Carles Santacana, G., Muyo, G., Bustin, N., Wood, A., and Harvey, A

Total Page:16

File Type:pdf, Size:1020Kb

Carles Santacana, G., Muyo, G., Bustin, N., Wood, A., and Harvey, A nn Carles Santacana, G., Muyo, G., Bustin, N., Wood, A., and Harvey, A. R. (2015) Compact multi-aperture imaging with high-angular- resolution. Journal of the Optical Society of America A: Optics Image Science and Vision, 32(3). pp. 411-419. Copyright © 2015 Optical Society of America. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge Content must not be changed in any way or reproduced in any format or medium without the formal permission of the copyright holder(s) http://eprints.gla.ac.uk/101672/ Deposited on: 03 March 2015 Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk Compact multi-aperture imaging with high-angular-resolution Guillem Carles, 1 Gonzalo Muyo, 2 Nicholas Bustin, 3 Andrew Wood, 3 and Andrew R. Harvey1 ,* 1 School of Physics and Astronomy, University of Glasgow, United Kingdom 2 School of Engineering and Physical Sciences, Heriot-Watt University, United Kingdom 3 Qioptiq Ltd, St Asaph, United Kingdom *Corresponding author: [email protected] Received Month X, XXXX; revised Month X, XXXX; accepted Month X, XXXX; posted Month X, XXXX (Doc. ID XXXXX); published Month X, XXXX Previous reports have demonstrated that it is possible to emulate the imaging function of a single conventional lens with an NxN array of identical lenslets to provide an N-fold reduction in imaging-system track length. This approach limits the application to low-resolution imaging. We highlight how using an array of dissimilar lenslets, with an array width that can be much wider than the detector array, high-resolution super-resolved imaging is possible. We illustrate this approach with a ray-traced design and optimization of a long-wave infrared system employing a 3x3 array of free-form lenslets to provide a four-fold reduction in track length compared to a baseline system. Simulations of image recovery show that recovered image quality is comparable to that of the baseline system. © 2012 Optical Society of America OCIS codes: (100.3020) Image reconstruction-restoration; (100.6640) Superresolution; (110.1758) Computational imaging. http://dx.doi/org/10.1364/AO.99.099999 1. Introduction track-length. Focal-length reduction decreases the object-space angular sampling frequency of the detector array (that is, the The physical dimensions of conventional imaging systems are detector sampling frequency projected onto the scene), but since dominated by the interplay between fundamental parameters N×N images are recorded with, in general, dissimilar sampling such as field-of-view, angular resolution and detector size, and in phases, super-resolution techniques may be used to effectively particular by the focal length of the lens. Multi-aperture (MA) maintain the higher sampling frequency of the single-aperture imaging [1] involves the replacement of the function of a single imaging system [7]. This is true only if (1) sampling is non- conventional lens by an array of lenses of shorter focal length to redundant between image channels and (2) if the reduced record an array of images onto a single detector array that are diffraction-limited angular resolution of the smaller image combined using super-resolution algorithms to yield a single channels is not too low. On the first issue; MA imaging relies on high-resolution image. When the angular resolution is limited by aliasing to encode angular-frequency information lying above the the size of the detector pixels, this can enable a significant Nyquist frequency within the baseband of recorded images, and reduction in imaging-system track length without sacrificing on non-redundancy between images to enable super-resolution to angular resolution. The use of a single detector array with an recover the angular-frequency components between the Nyquist array of nominally identical lenses, as previously reported [2-6], frequency and the optical cut-off from baseband images. The limits the maximum aperture of the lens array to the width of sampling phase and redundancy varies with range and at certain the detector array and hence the benefit for MA imaging has ranges there could, for a perfectly manufactured system, be previously been restricted to low-angular-resolution systems. We significant redundancy between channels and super-resolution describe how the use of arrays of dissimilar lenses, some would be ineffective. In practice however, typical manufacturing operating off-axis, but with an overall width wider than the tolerances tend to randomize sampling phase, maintaining the detector array, enables the length-reduction benefit of MA effectiveness of super-resolution with range [8]. On the second imaging to be attained for high-resolution imaging. We issue; the N-fold reduction in width of a lens aperture also demonstrate the concept with an example design and simulation reduces the diffraction-limited angular resolution by a factor N of imaging performance in the long-wavelength infrared (LWIR) and thus MA imaging can maintain the angular resolution of a band in which the length of the lens is reduced by a factor of four single-aperture imaging system only for small N. MA imaging whilst maintaining imaging performance. have previously been used to improve compactness, but its In general, substitution of a single full-aperture lens by a MA application has been restricted to low-angular resolution imaging system consisting of N×N smaller-aperture imaging channels [2-6]. This restriction is associated with the use of arrays of allows an N-fold reduction in focal length and hence in the lens identical lenslets, whereas we describe here how use of arrays of which enables high-resolution MA imaging for common practical systems for the first time. This requires that the outer lenses of the lens array operate off-axis and generally introduces dissimilar distortions between channels that provide, in principle, the benefit of breaking the redundancy to provide consistent super-resolution performance [8]. The arrangement of this article is as follows: section 2 offers a physical insight into the fundamental design trade-offs; section 3 presents an example optimized and ray-traced design for a LWIR imaging system employing a 3x3 array of lenses with an aperture 4.5 times wider than the detector, and shows simulated imaging performance compared with a conventional baseline system; we conclude in section 4. 2. Multi-aperture design The salient aim in the design of a MA imaging system is reduction of physical length while maintaining imaging performance. We consider here the replacement of a single lens of focal length f and diameter D by an N×N array of lenslets of focal length f/N and diameter D/N. We will consider first the configuration reported in [1] and termed Thin Observation Module by Bound Optics (TOMBO) where the lens-array width D is limited to be equal to the detector width. This restriction limits application of this concept to low-angular-resolution imaging. We will then consider how the use of a larger aperture DD' = α allows higher angular resolutions to be achieved. Traditional TOMBO-like designs thus correspond to MA systems with N ≥ 2 and α ≤ 1 . The focal length of each subsystem is reduced by a factor N for a MA system and the aim is hence to maximally increase N Fig. 1. Variation of normalized system cutoff frequency sys with ν c without degrading angular resolution. The width of the point- N for representative MA systems, for (a) f=33mm with α=1 and (b) spread function (PSF) at the detector is the same regardless of N f=100mm with α=1 (grey line) and α=4.5 (black line). The because focal ratio is preserved, but since the magnification is drawings depict the gain in compactness. Pixel pitch is p=25µm increased by a factor N, the angular-resolution limit due to and λ=10µm. diffraction is reduced by N. We describe resolution in angular larger, but necessarily dissimilar lenslets, offers the potential of frequencies to allow comparison for different N. We thus now reduced track-length for high-angular-resolution imaging. A quid consider how the angular resolution varies in terms of the system pro quo for this advantage is the increased complexity of image angular cutoff frequency of the imaging system. For the baseline recovery associated with spatial variations in imaging N=1 imager, the angular optical-cutoff frequency is ναλo = D / , characteristics. where λ is the wavelength, but for detector-limited imaging, the Use of MA architectures is also found in the so-called system cutoff frequency is the Nyquist angular frequency, compound-eye cameras, for example using prisms or dissimilar ν Ny = fp/2 , where p is pixel pitch. For a MA system, the lenslets to steer light beams to extend the field-of-view by Nyquist angular frequency of each channel is reduced to stitching the acquired subimages [9-12]. These approaches ch / N but the effective Nyquist frequency of the super- include use of dissimilar lenses to increase non-redundancy [6] or ννNy= Ny lenslet arrays exceeding detector width [11, 12]; however, none of resolved image is identical to that of the baseline imager, these demonstrate reduced track length for arbitrarily high provided the sampling is non redundant. Throughout this paper angular resolution. MA imaging is also a feature of light-field we refer to νNy as the Nyquist angular frequency of the baseline imaging, such as is found in plenoptic cameras [13, 14] where a imaging system. The optical cutoff frequency for each lenslet is lenslet array is placed close to the image plane. By reimaging the ch sys ναλo = DN/( ) and the system cutoff frequency, ν c , is differing parts of the pupil, these techniques have similarities ch therefore the lesser of νNy and ν ; that is, with MA imaging, including the ability to digitally simulate o reduced depth of field, but improved compactness has not been ⎧ααDDp2 reported.
Recommended publications
  • Journal of Interdisciplinary Science Topics Determining Distance Or
    Journal of Interdisciplinary Science Topics Determining Distance or Object Size from a Photograph Chuqiao Huang The Centre for Interdisciplinary Science, University of Leicester 19/02/2014 Abstract The purpose of this paper is to create an equation relating the distance and width of an object in a photograph to a constant when the conditions under which the photograph was taken are known. These conditions are the sensor size of the camera and the resolution and focal length of the picture. The paper will highlight when such an equation would be an accurate prediction of reality, and will conclude with an example calculation. Introduction may be expressed as a tan (opposite/adjacent) In addition to displaying visual information relationship: such as colour, texture, and shape, a photograph (1.0) may provide size and distance information on (1.1) subjects. The purpose of this paper is to develop such an equation from basic trigonometric principles when given certain parameters about the photo. Picture Angular Resolution With the image dimensions, we can make an Picture Field of View equation for one-dimensional angular resolution. First, we will determine an equation for the Since l2 describes sensor width and not height, we horizontal field of view of a photograph when given will calculate horizontal instead of vertical angular the focal length and width of the sensor. resolution: Consider the top down view of the camera (2.0) system below (figure 1), consisting of an object (left), lens (centre), and sensor (right). Let d be the (2.1) 1 distance of object to the lens, d2 be the focal length, Here, αhPixel is the average horizontal field of l1 be the width of the object, l2 be the width of the view for a single pixel, and nhPixel is the number of sensor, and α be the horizontal field of view of the pixels that make up a row of the picture.
    [Show full text]
  • Sub-Airy Disk Angular Resolution with High Dynamic Range in the Near-Infrared A
    EPJ Web of Conferences 16, 03002 (2011) DOI: 10.1051/epjconf/20111603002 C Owned by the authors, published by EDP Sciences, 2011 Sub-Airy disk angular resolution with high dynamic range in the near-infrared A. Richichi European Southern Observatory,Karl-Schwarzschildstr. 2, 85748 Garching, Germany Abstract. Lunar occultations (LO) are a simple and effective high angular resolution method, with minimum requirements in instrumentation and telescope time. They rely on the analysis of the diffraction fringes created by the lunar limb. The diffraction phenomen occurs in space, and as a result LO are highly insensitive to most of the degrading effects that limit the performance of traditional single telescope and long-baseline interferometric techniques used for direct detection of faint, close companions to bright stars. We present very recent results obtained with the technique of lunar occultations in the near-IR, showing the detection of companions with very high dynamic range as close as few milliarcseconds to the primary star. We discuss the potential improvements that could be made, to increase further the current performance. Of course, LO are fixed-time events applicable only to sources which happen to lie on the Moon’s apparent orbit. However, with the continuously increasing numbers of potential exoplanets and brown dwarfs beign discovered, the frequency of such events is not negligible. I will list some of the most favorable potential LO in the near future, to be observed from major observatories. 1. THE METHOD The geometry of a lunar occultation (LO) event is sketched in Figure 1. The lunar limb acts as a straight diffracting edge, moving across the source with an angular speed that is the product of the lunar motion vector VM and the cosine of the contact angle CA.
    [Show full text]
  • The Most Important Equation in Astronomy! 50
    The Most Important Equation in Astronomy! 50 There are many equations that astronomers use L to describe the physical world, but none is more R 1.22 important and fundamental to the research that we = conduct than the one to the left! You cannot design a D telescope, or a satellite sensor, without paying attention to the relationship that it describes. In optics, the best focused spot of light that a perfect lens with a circular aperture can make, limited by the diffraction of light. The diffraction pattern has a bright region in the center called the Airy Disk. The diameter of the Airy Disk is related to the wavelength of the illuminating light, L, and the size of the circular aperture (mirror, lens), given by D. When L and D are expressed in the same units (e.g. centimeters, meters), R will be in units of angular measure called radians ( 1 radian = 57.3 degrees). You cannot see details with your eye, with a camera, or with a telescope, that are smaller than the Airy Disk size for your particular optical system. The formula also says that larger telescopes (making D bigger) allow you to see much finer details. For example, compare the top image of the Apollo-15 landing area taken by the Japanese Kaguya Satellite (10 meters/pixel at 100 km orbit elevation: aperture = about 15cm ) with the lower image taken by the LRO satellite (0.5 meters/pixel at a 50km orbit elevation: aperture = ). The Apollo-15 Lunar Module (LM) can be seen by its 'horizontal shadow' near the center of the image.
    [Show full text]
  • Understanding Resolution Diffraction and the Airy Disk, Dawes Limit & Rayleigh Criterion by Ed Zarenski [email protected]
    Understanding Resolution Diffraction and The Airy Disk, Dawes Limit & Rayleigh Criterion by Ed Zarenski [email protected] These explanations of terms are based on my understanding and application of published data and measurement criteria with specific notation from the credited sources. Noted paragraphs are not necessarily quoted but may be summarized directly from the source stated. All information if not noted from a specific source is mine. I have attempted to be as clear and accurate as possible in my presentation of all the data and applications put forth here. Although this article utilizes much information from the sources noted, it represents my opinion and my understanding of optical theory. Any errors are mine. Comments and discussion are welcome. Clear Skies, and if not, Cloudy Nights. EdZ November 2003, Introduction: Diffraction and Resolution Common Diffraction Limit Criteria The Airy Disk Understanding Rayleigh and Dawes Limits Seeing a Black Space Between Components Affects of Magnitude and Color Affects of Central Obstruction Affect of Exit Pupil on Resolution Resolving Power Resolving Power in Extended Objects Extended Object Resolution Criteria Diffraction Fringes Interfere with Resolution Magnification is Necessary to See Acuity Determines Magnification Summary / Conclusions Credits 1 Introduction: Diffraction and Resolution All lenses or mirrors cause diffraction of light. Assuming a circular aperture, the image of a point source formed by the lens shows a small disk of light surrounded by a number of alternating dark and bright rings. This is known as the diffraction pattern or the Airy pattern. At the center of this pattern is the Airy disk. As the diameter of the aperture increases, the size of the Airy disk decreases.
    [Show full text]
  • Computation and Validation of Two-Dimensional PSF Simulation
    Computation and validation of two-dimensional PSF simulation based on physical optics K. Tayabaly1,2, D. Spiga1, G. Sironi1, R.Canestrari1, M.Lavagna2, G. Pareschi1 1 INAF/Brera Astronomical Observatory, Via Bianchi 46, 23807 Merate, Italy 2 Politecnico di Milano, Via La Masa 1, 20156 Milano, Italy ABSTRACT The Point Spread Function (PSF) is a key figure of merit for specifying the angular resolution of optical systems and, as the demand for higher and higher angular resolution increases, the problem of surface finishing must be taken seriously even in optical telescopes. From the optical design of the instrument, reliable ray-tracing routines allow computing and display of the PSF based on geometrical optics. However, such an approach does not directly account for the scattering caused by surface microroughness, which is interferential in nature. Although the scattering effect can be separately modeled, its inclusion in the ray-tracing routine requires assumptions that are difficult to verify. In that context, a purely physical optics approach is more appropriate as it remains valid regardless of the shape and size of the defects appearing on the optical surface. Such a computation, when performed in two-dimensional consideration, is memory and time consuming because it requires one to process a surface map with a few micron resolution, and the situation becomes even more complicated in case of optical systems characterized by more than one reflection. Fortunately, the computation is significantly simplified in far-field configuration, since the computation involves only a sequence of Fourier Transforms. In this paper, we provide validation of the PSF simulation with Physical Optics approach through comparison with real PSF measurement data in the case of ASTRI-SST M1 hexagonal segments.
    [Show full text]
  • Modern Astronomical Optics 1
    Modern Astronomical Optics 1. Fundamental of Astronomical Imaging Systems OUTLINE: A few key fundamental concepts used in this course: Light detection: Photon noise Diffraction: Diffraction by an aperture, diffraction limit Spatial sampling Earth's atmosphere: every ground-based telescope's first optical element Effects for imaging (transmission, emission, distortion and scattering) and quick overview of impact on optical design of telescopes and instruments Geometrical optics: Pupil and focal plane, Lagrange invariant Astronomical measurements & important characteristics of astronomical imaging systems: Collecting area and throughput (sensitivity) flux units in astronomy Angular resolution Field of View (FOV) Time domain astronomy Spectral resolution Polarimetric measurement Astrometry Light detection: Photon noise Poisson noise Photon detection of a source of constant flux F. Mean # of photon in a unit dt = F dt. Probability to detect a photon in a unit of time is independent of when last photon was detected→ photon arrival times follows Poisson distribution Probability of detecting n photon given expected number of detection x (= F dt): f(n,x) = xne-x/(n!) x = mean value of f = variance of f Signal to noise ration (SNR) and measurement uncertainties SNR is a measure of how good a detection is, and can be converted into probability of detection, degree of confidence Signal = # of photon detected Noise (std deviation) = Poisson noise + additional instrumental noises (+ noise(s) due to unknown nature of object observed) Simplest case (often
    [Show full text]
  • Beat the Rayleigh Limit: OAM Based Super-Resolution Diffraction Tomography
    Beat the Rayleigh limit: OAM based super-resolution diffraction tomography Lianlin Li1 and Fang Li2 1Center of Advanced Electromagnetic Imaging, Department of Electronics, Peking University, Beijing 100871, China 2 Institute of Electronics, CAS, Beijing 100190, China This letter is the first to report that a super-resolution imaging beyond the Rayleigh limit can be achieved by using classical diffraction tomography (DT) extended with orbital angular momentum (OAM), termed as OAM based diffraction tomography (OAM-DT). It is well accepted that the orbital angular momentum (OAM) provides additional electromagnetic degrees of freedom. This concept has been widely applied in science and technology. In this letter we revisit the DT problem extended with OAM, demonstrate theoretically and numerically that there is no physical limits on imaging resolution in principle by the OAM-DT. This super-resolution OAM-DT imaging paradigm, has no requirement for evanescent fields, subtle focusing lens, complicated post- processing, etc., thus provides a new approach to realize the wavefield imaging of universal objects with sub-wavelength resolution. In 1879 Lord Rayleigh formulated a criterion that a conventional imaging system cannot achieve a resolution beyond that of the diffraction limit, i.e., the Rayleigh limit. Such a “physical barrier” characters the minimum separation of two adjacent objects that an imaging system can resolve. In the past decade numerous efforts have been made to achieve imaging resolution beyond that of Rayleigh limit. Among various proposals dedicated to surpass this “barrier”, a representative example is the well-known technique of near-field imaging, an essential sub-wavelength imaging technology. Near-field imaging relies on the fact that the evanescent component carries fine details of the electromagnetic field distribution at the immediate vicinity of probed objects [1].
    [Show full text]
  • Measuring Angles and Angular Resolution
    Angles Angle θ is the ratio of two lengths: R: physical distance between observer and objects [km] Measuring Angles S: physical distance along the arc between 2 objects Lengths are measured in same “units” (e.g., kilometers) and Angular θ is “dimensionless” (no units), and measured in “radians” or “degrees” Resolution R S θ R Trigonometry “Angular Size” and “Resolution” 22 Astronomers usually measure sizes in terms R +Y of angles instead of lengths R because the distances are seldom well known S Y θ θ S R R S = physical length of the arc, measured in m Y = physical length of the vertical side [m] Trigonometric Definitions Angles: units of measure R22+Y 2π (≈ 6.28) radians in a circle R 1 radian = 360˚ ÷ 2π≈57 ˚ S Y ⇒≈206,265 seconds of arc per radian θ Angular degree (˚) is too large to be a useful R S angular measure of astronomical objects θ ≡ R 1º = 60 arc minutes opposite side Y 1 arc minute = 60 arc seconds [arcsec] tan[]θ ≡= adjacent side R 1º = 3600 arcsec -1 -6 opposite sideY 1 1 arcsec ≈ (206,265) ≈ 5 × 10 radians = 5 µradians sin[]θ ≡== hypotenuse RY22+ R 2 1+ Y 2 1 Number of Degrees per Radian Trigonometry in Astronomy Y 2π radians per circle θ S R 360° Usually R >> S (particularly in astronomy), so Y ≈ S 1 radian = ≈ 57.296° 2π SY Y 1 θ ≡≈≈ ≈ ≈ 57° 17'45" RR RY22+ R 2 1+ Y 2 θ ≈≈tan[θθ] sin[ ] Relationship of Trigonometric sin[θ ] ≈ tan[θ ] ≈ θ for θ ≈ 0 Functions for Small Angles 1 sin(πx) Check it! tan(πx) 0.5 18˚ = 18˚ × (2π radians per circle) ÷ (360˚ per πx circle) = 0.1π radians ≈ 0.314 radians 0 Calculated Results
    [Show full text]
  • Fundamentals of Astronomical Optical Interferometry
    Fundamentals of astronomical optical Interferometry OUTLINE: Why interferometry ? Angular resolution Connecting object brightness to observables -- Van Cittert-Zernike theorem Scientific motivations: – stellar interferometry: measuring stellar diameters – Exoplanets in near-IR and thermal IR Interferometric measurement – 2-telescope interferometer Interferometry and angular resolution Difraction limit of a telescope : λ/D (D: telescope diameter) Difraction limit of an interferometer: λ/B (B: baseline) Baseline B can be much larger than telescope diameter D: largest telescopes : D ~ 10m largest baselines (optical/near-IR interferometers): B ~ 100m - 500m Telescope vs. interferometer diffraction limit For circular aperture without obstruction : Airy pattern First dark ring is at ~1.22 λ/D Full width at half maximum ~ 1 λ/D The “Diffraction limit” term = 1 λ/D D=10m, λ=2 µm → λ/D = 0.040 arcsec This is the size of largest star With interferometer, D~400m → λ/B = 0.001 arcsec = 1 mas This is diameter of Sun at 10pc Many stars larger than 1mas History of Astronomical Interferometry • 1868 Fizeau first suggested stellar diameters could be measured interferometrically. • Michelson independently develops stellar interferometry. He uses it to measure the satellites of Jupiter (1891) and Betelgeuse (1921). • Further development not significant until the 1970s. Separated interferometers were developed as well as common-mount systems. • Currently there are approximately 7 small- aperture optical interferometers, and three large aperture interferometers (Keck, VLTI and LBT) 4 Interferometry Measurements wavefront Interferometers can be thought of in terms of the Young’s two slit setup. Light impinging on two apertures and subsequently imaged form an Airy disk of angular D width λ /D modulated by interference fringes of angular B frequency λ/B.
    [Show full text]
  • Overcoming the Diffraction-Limited Spatio-Angular Resolution Tradeoff
    Variable Aperture Light Field Photography: Overcoming the Diffraction-limited Spatio-angular Resolution Tradeoff Julie Chang1 Isaac Kauvar1 Xuemei Hu1,2 Gordon Wetzstein1 1Stanford University 2 Tsinghua University Abstract Small-f-number Large-f-number Light fields have many applications in machine vision, consumer photography, robotics, and microscopy. How- ever, the prevalent resolution limits of existing light field imaging systems hinder widespread adoption. In this pa- per, we analyze fundamental resolution limits of light field cameras in the diffraction limit. We propose a sequen- Depth-of-Field 10 tial, coded-aperture-style acquisition scheme that optimizes f/2 f/5.6 the resolution of a light field reconstructed from multiple f/22 photographs captured from different perspectives and f- 5 Blur-size-[mm] number settings. We also show that the proposed acquisi- 0 100 200 300 400 tion scheme facilitates high dynamic range light field imag- Distance-from-Camera-Lens-[mm] ing and demonstrate a proof-of-concept prototype system. Figure 1. Photographs captured with different f-number settings With this work, we hope to advance our understanding of exhibit different depths of field and also diffraction-limited resolu- the resolution limits of light field photography and develop tion for in-focus objects (top row). This effect is most pronounced practical computational imaging systems to overcome them. for macro photography, such as illustrated for a 50 mm lens fo- cused at 200 mm (bottom plot). Using multiple photographs cap- tured from different perspectives and with different f-number set- tings, the proposed method seeks to recover a light field with the 1.
    [Show full text]
  • Day Laboratory Exercise #3: Optics and Telescopes Page 1
    AS102 - Day Laboratory Exercise #3: Optics and Telescopes Page 1 DAY LABORATORY EXERCISE #3: OPTICS AND TELESCOPES Goals: To explore the functions of simple lenses To construct and use a refracting telescope To understand the concepts of focal length, focal ratio, and magnification. To study aberrations in simple telescope systems. To explore the concept of angular resolution. Equipment: Lens kits, optical benches, light sources, rulers, calculators Methods: Measure lens focal lengths by forming images of distant objects Focus refracting telescope on distant object - measure lens separations Compare optical aberrations of refracting and reflecting telescopes Explore optical systems using a multiple lens optics kit and light source Measure angular resolution of the eye using distant eye chart Introduction - Telescopes are the primary instruments for the acquisition of data by astronomers. This exercise investigates the basic principles of geometric optics as applied to telescopes. You will primarily use refracting telescopes for the examples, but what you learn can be applied to any telescope (i.e., reflecting or radio). Lenses and Mirrors - A positive lens has at least one convex surface and is capable of focusing light from a distant object into a real image, that is, an image which can be seen projected onto a screen (see Figure 1). However, the same lens, when placed close to an object, produces a magnified virtual image which can be seen through the lens with the eye, but cannot be projected onto a screen (see Figure 2). A negative lens has at least one concave surface and always produces a virtual image. All of the lenses in this exercise have convex surfaces (the glass surface bulges outward from the lens center).
    [Show full text]
  • Title: the Future of Photography Is Computational Photography
    Title: The Future of Photography is Computational Photography Subtitle: 100 years after invention, Integral Photography becomes feasible Adobe customers are creative and demanding. They expect to use our Adobe Photoshop software to create the “impossible photograph.” They want what they imagined, not the image that the camera captured. To help them close the gap between the image and their imaginations, we are constantly researching and designing new approaches. The computational power available to Adobe Photoshop has grown exponentially, thanks to Moore’s Law. We at Adobe find that we now have algorithms for image manipulation and enhancement that cannot be applied commercially without advances in the camera as well. This fact has led us to innovate not only in software, but also in hardware, and we’ve begun prototyping the kind of computational cameras and lenses we would like to see produced in order to enable these new algorithms. The integral (or plenoptic) camera is a promising advancement in this work. In this article, we will outline our motivations and inspirations for this research. We will show how our work builds on that of other scientists, especially Gabriel Lippmann, winner of the Nobel Prize for color photography. We will discuss his idea of the “integral photograph” (Lippmann 1908) and how current research manifests this idea. We also will describe the applications of this novel approach, and demonstrate some of the results of our research on the merging of photography and computation. Perhaps we may even inspire you to contribute in some way to the future of photography, which we believe is computational photography.
    [Show full text]