Université Pierre Et Marie Curie

Total Page:16

File Type:pdf, Size:1020Kb

Université Pierre Et Marie Curie Université Pierre et Marie Curie École Doctorale Complexité du Vivant Centre Scientifique de Monaco / Département de Biologie Marine Équipe de Physiologie et Biochimie Approches physiologique et moléculaire de la calcification chez le corail rouge de Méditerranée Corallium rubrum par Carine LE GOFF Thèse de doctorat en Sciences de la vie Directrice de thèse : Sylvie Tambutté Co-encadrant : Philippe Ganot Présentée et soutenue publiquement le 14 Décembre 2016 à Monaco Devant un jury composé de : Dr. Daniel Vielzeuf Rapporteur Dr. Catherine Lorin-Nebel Rapporteur Pr. François Lallier Examinateur Dr. Stéphanie Barnay-Verdier Examinateur Dr. Clemente Capasso Examinateur Dr. Georges Carle Examinateur Dr. Sylvie Tambutté Directrice de thèse Dr. Philippe Ganot Co-encadrant À mes parents... REMERCIEMENTS Remerciements Les premières lignes de ce manuscrit sont souvent, de façon paradoxale, les dernières à être rédigées. Et lorsque l’on arrive à cette étape, qui n’est pas la plus facile, cela signifie véritablement que la thèse se termine. Je voudrais bien évidemment remercier de façon générale toutes les personnes qui ont contribué, de près ou de loin, à la réalisation de cette thèse. Ces trois années auront été une véritable aventure humaine, personnelle et professionnelle. En premier lieu, je voudrais remercier les membres de mon comité de thèse, Paola Furla, Georges Carle et Jean-Yves Sire. Ce fut un plaisir de vous présenter l’évolution de mes travaux et d’avoir pu échanger avec vous. Je tiens également à remercier les membres du jury de thèse, Daniel Vielzeuf et Catherine Lorin-Nebel pour avoir accepté d’être rapporteurs de ce travail, ainsi que François Lallier, Clemente Capasso, Stéphanie Barnay-Verdier et Georges Carle en leur qualité d’examinateurs. Je souhaite remercier le Pr. Patrick Rampal et Mme Corinne Gaziello, respectivement Président et Secrétaire Générale du Centre Scientifique de Monaco, pour m’avoir permis de réaliser cette thèse au sein de l’équipe de Physiologie et Biochimie du laboratoire. Je remercie également le Pr. Denis Allemand, Directeur du Centre Scientifique de Monaco, pour les échanges que nous avons eus, pour son enthousiasme et ses connaissances qu’il aime partager, dans le domaine de la Science et bien au-delà. Mes remerciements vont ensuite tout naturellement à mes encadrants, Sylvie Tambutté et Philippe Ganot, ainsi qu’aux autres membres de l’équipe de Physiologie et Biochimie. Merci Sylvie pour tes conseils, tes relectures, et tes corrections. Ce fût un plaisir de partager avec toi les résultats obtenus au cours de cette thèse. Le corail rouge a désormais moins de secrets pour nous. Philippe, tu auras su m’encadrer par ton côté « tyrannique» et « grand frère » (selon tes propres mots !). Egalement partenaire graphiste, malgré nos différents pour le choix des couleurs... Je te passe la main (verte ou rouge ?) pour prendre soin de ces petites colonies et boutures. Merci Didier pour tes connaissances notamment en biologie moléculaire, mais également pour les cours matinaux de Japonais et de Russe, et pour avoir essayé de parfaire ma culture musicale et cinématographique. J’espère que d’autres bretons passeront par ici pour peut-être, réussir à te faire apprécier la pluie. Merci Alex pour ton aide précieuse et tes conseils avisés lors des expériences au confocal, ce microscope qui m’a paru si difficile à maîtriser la première fois. Merci également pour ton enthousiasme permanent. Merci Eric T., pour tes connaissances en microscopie et toutes les superbes photos que tu nous fais des coraux et autres petites bêtes. Et promis, je vais m’entraîner pour te faire un kouign amann à la hauteur de celui des doctorants précédents. REMERCIEMENTS Je pense bien évidemment aussi aux deux techniciennes de l’équipe qui m’auront appris les bases pour travailler sur les coraux, et avec qui la mise au point des protocoles pour le corail rouge n’a pas été une mince affaire ! Merci également pour vos talents de cuisinières. Natacha, ce fut un plaisir de déguster tes gâteaux qui sont des réalisations incroyables à chaque fois, et Nathalie, pour m’avoir faire découvrir la cuisine Réunionnaise. Merci aux post-doc, ancienne et actuelle. Nathalie, tu auras égayé mes journées avec ta joie de vivre, ce fût un plaisir de t’avoir comme voisine de bureau et d’avoir partagé du temps ensemble au labo. Duygu, merci pour ta bonne énergie, les cours de yoga en bord de mer les lundis matins, et pour tes délicates attentions. Merci aux stagiaires pour leur bonne humeur inconditionnelle : Lisandrina, Gaëlle, Apolline, Astrid, Jonas... Je tenais également à remercier les personnes avec qui nous avons collaboré autour ce projet. Merci à Didier Aurelle et Anne Haguenauer de l’IMBE à Marseille pour les colonies de corail rouge que vous êtes allés chercher pour nous. Merci à Georges Carle de l’UMR TIRO-MATOs à Nice pour le cryobroyage des échantillons. Merci également à Claudiu Supuran de l’Université de Florence, et Clemente Capasso de l’Institute of Biosciences and BioResources de Naples, pour les échanges que l’on a eus sur les anhydrases carboniques, ainsi que pour votre accueil si chaleureux lors de notre venue à Naples. Mes remerciements vont ensuite à l’équipe d’Ecophysiologie, avec qui je n’ai pas seulement que partagé des discussions autour du corail : Christine, Renaud, Stéphanie, Eric B., Cécile, et Lucile, ainsi que les post-doc actuels, Jeroen et Vanessa. Merci aussi à Eric E. et Robert pour leur aide technique. Merci aux membres de l’équipe de Biologie Polaire actuels, avec qui c’est toujours un plaisir d’échanger : Céline, Victor, Hannah et Aymeric. Mais je pense bien évidemment aussi à Cindy, Robin et Jason, à qui je souhaite de vivre de belles aventures aux quatre coins du monde. Un grand Merci à Alexandra, notre Secrétaire scientifique, qui m’a vraiment bien aidée pendant ces trois années, et d’autant plus pendant ces dernières semaines. Merci à tous les autres membres du laboratoire du 5ème comme du 2ème. La liste serait bien trop longue pour tous vous citer mais vous faites aussi partie de cette aventure. Merci notamment à l’Administration, à Patricia, Barbara et Muriel. Un grand merci à toutes les personnes avec qui j’ai partagé de si bons moments en dehors du labo. Encore une fois, la liste serait trop longue pour tous vous citer ici. REMERCIEMENTS Leïla, un grand Merci pour beaucoup de choses. On aura vécu cette aventure en parallèle, à partager nos joies et nos stress, mais pas seulement, heureusement ! Pour les salades tomates/mozza, les pizzas, les chaï latte, pour tes nombreuses Leïlades et pour toutes nos aventures en dehors du labo, que ce soit à pied dans le Mercantour, ou au bout d’une corde sur une falaise. Nous y sommes arrivées ! Un Merci plus large à toutes les personnes du CSM qui m’auront témoigné leur soutien de quelques façons que ce soit aux moments où j’en ai eu besoin. Une petite pensée pour les trains de la région PACA, monégasques ou même Bourguignons qui m’auront menée, moi et mes compagnons de galère, tous les jours jusqu'au labo. Avec ses retards, ses suppressions et ses justifications douteuses... Je ne peux pas clôturer ces remerciements sans remercier mes ami(e)s Breton(ne)s et ma famille qui auront suivi de loin cette thèse. Merci à vous pour votre soutien, et les bouffées d’oxygène lors de mes retours, parfois trop courts. SOMMAIRE Sommaire Chapitre 1 ................................ LA BIOMINERALISATION CHEZ LES CORAUX 1 1. Généralités sur les biominéraux chez les Métazoaires ...................................................... 3 1.1. La biominéralisation dans l’échelle des temps .............................................. 3 1.2. Diversité, propriétés et fonction des biominéraux ......................................... 5 2. La biominéralisation chez les coraux ................................................................................... 8 2.1. Les coraux: des cnidaires qui (bio)minéralisent ............................................ 8 2.2. Histoire évolutive des coraux ......................................................................... 11 2.3. Processus de biominéralisation chez les coraux ............................................ 15 a) Physico-chimie de la biominéralisation b) Processus cellulaires et moléculaires de la biominéralisation 3. Problématique de l’étude de la biominéralisation .............................................................. 25 Chapitre 2 .................... LA BIOMINERALISATION CHEZ CORALLIUM RUBRUM 27 1. La biominéralisation chez les Octocoralliaires ................................................................... 29 1.1. Etat des connaissances sur la biominéralisation chez les Octocoralliaires .. 29 1.2. Diversité des structures minéralisées ............................................................ 31 2. Présentation du modèle d’étude ........................................................................................... 44 2.1. Le corail rouge : minéral, végétal ou animal ? ............................................. 44 2.2. Distribution, exploitation et protection .......................................................... 46 2.3. Classification ................................................................................................. 48 3. La biomineralisation chez Corallium rubrum...................................................................... 49 3.1. Anatomie de Corallium rubrum ..................................................................... 49 3.2. Les biominéraux chez Corallium rubrum ......................................................
Recommended publications
  • National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
    UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1.
    [Show full text]
  • Microbiomes of Gall-Inducing Copepod Crustaceans from the Corals Stylophora Pistillata (Scleractinia) and Gorgonia Ventalina
    www.nature.com/scientificreports OPEN Microbiomes of gall-inducing copepod crustaceans from the corals Stylophora pistillata Received: 26 February 2018 Accepted: 18 July 2018 (Scleractinia) and Gorgonia Published: xx xx xxxx ventalina (Alcyonacea) Pavel V. Shelyakin1,2, Sofya K. Garushyants1,3, Mikhail A. Nikitin4, Sofya V. Mudrova5, Michael Berumen 5, Arjen G. C. L. Speksnijder6, Bert W. Hoeksema6, Diego Fontaneto7, Mikhail S. Gelfand1,3,4,8 & Viatcheslav N. Ivanenko 6,9 Corals harbor complex and diverse microbial communities that strongly impact host ftness and resistance to diseases, but these microbes themselves can be infuenced by stresses, like those caused by the presence of macroscopic symbionts. In addition to directly infuencing the host, symbionts may transmit pathogenic microbial communities. We analyzed two coral gall-forming copepod systems by using 16S rRNA gene metagenomic sequencing: (1) the sea fan Gorgonia ventalina with copepods of the genus Sphaerippe from the Caribbean and (2) the scleractinian coral Stylophora pistillata with copepods of the genus Spaniomolgus from the Saudi Arabian part of the Red Sea. We show that bacterial communities in these two systems were substantially diferent with Actinobacteria, Alphaproteobacteria, and Betaproteobacteria more prevalent in samples from Gorgonia ventalina, and Gammaproteobacteria in Stylophora pistillata. In Stylophora pistillata, normal coral microbiomes were enriched with the common coral symbiont Endozoicomonas and some unclassifed bacteria, while copepod and gall-tissue microbiomes were highly enriched with the family ME2 (Oceanospirillales) or Rhodobacteraceae. In Gorgonia ventalina, no bacterial group had signifcantly diferent prevalence in the normal coral tissues, copepods, and injured tissues. The total microbiome composition of polyps injured by copepods was diferent.
    [Show full text]
  • Symbionts and Environmental Factors Related to Deep-Sea Coral Size and Health
    Symbionts and environmental factors related to deep-sea coral size and health Erin Malsbury, University of Georgia Mentor: Linda Kuhnz Summer 2018 Keywords: deep-sea coral, epibionts, symbionts, ecology, Sur Ridge, white polyps ABSTRACT We analyzed video footage from a remotely operated vehicle to estimate the size, environmental variation, and epibiont community of three types of deep-sea corals (class Anthozoa) at Sur Ridge off the coast of central California. For all three of the corals, Keratoisis, Isidella tentaculum, and Paragorgia arborea, species type was correlated with the number of epibionts on the coral. Paragorgia arborea had the highest average number of symbionts, followed by Keratoisis. Epibionts were identified to the lowest possible taxonomic level and categorized as predators or commensalists. Around twice as many Keratoisis were found with predators as Isidella tentaculum, while no predators were found on Paragorgia arborea. Corals were also measured from photos and divided into size classes for each type based on natural breaks. The northern sites of the mound supported larger Keratoisis and Isidella tentaculum than the southern portion, but there was no relationship between size and location for Paragorgia arborea. The northern sites of Sur Ridge were also the only place white polyps were found. These polyps were seen mostly on Keratoisis, but were occasionally found on the skeletons of Isidella tentaculum and even Lillipathes, an entirely separate subclass of corals from Keratoisis. Overall, although coral size appears to be impacted by 1 environmental variables and location for Keratoisis and Isidella tentaculum, the presence of symbionts did not appear to correlate with coral size for any of the coral types.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Volume 2. Animals
    AC20 Doc. 8.5 Annex (English only/Seulement en anglais/Únicamente en inglés) REVIEW OF SIGNIFICANT TRADE ANALYSIS OF TRADE TRENDS WITH NOTES ON THE CONSERVATION STATUS OF SELECTED SPECIES Volume 2. Animals Prepared for the CITES Animals Committee, CITES Secretariat by the United Nations Environment Programme World Conservation Monitoring Centre JANUARY 2004 AC20 Doc. 8.5 – p. 3 Prepared and produced by: UNEP World Conservation Monitoring Centre, Cambridge, UK UNEP WORLD CONSERVATION MONITORING CENTRE (UNEP-WCMC) www.unep-wcmc.org The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organisation. UNEP-WCMC aims to help decision-makers recognise the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre’s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action. UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on threats and impacts, and development of future scenarios for the living world. Prepared for: The CITES Secretariat, Geneva A contribution to UNEP - The United Nations Environment Programme Printed by: UNEP World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge CB3 0DL, UK © Copyright: UNEP World Conservation Monitoring Centre/CITES Secretariat The contents of this report do not necessarily reflect the views or policies of UNEP or contributory organisations.
    [Show full text]
  • The Earliest Diverging Extant Scleractinian Corals Recovered by Mitochondrial Genomes Isabela G
    www.nature.com/scientificreports OPEN The earliest diverging extant scleractinian corals recovered by mitochondrial genomes Isabela G. L. Seiblitz1,2*, Kátia C. C. Capel2, Jarosław Stolarski3, Zheng Bin Randolph Quek4, Danwei Huang4,5 & Marcelo V. Kitahara1,2 Evolutionary reconstructions of scleractinian corals have a discrepant proportion of zooxanthellate reef-building species in relation to their azooxanthellate deep-sea counterparts. In particular, the earliest diverging “Basal” lineage remains poorly studied compared to “Robust” and “Complex” corals. The lack of data from corals other than reef-building species impairs a broader understanding of scleractinian evolution. Here, based on complete mitogenomes, the early onset of azooxanthellate corals is explored focusing on one of the most morphologically distinct families, Micrabaciidae. Sequenced on both Illumina and Sanger platforms, mitogenomes of four micrabaciids range from 19,048 to 19,542 bp and have gene content and order similar to the majority of scleractinians. Phylogenies containing all mitochondrial genes confrm the monophyly of Micrabaciidae as a sister group to the rest of Scleractinia. This topology not only corroborates the hypothesis of a solitary and azooxanthellate ancestor for the order, but also agrees with the unique skeletal microstructure previously found in the family. Moreover, the early-diverging position of micrabaciids followed by gardineriids reinforces the previously observed macromorphological similarities between micrabaciids and Corallimorpharia as
    [Show full text]
  • CNIDARIA Corals, Medusae, Hydroids, Myxozoans
    FOUR Phylum CNIDARIA corals, medusae, hydroids, myxozoans STEPHEN D. CAIRNS, LISA-ANN GERSHWIN, FRED J. BROOK, PHILIP PUGH, ELLIOT W. Dawson, OscaR OcaÑA V., WILLEM VERvooRT, GARY WILLIAMS, JEANETTE E. Watson, DENNIS M. OPREsko, PETER SCHUCHERT, P. MICHAEL HINE, DENNIS P. GORDON, HAMISH J. CAMPBELL, ANTHONY J. WRIGHT, JUAN A. SÁNCHEZ, DAPHNE G. FAUTIN his ancient phylum of mostly marine organisms is best known for its contribution to geomorphological features, forming thousands of square Tkilometres of coral reefs in warm tropical waters. Their fossil remains contribute to some limestones. Cnidarians are also significant components of the plankton, where large medusae – popularly called jellyfish – and colonial forms like Portuguese man-of-war and stringy siphonophores prey on other organisms including small fish. Some of these species are justly feared by humans for their stings, which in some cases can be fatal. Certainly, most New Zealanders will have encountered cnidarians when rambling along beaches and fossicking in rock pools where sea anemones and diminutive bushy hydroids abound. In New Zealand’s fiords and in deeper water on seamounts, black corals and branching gorgonians can form veritable trees five metres high or more. In contrast, inland inhabitants of continental landmasses who have never, or rarely, seen an ocean or visited a seashore can hardly be impressed with the Cnidaria as a phylum – freshwater cnidarians are relatively few, restricted to tiny hydras, the branching hydroid Cordylophora, and rare medusae. Worldwide, there are about 10,000 described species, with perhaps half as many again undescribed. All cnidarians have nettle cells known as nematocysts (or cnidae – from the Greek, knide, a nettle), extraordinarily complex structures that are effectively invaginated coiled tubes within a cell.
    [Show full text]
  • Freiberg Online Geoscience FOG Is an Electronic Journal Registered Under ISSN 1434-7512
    FOG Freiberg Online Geoscience FOG is an electronic journal registered under ISSN 1434-7512 2021, VOL 58 Broder Merkel & Mandy Hoyer (Eds.) FOG special volume: Proceedings of the 6th European Conference on Scientific Diving 2021 178 pages, 25 contributions Preface We are happy to present the proceedings from the 6th European Conference on Scientific Diving (ECSD), which took place in April 2021 as virtual meeting. The first ECSD took place in Stuttgart, Germany, in 2015. The following conferences were hosted in Kristineberg, Sweden (2016), Funchal, Madeira/Portugal (2017), Orkney, Scotland/UK (2018), and Sopot, Poland (2019), respectively. The 6th ECSD was scheduled for April 2020 but has been postponed due to the Corona pandemic by one year. In total 80 people registered and about 60 participants were online on average during the two days of the meeting (April 21 and 22, 2021). 36 talks and 15 posters were presen-ted and discussed. Some authors and co-authors took advantage of the opportunity to hand in a total of 25 extended abstracts for the proceedings published in the open access journal FOG (Freiberg Online Geoscience). The contributions are categorized into: - Device development - Scientific case studies - Aspects of training scientists to work under water The order of the contributions within these three categories is more or less arbitrary. Please enjoy browsing through the proceedings and do not hesitate to follow up ideas and questions that have been raised and triggered during the meeting. Hopefully, we will meet again in person
    [Show full text]
  • Articles and Detrital Matter
    Biogeosciences, 7, 2851–2899, 2010 www.biogeosciences.net/7/2851/2010/ Biogeosciences doi:10.5194/bg-7-2851-2010 © Author(s) 2010. CC Attribution 3.0 License. Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem E. Ramirez-Llodra1, A. Brandt2, R. Danovaro3, B. De Mol4, E. Escobar5, C. R. German6, L. A. Levin7, P. Martinez Arbizu8, L. Menot9, P. Buhl-Mortensen10, B. E. Narayanaswamy11, C. R. Smith12, D. P. Tittensor13, P. A. Tyler14, A. Vanreusel15, and M. Vecchione16 1Institut de Ciencies` del Mar, CSIC. Passeig Mar´ıtim de la Barceloneta 37-49, 08003 Barcelona, Spain 2Biocentrum Grindel and Zoological Museum, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany 3Department of Marine Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy 4GRC Geociencies` Marines, Parc Cient´ıfic de Barcelona, Universitat de Barcelona, Adolf Florensa 8, 08028 Barcelona, Spain 5Universidad Nacional Autonoma´ de Mexico,´ Instituto de Ciencias del Mar y Limnolog´ıa, A.P. 70-305 Ciudad Universitaria, 04510 Mexico,` Mexico´ 6Woods Hole Oceanographic Institution, MS #24, Woods Hole, MA 02543, USA 7Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0218, USA 8Deutsches Zentrum fur¨ Marine Biodiversitatsforschung,¨ Sudstrand¨ 44, 26382 Wilhelmshaven, Germany 9Ifremer Brest, DEEP/LEP, BP 70, 29280 Plouzane, France 10Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway 11Scottish Association for Marine Science, Scottish Marine Institute, Oban,
    [Show full text]
  • Deep-Sea Coral Taxa in the U.S. Northeast Region: Depth and Geographical Distribution (V
    Deep-Sea Coral Taxa in the U.S. Northeast Region: Depth and Geographical Distribution (v. 2020) by David B. Packer1, Martha S. Nizinski2, Stephen D. Cairns3, 4 and Thomas F. Hourigan 1. NOAA Habitat Ecology Branch, Northeast Fisheries Science Center, Sandy Hook, NJ 2. NOAA National Systematics Laboratory Smithsonian Institution, Washington, DC 3. National Museum of Natural History, Smithsonian Institution, Washington, DC 4. NOAA Deep Sea Coral Research and Technology Program, Office of Habitat Conservation, Silver Spring, MD This annex to the U.S. Northeast chapter in “The State of Deep-Sea Coral and Sponge Ecosystems of the United States” provides a revised and updated list of deep-sea coral taxa in the Phylum Cnidaria, Class Anthozoa, known to occur in U.S. waters from Maine to Cape Hatteras (Figure 1). Deep-sea corals are defined as azooxanthellate, heterotrophic coral species occurring in waters 50 meters deep or more. Details are provided on the vertical and geographic extent of each species (Table 1). This list is adapted from Packer et al. (2017) with the addition of new species and range extensions into Northeast U.S. waters reported through 2020, along with a number of species previously not included. No new species have been described from this region since 2017. Taxonomic names are generally those currently accepted in the World Register of Marine Species (WoRMS), and are arranged by order, then alphabetically by family, genus, and species. Data sources (references) listed are those principally used to establish geographic and depth distributions. The total number of distinct deep-sea corals documented for the U.S.
    [Show full text]
  • 16, Marriott Long Wharf, Boston, Ma
    2016 MA, USA BOSTON, WHARF, MARRIOTT LONG -16, 11 SEPTEMBER 6th International Symposium on Deep-Sea Corals, Boston, MA, USA, 11-16 September 2016 Greetings to the Participants of the 6th International Symposium on Deep-Sea Corals We are very excited to welcome all of you to this year’s symposium in historic Boston, Massachusetts. While you are in Boston, we hope that you have a chance to take some time to see this wonderful city. There is a lot to offer right nearby, from the New England Aquarium right here on Long Wharf to Faneuil Hall, which is just across the street. A further exploration might take you to the restaurants and wonderful Italian culture of the North End, the gardens and swan boats of Boston Common, the restaurants of Beacon Hill, the shops of Newbury Street, the campus of Harvard University (across the river in Cambridge) and the eclectic square just beyond its walls, or the multitude of art and science museums that the city has to offer. We have a great program lined up for you. We will start off Sunday evening with a welcome celebration at the New England Aquarium. On Monday, the conference will commence with a survey of the multitude of deep-sea coral habitats around the world and cutting edge techniques for finding and studying them. We will conclude the first day with a look at how these diverse and fragile ecosystems are managed. On Monday evening, we will have the first poster session followed by the debut of the latest State“ of the Deep-Sea Coral and Sponge Ecosystems of the U.S.” report.
    [Show full text]
  • Deep-Sea Coral Taxa in the U.S. Southeast Region: Depth and Geographic Distribution (V
    Deep-Sea Coral Taxa in the U.S. Southeast Region: Depth and Geographic Distribution (v. 2020) by Thomas F. Hourigan1, Stephen D. Cairns2, John K. Reed3, and Steve W. Ross4 1. NOAA Deep Sea Coral Research and Technology Program, Office of Habitat Conservation, Silver Spring, MD 2. National Museum of Natural History, Smithsonian Institution, Washington, DC 3. Cooperative Institute of Ocean Exploration, Research, and Technology, Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL 4. Center for Marine Science, University of North Carolina, Wilmington This annex to the U.S. Southeast chapter in “The State of Deep-Sea Coral and Sponge Ecosystems in the United States” provides a list of deep-sea coral taxa in the Phylum Cnidaria, Classes Anthozoa and Hydrozoa, known to occur in U.S. waters from Cape Hatteras to the Florida Keys (Figure 1). Deep-sea corals are defined as azooxanthellate, heterotrophic coral species occurring in waters 50 meters deep or more. Details are provided on the vertical and geographic extent of each species (Table 1). This list is an update of the peer-reviewed 2017 list (Hourigan et al. 2017) and includes taxa recognized through 2019, including one newly described species. Taxonomic names are generally those currently accepted in the World Register of Marine Species (WoRMS), and are arranged by order, and alphabetically within order by family, genus, and species. Data sources (references) listed are those principally used to establish geographic and depth distribution. Figure 1. U.S. Southeast region delimiting the geographic boundaries considered in this work. The region extends from Cape Hatteras to the Florida Keys and includes the Jacksonville Lithoherms (JL), Blake Plateau (BP), Oculina Coral Mounds (OC), Miami Terrace (MT), Pourtalès Terrace (PT), Florida Straits (FS), and Agassiz/Tortugas Valleys (AT).
    [Show full text]