Dephine – the Deimos and Phobos Interior Explorer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phobos, Deimos: Formation and Evolution Alex Soumbatov-Gur
Phobos, Deimos: Formation and Evolution Alex Soumbatov-Gur To cite this version: Alex Soumbatov-Gur. Phobos, Deimos: Formation and Evolution. [Research Report] Karpov institute of physical chemistry. 2019. hal-02147461 HAL Id: hal-02147461 https://hal.archives-ouvertes.fr/hal-02147461 Submitted on 4 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Phobos, Deimos: Formation and Evolution Alex Soumbatov-Gur The moons are confirmed to be ejected parts of Mars’ crust. After explosive throwing out as cone-like rocks they plastically evolved with density decays and materials transformations. Their expansion evolutions were accompanied by global ruptures and small scale rock ejections with concurrent crater formations. The scenario reconciles orbital and physical parameters of the moons. It coherently explains dozens of their properties including spectra, appearances, size differences, crater locations, fracture symmetries, orbits, evolution trends, geologic activity, Phobos’ grooves, mechanism of their origin, etc. The ejective approach is also discussed in the context of observational data on near-Earth asteroids, main belt asteroids Steins, Vesta, and Mars. The approach incorporates known fission mechanism of formation of miniature asteroids, logically accounts for its outliers, and naturally explains formations of small celestial bodies of various sizes. -
Circulating Transportation Orbits Between Earth and Mars
CIRCULATING TRANSPORTATION ORBITS BETWEEN EARTH AND MRS 1 2 Alan L. Friedlander and John C. Niehoff . Science Applications International Corporation Schaumburg, Illinois 3 Dennis V. Byrnes and James M. Longuski . Jet Propulsion Laboratory Pasadena, Cal iforni a Abstract supplies in support of a sustained Manned Mars Sur- This paper describes the basic characteristics face Base sometime during the second quarter of the of circulating (cyclical ) orbit design as applied next century. to round-trip transportation of crew and materials between Earth and Mars in support of a sustained A circulating orbit may be defined as a multi- manned Mars Surface Base. The two main types of ple-arc trajectory between two or more planets non-stopover circulating trajectories are the so- which: (1) does not stop at the terminals but called VISIT orbits and the Up/Down Escalator rather involves gravity-assist swingbys of each orbits. Access to the large transportation facili- planet; (2) is repeatable or periodic in some ties placed in these orbits is by way of taxi vehi- sense; and (3) is continuous, i.e., the process can cles using hyperbolic rendezvous techniques during be carried on indefinitely. Different types of the successive encounters with Earth and Mars. circulating orbits between Earth and Mars were Specific examples of real trajectory data are pre- identified in the 1960s 1iterat~re.l'*'~'~ Re- sented in explanation of flight times, encounter examination of this interesting problem during the frequency, hyperbol ic velocities, closest approach past year has produced new solution^.^'^'^ Some distances, and AV maneuver requirements in both involve only these two bodies while others incor- interplanetary and planetocentric space. -
The Formation of the Martian Moons Rosenblatt P., Hyodo R
The Final Manuscript to Oxford Science Encyclopedia: The formation of the Martian moons Rosenblatt P., Hyodo R., Pignatale F., Trinh A., Charnoz S., Dunseath K.M., Dunseath-Terao M., & Genda H. Summary Almost all the planets of our solar system have moons. Each planetary system has however unique characteristics. The Martian system has not one single big moon like the Earth, not tens of moons of various sizes like for the giant planets, but two small moons: Phobos and Deimos. How did form such a system? This question is still being investigated on the basis of the Earth-based and space-borne observations of the Martian moons and of the more modern theories proposed to account for the formation of other moon systems. The most recent scenario of formation of the Martian moons relies on a giant impact occurring at early Mars history and having also formed the so-called hemispheric crustal dichotomy. This scenario accounts for the current orbits of both moons unlike the scenario of capture of small size asteroids. It also predicts a composition of disk material as a mixture of Mars and impactor materials that is in agreement with remote sensing observations of both moon surfaces, which suggests a composition different from Mars. The composition of the Martian moons is however unclear, given the ambiguity on the interpretation of the remote sensing observations. The study of the formation of the Martian moon system has improved our understanding of moon formation of terrestrial planets: The giant collision scenario can have various outcomes and not only a big moon as for the Earth. -
Mars Express
sp1240cover 7/7/04 4:17 PM Page 1 SP-1240 SP-1240 M ARS E XPRESS The Scientific Payload MARS EXPRESS The Scientific Payload Contact: ESA Publications Division c/o ESTEC, PO Box 299, 2200 AG Noordwijk, The Netherlands Tel. (31) 71 565 3400 - Fax (31) 71 565 5433 AAsec1.qxd 7/8/04 3:52 PM Page 1 SP-1240 August 2004 MARS EXPRESS The Scientific Payload AAsec1.qxd 7/8/04 3:52 PM Page ii SP-1240 ‘Mars Express: A European Mission to the Red Planet’ ISBN 92-9092-556-6 ISSN 0379-6566 Edited by Andrew Wilson ESA Publications Division Scientific Agustin Chicarro Coordination ESA Research and Scientific Support Department, ESTEC Published by ESA Publications Division ESTEC, Noordwijk, The Netherlands Price €50 Copyright © 2004 European Space Agency ii AAsec1.qxd 7/8/04 3:52 PM Page iii Contents Foreword v Overview The Mars Express Mission: An Overview 3 A. Chicarro, P. Martin & R. Trautner Scientific Instruments HRSC: the High Resolution Stereo Camera of Mars Express 17 G. Neukum, R. Jaumann and the HRSC Co-Investigator and Experiment Team OMEGA: Observatoire pour la Minéralogie, l’Eau, 37 les Glaces et l’Activité J-P. Bibring, A. Soufflot, M. Berthé et al. MARSIS: Mars Advanced Radar for Subsurface 51 and Ionosphere Sounding G. Picardi, D. Biccari, R. Seu et al. PFS: the Planetary Fourier Spectrometer for Mars Express 71 V. Formisano, D. Grassi, R. Orfei et al. SPICAM: Studying the Global Structure and 95 Composition of the Martian Atmosphere J.-L. Bertaux, D. Fonteyn, O. Korablev et al. -
Mars Activities
MARS ACTIVITIES Teacher Resources and Classroom Activities Mars Education Program Jet Propulsion Laboratory Arizona State University Mars Missions Information and Updates Mission Information Available at Jet Propulsion Laboratory Mars Exploration Home Page http://mars.jpl.nasa.gov More Educational Activities Available at Jet Propulsion Laboratory Mars Education & Public Outreach Program http://mars.jpl.nasa.gov/classroom or Arizona State University Mars K-12 Education Program http://tes.asu.edu/neweducation.html Table of Contents 1. Earth, Moon, Mars Balloons 1 2. Rover Races 4 3. Areology - The Study of Mars 11 4. Strange New Planet 16 5. Lava Layering 24 6. Searching for Life on Mars 33 7. Mars Critters 42 8. Exploring Crustal Material from a Mystery Planet 46 - Graph Paper 48 9. Edible Mars Rover 49 - Mars Pathfinder Rover 51 10. Edible Mars Spacecraft 52 - Mars Global Surveyor 54 - Mars Pathfinder 55 - Mars Pathfinder Rover 56 11. Mars Meteorites’ Fingerprints 57 12. Introduction to Creating a Mission Plan 65 13. Out of Sight: Remote Vehicle Activity 66 - Mars Rover Websites 69 15. Probing Below the Surface of Mars 74 16. Good Vibrations 85 17. The Mathematics of Mars 90 - “I Have…Who Has?” Cards 93 18. Mars Bingo 100 19. Mud Splat Craters 112 20. Solar System Beads Distance Activity 115 21. Alka-Seltzer Rockets 118 22. Soda Straw Rockets 122 23. Mars Pathfinder: Two-Dimensional Model 126 24. Mars Pathfinder: Egg Drop and Landing 127 25. Cool Internet Sites 128 Earth, Moon, Mars Balloons 1 Introduction: How big is the Moon; how far is it relative to Earth? Earth science and astronomy books depict a moon that is much closer and much larger than in reality. -
The Formation of Mars: Building Blocks and Accretion Time Scale
Space Sci Rev (2013) 174:11–25 DOI 10.1007/s11214-012-9904-2 The Formation of Mars: Building Blocks and Accretion Time Scale Ramon Brasser Received: 4 December 2011 / Accepted: 28 May 2012 / Published online: 12 June 2012 © Springer Science+Business Media B.V. 2012 Abstract In this review paper I address the current knowledge of the formation of Mars, focusing on its primary constituents, its formation time scale and its small mass compared to Earth and Venus. I argue that the small mass of Mars requires the terrestrial planets to have formed from a narrow annulus of material, rather than a disc extending to Jupiter. The truncation of the outer edge of the disc was most likely the result of giant planet migration, which kept Mars’ mass small. From cosmochemical constraints it is argued that Mars formed in a couple of million years and is essentially a planetary embryo that never grew to a full-fledged planet. This is in agreement with the latest dynamical models. Most of Mars’ building blocks consists of material that formed in the 2 AU to 3 AU region, and is thus more water-rich than that accreted by Earth and Venus. The putative Mars could have consisted of 0.1 % to 0.2 % by mass of water. Keywords Mars · Formation · Origin 1 Introduction The formation of the terrestrial planets of the Solar System has been an outstanding prob- lem for a long time. Significant progress has recently been made with the aid of fast com- puters and has led to a coherent picture and sequence of events. -
UCGE Reports Number 20191
UCGE Reports Number 20191 Department of Geomatics Engineering Simulation and Evaluation of the Performance of the Proposed Mars Network Constellation for Positioning, Orbit Improvement, and Establishment of a Spatial Reference Frame for Mars (URL: http://www.geomatics.ucalgary.ca/links/GradTheses.html) by Kyle O’Keefe April 2004 THE UNIVERSITY OF CALGARY Simulation and Evaluation of the Performance of the Proposed Mars Network Constellation for Positioning, Orbit Improvement, and Establishment of a Spatial Reference Frame for Mars by Kyle O’Keefe A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF GEOMATICS ENGINEERING CALGARY, ALBERTA April, 2004 c Kyle O’Keefe 2004 Preface This is an unaltered version of the author’s Doctoral of Philosophy thesis. The thesis was accepted by the Faculty of Graduate Studies in April, 2004. The faculty supervisor for this work was Dr. G´erard Lachapelle. The co-supervisor was Dr. Susan Skone. Other members of the examining committee were Dr. M. Elizabeth Cannon, Dr. Patrick Wu, Dr. Wayne Cannon. ii Abstract In 1999, the NASA Jet Propulsion Lab presented a proposal for a six satellite nav- igation and communication network for Mars called the Mars Network. This thesis investigates the performance of the Mars Network both theoretically, using figures of merit commonly applied to satellite navigation systems on Earth, and in the position domain using simulated observations. The Mars Network is evaluated in terms of availability, accuracy, and reliability as a function of position and time by simulating network geometry for users distributed across the planet. -
Concept Evaluation of Mars Drilling and Sampling Instrument
Helsinki University of Technology, Laboratory of Space Technology Espoo, March 2005 REPORT 56 CONCEPT EVALUATION OF MARS DRILLING AND SAMPLING INSTRUMENT Matti Anttila TEKNILLINEN KORKEAKOULU TEKNISKA HÖGSKOLAN HELSINKI UNIVERSITY OF TECHNOLOGY Helsinki University of Technology Laboratory of Space Technology Espoo, 2004 Concept Evaluation of Mars Drilling and Sampling Instrument Matti Anttila Dissertation for the degree of Doctor of Science in Technology to be presented with due permission of the Department of Electrical and Communications Engineering, for public examination and debate in Auditorium S4 at Helsinki University of Technology (Espoo, Finland) on the 27th of May, 2005, at 12 noon. ISBN 951-22-7646-1 (printed) ISBN 951-22-7647-X (electronic) ISSN 0786-8154 Helsinki University of Technology Mailing address: Laboratory of Space Technology P.O.Box 3000 FIN-02015 HUT Finland Street address: Otakaari 5 A FIN-02150 Espoo Tel. +358 9 451 2378 Fax. +358 9 451 2898 E-mail: [email protected] http://www.space.hut.fi © Matti Anttila ISBN 951-22-7646-1 ISSN 0786-8154 Picaset Oy Helsinki 2005 On the surface of Mars, the Sun is about half the size as seen from Earth. The nights are colder than Antarctica has ever been, and even summer days are freezing. The atmosphere is so thin, that it would boil our blood from the smallest wound, and the air consists of deadly amounts of carbon dioxide. There is no life, there is no running water and there is no shelter to escape the Sun’s ultra- violet radiation that sterilizes everything left to the Red Planet’s surface. -
The Blue Mars Mission Report of Group 2
The Blue Mars Mission Report of group 2 M. Crimella, M. Dahl, G. Jufors, V. Karlsson Handledare: Nils Pokrupa A project in SD2905 - Human Spaceflight Dept. of Aeronautical and Vehicle Engineering Royal Institute of Technology, Sweden March 20th, 2014 Abstract The main work of Group 2 described in this report consists of the overall trip design, from the surface of the Earth to the surface of Mars, and back. Particular emphasis is given to the design of the interplanetary trajectory for the crew vehicle, to the design of the rockets needed for the payloads, to the propulsion system, to the ∆vrequirementsandfinallytothesequenceof launches from the Earth and to the sequence of events and vehicles needed for landing on the Red Planet. For the trajectory design the NASA Mission Design Center’s Trajectory Browser, is used. Ac- cordingly, the ∆vareobtained.Thedesignoftherocketsisbasedontheperformancesofthe propellants here considered and on the payload dimensions. Finally, on the basis of the previous results of this project, the number and sequence of launches from the Earth to LEO is calculated. The design of the events and vehicle needed to land on Mars is based on the description of reference missions, on the amount of payload that has to land on Mars and on the characteristics of Mars and its atmosphere. The chosen mission has a duration of 577 days with 112 days on Mars. The outbound trip i 304 days and include a Venus swing-by. The return trip is 161 days with crew direct entry to Earth. Total mission ∆vis10km/s.ThevehiclessenttoMarsareonecrewrocketandtwocargorockets. The Mars descent/ascent vehicle, surface habitat and equipment is pre-deployed prior to crew departure. -
The Planetary and Lunar Ephemeris DE 421
IPN Progress Report 42-178 • August 15, 2009 The Planetary and Lunar Ephemeris DE 421 William M. Folkner,* James G. Williams,† and Dale H. Boggs† The planetary and lunar ephemeris DE 421 represents updated estimates of the orbits of the Moon and planets. The lunar orbit is known to submeter accuracy through fitting lunar laser ranging data. The orbits of Venus, Earth, and Mars are known to subkilometer accu- racy. Because of perturbations of the orbit of Mars by asteroids, frequent updates are needed to maintain the current accuracy into the future decade. Mercury’s orbit is determined to an accuracy of several kilometers by radar ranging. The orbits of Jupiter and Saturn are determined to accuracies of tens of kilometers as a result of spacecraft tracking and modern ground-based astrometry. The orbits of Uranus, Neptune, and Pluto are not as well deter- mined. Reprocessing of historical observations is expected to lead to improvements in their orbits in the next several years. I. Introduction The planetary and lunar ephemeris DE 421 is a significant advance over earlier ephemeri- des. Compared with DE 418, released in July 2007,1 the DE 421 ephemeris includes addi- tional data, especially range and very long baseline interferometry (VLBI) measurements of Mars spacecraft; range measurements to the European Space Agency’s Venus Express space- craft; and use of current best estimates of planetary masses in the integration process. The lunar orbit is more robust due to an expanded set of lunar geophysical solution parameters, seven additional months of laser ranging data, and complete convergence. -
Brno University of Technology Vysoké Učení Technické V Brně
BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ DEPARTMENT OF FOREIGN LANGUAGES ÚSTAV JAZYKŮ THE USE OF ROBOTIC ROVERS TO EXPLORE MARS VYUŽITÍ ROBOTICKÝCH ROVERU K PRŮZKUMU MARS BACHELOR'S THESIS BAKALÁŘSKÁ PRÁCE AUTHOR Štěpán Pekař AUTOR PRÁCE SUPERVISOR M. A. Kenneth Froehling VEDOUCÍ PRÁCE BRNO 2017 Bakalářská práce bakalářský studijní obor Angličtina v elektrotechnice a informatice Ústav jazyků Student: Štěpán Pekař ID: 161793 Ročník: 3 Akademický rok: 2016/17 NÁZEV TÉMATU: Využití robotických Roveru k průzkumu Mars POKYNY PRO VYPRACOVÁNÍ: Mars, často označován jako "Rudá Planeta", je čtvrtou planetou vzdálenou od Slunce a je považován za planetu, která byla s největší pravděpodobností dříve obyvatelnou nebo s potenciálem pro budoucí osídlení Země. NASA vyslala několik robotických misí Rover s cílem potvrdit tyto domněnky. Cílem bakalářské práce je prostudovat literaturu o těchto misích a technologii Mars Roveru. Důraz by měl být především na zeměměřickou robotickou technologii, která učinila Rover přínosným a komunikační technologii použitou za účelem přenosu signálů zpátky na zem. Bakalářská práce přirozeně rozvede toto téma do větších detailů. DOPORUČENÁ LITERATURA: http://mars.nasa.gov/msl/mission/science/researchpapers/ http://mars.nasa.gov/msl/ http://www.marsjournal.org/ http://www.sciencemag.org/search/marsrover Termín zadání: 6.2.2017 Termín odevzdání: 2.6.2017 Vedoucí práce: M. A. Kenneth Froehling Konzultant: doc. PhDr. Milena Krhutová, Ph.D. předseda oborové rady UPOZORNĚNÍ: Autor bakalářské práce nesmí při vytváření bakalářské práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. -
Planets Solar System Paper Contents
Planets Solar system paper Contents 1 Jupiter 1 1.1 Structure ............................................... 1 1.1.1 Composition ......................................... 1 1.1.2 Mass and size ......................................... 2 1.1.3 Internal structure ....................................... 2 1.2 Atmosphere .............................................. 3 1.2.1 Cloud layers ......................................... 3 1.2.2 Great Red Spot and other vortices .............................. 4 1.3 Planetary rings ............................................ 4 1.4 Magnetosphere ............................................ 5 1.5 Orbit and rotation ........................................... 5 1.6 Observation .............................................. 6 1.7 Research and exploration ....................................... 6 1.7.1 Pre-telescopic research .................................... 6 1.7.2 Ground-based telescope research ............................... 7 1.7.3 Radiotelescope research ................................... 8 1.7.4 Exploration with space probes ................................ 8 1.8 Moons ................................................. 9 1.8.1 Galilean moons ........................................ 10 1.8.2 Classification of moons .................................... 10 1.9 Interaction with the Solar System ................................... 10 1.9.1 Impacts ............................................ 11 1.10 Possibility of life ........................................... 12 1.11 Mythology .............................................