlife species persists in seven isolated populations in Virginia and (Brook et al. 2011). The MVP of a focal species is expected North Carolina (Roberts et al. 2013; Figure 1). Within to vary based on taxonomy, life history, and environ- these populations, the species is patchily distributed mental variability (Gilpin and Soule 1986; but see Reed et among silt-free riffle habitats (Rosenberger and Anger- al. 2003). Theoretical and empirical estimates of MVP meier 2003). Loss of silt-free habitat, habitat fragmenta- range among species from hundreds to hundreds of tion by dams, and catastrophic fish kills from chemical thousands of individuals, numbers far greater than the spills are among the most serious ongoing threats to actual current population sizes of many imperiled logperch populations (Rosenberger 2007). Due to these species (Allendorf et al. 1997; Reed et al. 2003; Traill et threats and perceived historical declines in the species’ al. 2007), suggesting that many imperiled populations distribution, the species was listed as ‘‘endangered’’ in will not be viable over the long term. 1989, pursuant to the U.S. Endangered Species Act (ESA The difficulty of accurately estimating species-specific 1973, as amended). Various federal and state manage- MVP presents one of the biggest challenges to the ment agencies are involved with assessing the status and broader use of the MVP concept in conservation facilitating the recovery of the species. The success of planning. In some cases, time series of observed these activities relies upon an understanding of current population extinctions can be used to model empirical population sizes and their temporal variances, the MVP relationships between population size, other ecological of the species and whether or not extant populations factors, and extinction risk (e.g., Newmark 1987; Pimm et exceed this threshold, and the potential demographic al. 1988; Berger 1990; Morita and Yamamoto 2002) and consequences of alternative management tactics. How- thereby establish MVPs. However, such data are not ever, population size has never been estimated for most available for the majority of species of conservation populations, and the demographic data necessary to concern. For species for which population extinctions characterize population dynamics have not been previ- cannot be observed, population viability analysis (PVA) is ously compiled. Furthermore, threats and risks to a commonly used alternative tactic for modeling Roanoke logperch populations have not been quantified, extinction probability (Morris and Doak 2002). In PVA, and there have been no previous attempts to character- simulation models are parameterized based on assump- ize the relationship between population size and tions about demography and life history, environmental extinction risk, so no MVP thresholds exist. These variability, and management activities and then used to knowledge gaps hamper the recovery of the species. forecast population size over some time horizon into the Such gaps are common across the speciose darter group future. This process is repeated thousands of times, to (Percidae: Etheostomatinae), despite the potential for obtain a count of how often population size remained PVA to provide insight into the demographic and above zero (or some other threshold) for the duration of environmental factors most closely tied to persistence the simulation. By iteratively changing model input of darter populations (e.g., Williams et al. 1999). Journal of Fish and Wildlife Management | www.fwspubs.org June 2016
Recommended publications
  • Information on the NCWRC's Scientific Council of Fishes Rare
    A Summary of the 2010 Reevaluation of Status Listings for Jeopardized Freshwater Fishes in North Carolina Submitted by Bryn H. Tracy North Carolina Division of Water Resources North Carolina Department of Environment and Natural Resources Raleigh, NC On behalf of the NCWRC’s Scientific Council of Fishes November 01, 2014 Bigeye Jumprock, Scartomyzon (Moxostoma) ariommum, State Threatened Photograph by Noel Burkhead and Robert Jenkins, courtesy of the Virginia Division of Game and Inland Fisheries and the Southeastern Fishes Council (http://www.sefishescouncil.org/). Table of Contents Page Introduction......................................................................................................................................... 3 2010 Reevaluation of Status Listings for Jeopardized Freshwater Fishes In North Carolina ........... 4 Summaries from the 2010 Reevaluation of Status Listings for Jeopardized Freshwater Fishes in North Carolina .......................................................................................................................... 12 Recent Activities of NCWRC’s Scientific Council of Fishes .................................................. 13 North Carolina’s Imperiled Fish Fauna, Part I, Ohio Lamprey .............................................. 14 North Carolina’s Imperiled Fish Fauna, Part II, “Atlantic” Highfin Carpsucker ...................... 17 North Carolina’s Imperiled Fish Fauna, Part III, Tennessee Darter ...................................... 20 North Carolina’s Imperiled Fish Fauna, Part
    [Show full text]
  • Endangered Species
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • Low-Head Dams Facilitate Round Goby Neogobius Melanostomus Invasion
    Biol Invasions (2018) 20:757–776 https://doi.org/10.1007/s10530-017-1573-3 ORIGINAL PAPER Low-head dams facilitate Round Goby Neogobius melanostomus invasion Dustin Raab . Nicholas E. Mandrak . Anthony Ricciardi Received: 9 July 2017 / Accepted: 23 September 2017 / Published online: 3 October 2017 Ó Springer International Publishing AG 2017 Abstract Round Goby Neogobius melanostomus inclusion of both reservoir-associated abiotic variables invasion of the Grand River (Ontario, Canada) and Round Goby abundance as model terms. To presents an opportunity to assess the role of abiotic determine establishment potential of the uninvaded gradients in mediating the establishment and impact of reach immediately upstream, four environmental nonnative benthic fishes in rivers. In this system, habitat characteristics were used in discriminant sequential low-head dams delineate uninvaded and function analysis (DFA) to predict three potential invaded river reaches and create upstream gradients of outcomes of introduction: non-invaded and either increasing water velocity. We hypothesized that flow lower or higher Round Goby abundance (low and high refugia created by impounded reservoirs above low- invasion status, respectively) than the median number head dams enhance local Round Goby abundance. of Round Goby at invaded sites. Our DFA function Round Goby influence on the native fish community correctly classified non-invaded and high-abundance was determined by variance partitioning, and we used invasion status sites [ 85% of the time, with lower generalized additive models to identify small-bodied (73%) success in classifying low-abundance invasion benthic fish species most likely to be impacted by status sites, and the spatial pattern of our results Round Goby invasion.
    [Show full text]
  • Basinwide Assessment Report Roanoke River Basin
    BASINWIDE ASSESSMENT REPORT ROANOKE RIVER BASIN NORTH CAROLINA DEPARTMENT OF ENVIRONMENT AND NATURAL RESOURCES Division of Water Quality Environmental Sciences Section December 2010 This Page Left Intentionally Blank 2 TABLE OF CONTENTS Section Page LIST OF APPENDICES ...............................................................................................................................3 LIST OF TABLES.........................................................................................................................................3 LIST OF FIGURES.......................................................................................................................................4 INTRODUCTION TO PROGRAM METHODS..............................................................................................5 BASIN DESCRIPTION..................................................................................................................................6 ROA RIVER HUC 03010103—DAN RIVER HEADWATERS.......................................................................7 River and Stream Assessment .......................................................................................................7 ROA RIVER HUC 03010104—DAN RIVER……………………………………………………………………...9 River and Stream Assessment……………………………………………………………………….…..9 ROA RIVER HUC 03010102—JOHN H. KERR RESERVOIR………………………………………………..11 River and Stream Assessment………………………………………………………………………….11 ROA RIVER HUC 03010106—LAKE GASTON………………………………………………………………..13 River and Stream Assessment………………………………………………………………………….13
    [Show full text]
  • Factors Influencing Stream Fish Recovery Following a Large-Scale Disturbance WILLIAM E
    Transactions of the American Fisheries Society 126:895-907, 1997 © Copyright by ihe American Fisheries Society 1997 Factors Influencing Stream Fish Recovery Following a Large-Scale Disturbance WILLIAM E. ENSIGN' and KEVIN N. LEFTwiCH2 Department Fisheriesof Wildlifeand Sciences, Virginia Tech Blackshitrg, Virginia 24061-0321, USA PAUL L. ANGERMEIER U.S. Geological Survey, Biological Resources Division Virginia Cooperative Fish and Wildlife Research Unit,* Virginia Tech, Blacksburg, Virginia 24061-0321.USA . ANDREC W DOLLOFF U.S. Forest Sen'ice, Southern Research Station, Virginia Tech Blacksburg, Virginia 24061-0321. USA Abstract.—We examined fish distribution and abundance in erosional habitat units in South Fork Roanoke River, Virginia, following a fish kill by using a reachwide sampling approach for 3 species and a representative-reach sampling approach for 10 species. Qualitative (presence-absence) and quantitative (relative abundance) estimate f distributioso abundancd nan e provided consistent mea- sure f fiso s h specie 3 reachwide recover f th o speciet 0 2 a s1 r f yfo o e srepre 8 e scal ath d t an e- sentative-reach scale. Combining results across scales and estimator types showed that distributions and abundance f 1o 1 5 specie reace f so th hn i s affecte kile th l y werdb e simila thoso rt e observed in unaffected upstrea downstread man m reaches 8-11 months following the perturbation. Differ- ence distribution i s abundancd an n e betwee e affectenth d reac unaffected han d reaches indicate f tha1o 1 t full4 tspecie no yd recovereha s d durin same gth e time period; results were equivocal fo othe2 r r species attribute W .
    [Show full text]
  • Using Genetic Tools to Understand the Population Ecology of Stream Fishes James Henry Roberts III Dissertation Submitted To
    Using genetic tools to understand the population ecology of stream fishes James Henry Roberts III Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Fish and Wildlife Conservation Paul L. Angermeier, Co-chairman Eric M. Hallerman, Co-chairman C. Andrew Dolloff J. Paul Grobler Marcella J. Kelly April 27th, 2012 Blacksburg, Virginia Keywords: darter, dispersal, endangered species, genetic diversity, landscape ecology, isolation- by-distance, metapopulation dynamics, persistence, population structure, stream fish Copyright 2012, James Roberts Using genetic tools to understand the population ecology of stream fishes James Henry Roberts III ABSTRACT Stream fishes are highly diverse, yet highly imperiled by human alterations of stream environments. Many species are poorly characterized with regard to the size and structure of populations and patterns of dispersal between populations, which complicates assessment of how human activities, both harmful and beneficial, will affect persistence. I used genetic tools to further this understanding in three case-study fish species of the southeastern United States: Roanoke logperch (Percina rex) of the greater Roanoke River basin and redline (Etheostoma rufilineatum) and greenside darters (E. blennioides) of the upper Tennessee River basin. I found that endangered P. rex persists in seven isolated populations. Within populations, individuals exhibit extensive dispersal and gene flow, which maintains connectivity throughout entire watersheds. Most populations exhibit small contemporary effective population sizes and occupy few stream channels, and thereby face an elevated risk of extinction. Genetic estimates of divergence indicate that fragmentation was recent, coincident with the construction of major dams throughout the species’ range.
    [Show full text]
  • Board of Game and Inland Fisheries Meeting Agenda
    Revised Board of Game and Inland Fisheries 4000 West Broad Street, Board Room Richmond, Virginia 23230 August 14, 2012 9:00am Call to order and welcome, reading of the Mission Statement and Pledge of Allegiance to the Flag. 1. Recognition of Employees and Others 2. Public Comments – Department plan to build a new headquarters under PPEA 3. Public Comments – Non-Agenda Items 4. Approval of July 10, 2012 Board Meeting Minutes 5. Committee Meeting Reports: Wildlife, Boat and Law Enforcement Committee: Mr. Turner, Chairman of the Wildlife, Boat and Law Enforcement Committee, will report on the activities of the August 7, 2012 Committee Meeting. The Committee will recommend the following items to the full Board for final action: Staff Recommendations – Fisheries Regulation Amendments Staff Recommendations – Diversity Regulation Amendments Staff Recommendations – Boating Regulation Amendments Staff Recommendations – 2012-2013 Migratory Waterfowl Seasons and Bag Limits Staff Recommendations – ADA Regulation Agency Land Use Plan Proposed CY2013 Board Meeting Schedule Finance, Audit and Compliance Committee: Mr. Colgate, Chairman of the Finance, Audit and Compliance Committee, will report on the activities of the July 25, 2012 Committee Meeting. The Committee will present the following reports: FY2012 Year-end Financial Summary Internal Audit FY2013 Work Plan - Final Action Education, Planning and Outreach Committee: Ms. Caruso, Chairwoman of the Education, Planning, and Outreach Committee Meeting. Ms. Caruso will announce the next Committee Meeting will be held on October 17, 2012 beginning at 10:00am. 6. Closed Session 7. Director's Report: 8. Chairman's Remarks 9. Additional Business/Comments 10. Next Meeting Date: October 18, 2012 beginning at 9:00am 11.
    [Show full text]
  • Conservation Status of Imperiled North American Freshwater And
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • NRSA 2013/14 Field Operations Manual Appendices (Pdf)
    National Rivers and Streams Assessment 2013/14 Field Operations Manual Version 1.1, April 2013 Appendix A: Equipment & Supplies Appendix Equipment A: & Supplies A-1 National Rivers and Streams Assessment 2013/14 Field Operations Manual Version 1.1, April 2013 pendix Equipment A: & Supplies Ap A-2 National Rivers and Streams Assessment 2013/14 Field Operations Manual Version 1.1, April 2013 Base Kit: A Base Kit will be provided to the field crews for all sampling sites that they will go to. Some items are sent in the base kit as extra supplies to be used as needed. Item Quantity Protocol Antibiotic Salve 1 Fish plug Centrifuge tube stand 1 Chlorophyll A Centrifuge tubes (screw-top, 50-mL) (extras) 5 Chlorophyll A Periphyton Clinometer 1 Physical Habitat CST Berger SAL 20 Automatic Level 1 Physical Habitat Delimiter – 12 cm2 area 1 Periphyton Densiometer - Convex spherical (modified with taped V) 1 Physical Habitat D-frame Kick Net (500 µm mesh, 52” handle) 1 Benthics Filteration flask (with silicone stopped and adapter) 1 Enterococci, Chlorophyll A, Periphyton Fish weigh scale(s) 1 Fish plug Fish Voucher supplies 1 pack Fish Voucher Foil squares (aluminum, 3x6”) 1 pack Chlorophyll A Periphyton Gloves (nitrile) 1 box General Graduated cylinder (25 mL) 1 Periphyton Graduated cylinder (250 mL) 1 Chlorophyll A, Periphyton HDPE bottle (1 L, white, wide-mouth) (extras) 12 Benthics, Fish Vouchers HDPE bottle (500 mL, white, wide-mouth) with graduations 1 Periphyton Laboratory pipette bulb 1 Fish Plug Microcentrifuge tubes containing glass beads
    [Show full text]
  • Ambloplites Cavifrons)
    Georgia Southern University Digital Commons@Georgia Southern Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of Spring 2017 Assessing the Genetic Status and Factors Leading to the Decline of the Roanoke Bass (Ambloplites Cavifrons) Jackman C. Eschenroeder Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd Part of the Ecology and Evolutionary Biology Commons Recommended Citation Eschenroeder, J.C. Assessing the genetic status and factors leading to the decline of the Roanoke bass (Ambloplites cavifrons). MS thesis. Georgia Southern University, 2017. This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. ASSESSING THE GENETIC STATUS AND FACTORS LEADING TO THE DECLINE OF THE ROANOKE BASS (AMBLOPLITES CAVIFRONS) by JACKMAN ESCHENROEDER (Under the direction of James H. Roberts) ABSTRACT Although numerous factors have led to the staggering declines in freshwater biodiversity throughout the United States and the world, habitat alteration and introduced species pose some of the greatest challenges to conservation efforts. Learning more about how these two factors lead to the decline of an endemic organism could help prevent the future loss of unique species and the premature conclusion of evolutionary trajectories. Roanoke bass (Ambloplites cavifrons) is a sport fish endemic to portions of the Roanoke, Chowan, Tar, and Neuse river basins of North Carolina and Virginia. This species has been in decline for many years, and it is believed that their continued existence is threatened by competition, and potentially hybridization and introgression with their introduced relative, the rock bass (Ambloplites rupestris).
    [Show full text]
  • Threatened Freshwater Fishes of the United States
    Threatened Freshwater Fishes of the United States ROBERT RUSH MILLER 1 Museum o] Zoology, The University o/ Michigan Ann Arbor, Michigan 48104 ABSTRACT Threatened, native freshwater fishes are listed for 49 of the 50 U.S. States, the first such compilation. Over 300 kinds are included in a formal classification, cross-indexedto states (Table 1), followed by statelists and the statusof each fish, whether rare, endangered,depleted, or undetermined. The concern for native fishes and the important factors responsible for threats to their existence are briefly outlined. Although the lists vary from those based on extensive recent state surveys to others in which current information is sparse, publication is expected to enhance the chances for survival through protective legislation (already enacted by a number of states) and stronger concern for such natural resources. INTRODUCTION committeesduring the period that the infor- It is only within the past decade,princi- mation presentedbelow was being prepared. pally since 1963, that seriousthreats to the Since the late 1960's, particularly in the survivalof many of our uniquenative fishes West but also. in the East, states have been have becomewidely recognized.Committees enactinglegislation and enforcingprotection concernedwith vanishingU.S. wildlife have of endangeredspecies and subspeciesas well been established within scientific societies as as maintainingnatural habitatsand creating well as by the statesand the federal govern- refugia for some of the more critically ment. On a globalbasis, action has been taken threatenedfishes (see, for example,Miller and by the SurvivalService Commission of the In- Pister, 1971). This type of effort must be ternational Union for Conservation of Nature extendedinto every state.
    [Show full text]
  • First Observation of a Natural Hybrid Between Endangered Roanoke Logperch (Percina Rex) and Chainback Darter (Percina Navisense)
    Southeastern Fishes Council Proceedings Volume 1 Number 53 Number 53 (December 2011) Article 5 12-1-2011 First Observation of a Natural Hybrid Between Endangered Roanoke Logperch (Percina rex) and Chainback Darter (Percina navisense) James H. Roberts Follow this and additional works at: https://trace.tennessee.edu/sfcproceedings Part of the Marine Biology Commons Recommended Citation Roberts, James H. (2011) "First Observation of a Natural Hybrid Between Endangered Roanoke Logperch (Percina rex) and Chainback Darter (Percina navisense)," Southeastern Fishes Council Proceedings: No. 53. Available at: https://trace.tennessee.edu/sfcproceedings/vol1/iss53/5 This Original Research Article is brought to you for free and open access by Volunteer, Open Access, Library Journals (VOL Journals), published in partnership with The University of Tennessee (UT) University Libraries. This article has been accepted for inclusion in Southeastern Fishes Council Proceedings by an authorized editor. For more information, please visit https://trace.tennessee.edu/sfcproceedings. First Observation of a Natural Hybrid Between Endangered Roanoke Logperch (Percina rex) and Chainback Darter (Percina navisense) This original research article is available in Southeastern Fishes Council Proceedings: https://trace.tennessee.edu/ sfcproceedings/vol1/iss53/5 SFC PROCEEDINGS No. 53 First Observation of a Natural Hybrid Between Endangered Roanoke Logperch ( Percina rex ) and Chainback Darter ( Percina nevisense ) JAMES H. ROBERTS Department of Fisheries and Wildlife Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA 24061; Email: [email protected] ABSTRACT analysis and both specimen and fin were preserved in 95% ethanol. I used meristic, mitochondrial DNA, and nuclear DNA The only Percina species known to occur in the methods to infer the most likely ancestry of a putative Roanoke drainage (Jenkins and Burkhead, 1994) are hybrid specimen of Percina captured in the Roanoke River Roanoke Logperch, Percina rex (Jordan and Evermann); of Virginia.
    [Show full text]