Overview of Biomaterials and Their Use in Medical Devices

Total Page:16

File Type:pdf, Size:1020Kb

Overview of Biomaterials and Their Use in Medical Devices © 2003 ASM International. All Rights Reserved. www.asminternational.org Handbook of Materials for Medical Devices (#06974G) CHAPTER 1 Overview of Biomaterials and Their Use in Medical Devices A BIOMATERIAL, as defined in this hand- shapes, have relatively low cost, and be readily book, is any synthetic material that is used to available. replace or restore function to a body tissue and Figure 1 lists the various material require- is continuously or intermittently in contact with ments that must be met for successful total joint body fluids (Ref 1). This definition is somewhat replacement. The ideal material or material restrictive, because it excludes materials used combination should exhibit the following prop- for devices such as surgical or dental instru- erties: ments. Although these instruments are exposed A biocompatible chemical composition to to body fluids, they do not replace or augment • avoid adverse tissue reactions the function of human tissue. It should be noted, Excellent resistance to degradation (e.g., cor- however, that materials for surgical instru- • rosion resistance for metals or resistance to ments, particularly stainless steels, are reviewed biological degradation in polymers) briefly in Chapter 3, “Metallic Materials,” in Acceptable strength to sustain cyclic loading this handbook. Similarly, stainless steels and • endured by the joint shape memory alloys used for dental/endodon- A low modulus to minimize bone resorption tic instruments are discussed in Chapter 10, • High wear resistance to minimize wear- “Biomaterials for Dental Applications.” • debris generation Also excluded from the aforementioned defi- nition are materials that are used for external prostheses, such as artificial limbs or devices Uses for Biomaterials (Ref 3) such as hearing aids. These materials are not exposed to body fluids. One of the primary reasons that biomaterials Exposure to body fluids usually implies that are used is to physically replace hard or soft tis- the biomaterial is placed within the interior of sues that have become damaged or destroyed the body, and this places several strict restric- through some pathological process (Ref 3). tions on materials that can be used as a bioma- Although the tissues and structures of the body terial (Ref 1). First and foremost, a biomaterial perform for an extended period of time in most must be biocompatible—it should not elicit an people, they do suffer from a variety of destruc- adverse response from the body, and vice versa. tive processes, including fracture, infection, and Additionally, it should be nontoxic and noncar- cancer that cause pain, disfigurement, or loss of cinogenic. These requirements eliminate many function. Under these circumstances, it may be engineering materials that are available. Next, possible to remove the diseased tissue and the biomaterial should possess adequate physi- replace it with some suitable synthetic material. cal and mechanical properties to serve as aug- Orthopedics. One of the most prominent mentation or replacement of body tissues. For application areas for biomaterials is for orthope- practical use, a biomaterial should be amenable dic implant devices. Both osteoarthritis and to being formed or machined into different rheumatoid arthritis affect the structure of freely © 2003 ASM International. All Rights Reserved. www.asminternational.org Handbook of Materials for Medical Devices (#06974G) 2 / Handbook of Materials for Medical Devices movable (synovial) joints, such as the hip, knee, with artificial arteries. As shown in Table 1, shoulder, ankle, and elbow (Fig. 2). The pain in polymers are the material of choice for vascular such joints, particularly weight-bearing joints prostheses (see Chapter 7, “Polymeric Materi- such as the hip and knee, can be considerable, als,” in this handbook for further details). and the effects on ambulatory function quite Ophthalmics. The tissues of the eye can devastating. It has been possible to replace these suffer from several diseases, leading to reduced joints with prostheses since the advent of anes- vision and eventually, blindness. Cataracts, for thesia, antisepsis, and antibiotics, and the relief example, cause cloudiness of the lens. This may of pain and restoration of mobility is well be replaced with a synthetic (polymer) intraoc- known to hundreds of thousands of patients. ular lens (Table 1). Materials for contact lenses, The use of biomaterials for orthopedic because they are in intimate contact with the tis- implant devices is one of the major focal points sues of the eye, are also considered biomateri- of this handbook. In fact, Chapters 2 through 7 als. As with intraocular lenses, they too are used and Chapter 9 (refer to Table of Contents) all to preserve and restore vision (see Chapter 7, deal with the materials and performance associ- “Polymeric Materials,” in this handbook for ated with orthopedic implants. As shown in details). Table 1, a variety of metals, polymers, and Dental Applications. Within the mouth, ceramics are used for such applications. both the tooth and supporting gum tissues can Cardiovascular Applications. In the car- be readily destroyed by bacterially controlled diovascular, or circulatory, system (the heart diseases. Dental caries (cavities), the demineral- and blood vessels involved in circulating blood ization and dissolution of teeth associated with throughout the body), problems can arise with the metabolic activity in plaque (a film of mucus heart valves and arteries, both of which can be that traps bacteria on the surface of the teeth), successfully treated with implants. The heart can cause extensive tooth loss. Teeth in their valves suffer from structural changes that pre- entirety and segments of teeth both can be vent the valve from either fully opening or fully replaced or restored by a variety of materials closing, and the diseased valve can be replaced (Table 1). A thorough review of these materials with a variety of substitutes. As with orthopedic can be found in Chapter 10, “Biomaterials for implants, ceramics (carbons, as described in Dental Applications,” in this handbook. Chapter 6, “Ceramic Materials,” in this hand- Wound Healing. One of the oldest uses of book), metals, and polymers are used as materi- implantable biomaterials can be traced back to als of construction (Table 1). the introduction of sutures for wound closure. Arteries, particularly the coronary arteries The ancient Egyptians used linen as a suture as and the vessels of the lower limbs, become far back as 2000 b.c. Synthetic suture materials blocked by fatty deposits (atherosclerosis), and include both polymers (the most widely syn- it is possible in some cases to replace segments thetic suture material) and some metals (e.g., a. b. c. Fig. 1 Implant material requirements in orthopedic applications. Source: Ref 2 © 2003 ASM International. All Rights Reserved. www.asminternational.org Handbook of Materials for Medical Devices (#06974G) Chapter 1: Overview of Biomaterials and Their Use in Medical Devices / 3 stainless steels and tantalum). Chapter 7, “Poly- Another important wound-healing category meric Materials,” in this handbook discusses the is that of fracture fixation devices. These inc- characteristics and properties of synthetic suture lude bone plates, screws, nails, rods, wires, and materials. other devices used for fracture treatment. Although some nonmetallic materials (e.g., car- bon-carbon composite bone plates) have been investigated, almost all fracture fixation devices used for orthopedic applications are made from Table 1 Examples of medical and dental metals, most notably stainless steels (see Chap- materials and their applications ter 3, “Metallic Materials,” in this handbook for Material Principal applications details). Drug-Delivery Systems. One of the fastest Metals and alloys growing areas for implant applications is for 316L stainless steel Fracture fixation, stents, surgical devices for controlled and targeted delivery of instruments CP-Ti, Ti-Al-V, Ti-Al-Nb, Ti- Bone and joint replacement, drugs. Many attempts have been made to incor- 13Nb-13Zr, Ti-Mo-Zr-Fe fracture fixation, dental porate drug reservoirs into implantable devices implants, pacemaker for a sustained and preferably controlled re- encapsulation Co-Cr-Mo, Cr-Ni-Cr-Mo Bone and joint replacement, lease. Some of these technologies use new poly- dental implants, dental meric materials as vehicles for drug delivery. restorations, heart valves Chapters 7, “Polymeric Materials,” and 9, Ni-Ti Bone plates, stents, orthodontic wires “Coatings,” in this handbook describe these Gold alloys Dental restorations materials. Silver products Antibacterial agents Platinum and Pt-Ir Electrodes Hg-Ag-Sn amalgam Dental restorations Types of Biomaterials (Ref 1) Ceramics and glasses Alumina Joint replacement, dental Most synthetic biomaterials used for implants implants Zirconia Joint replacement are common materials familiar to the average Calcium phosphates Bone repair and augmentation, materials engineer or scientist (Table 1). In gen- surface coatings on metals eral, these materials can be divided into the fol- Bioactive glasses Bone replacement Porcelain Dental restorations lowing categories: metals, polymers, ceramics, Carbons Heart valves, percutaneous and composites. devices, dental implants Polymers Polyethylene Joint replacement Polypropylene Sutures PET Sutures, vascular prosthesis Polyamides Sutures PTFE Soft-tissue augmentation, vascular prostheses Polyesters Vascular prostheses, drug- delivery systems Polyurethanes
Recommended publications
  • Presence of ROS in Inflammatory Environment of Peri-Implantitis Tissue
    Journal of Clinical Medicine Article Presence of ROS in Inflammatory Environment of Peri-Implantitis Tissue: In Vitro and In Vivo Human Evidence 1, 2, 2, 3 4 Eitan Mijiritsky y, Letizia Ferroni y, Chiara Gardin y, Oren Peleg , Alper Gultekin , Alper Saglanmak 4, Lucia Gemma Delogu 5, Dinko Mitrecic 6, Adriano Piattelli 7, 8, 2,9, , Marco Tatullo z and Barbara Zavan * z 1 Head and Neck Maxillofacial Surgery, Department of Otoryngology, Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Weizmann street 6, 6423906 Tel-Aviv, Israel; [email protected] 2 Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; [email protected] (L.F.); [email protected] (C.G.) 3 Department of Otolaryngology Head and Neck Surgery and Maxillofacial Surgery, Tel-Aviv Sourasky Medical Center, Sackler School of Medicine, Tel Aviv University, 701990 Tel-Aviv, Israel; [email protected] 4 Istanbul University, Faculty of Dentistry, Department of Oral Implantology, 34093 Istanbul, Turkey; [email protected] (A.G.); [email protected] (A.S.) 5 University of Padova, DpT Biomedical Sciences, 35133 Padova, Italy; [email protected] 6 School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Šalata 12, 10 000 Zagreb, Croatia; [email protected] 7 Department of Medical, Oral, and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy; [email protected] 8 Marrelli Health-Tecnologica Research Institute, Biomedical Section, Street E. Fermi, 88900 Crotone, Italy; [email protected] 9 Department of Medical Sciences, University of Ferrara, via Fossato di Mortara 70, 44123 Ferara, Italy * Correspondence: [email protected] Co-first author.
    [Show full text]
  • A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds
    polymers Review A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds M. Sai Bhargava Reddy 1 , Deepalekshmi Ponnamma 2 , Rajan Choudhary 3,4,5 and Kishor Kumar Sadasivuni 2,* 1 Center for Nanoscience and Technology, Institute of Science and Technology, Jawaharlal Nehru Technological University, Hyderabad 500085, India; [email protected] 2 Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar; [email protected] 3 Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Faculty of Materials Science and Applied Chemistry, Institute of General Chemical Engineering, Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia; [email protected] 4 Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1007 Riga, Latvia 5 Center for Composite Materials, National University of Science and Technology “MISiS”, 119049 Moscow, Russia * Correspondence: [email protected] Abstract: Tissue engineering (TE) and regenerative medicine integrate information and technology from various fields to restore/replace tissues and damaged organs for medical treatments. To achieve this, scaffolds act as delivery vectors or as cellular systems for drugs and cells; thereby, cellular material is able to colonize host cells sufficiently to meet up the requirements of regeneration and repair. This process is multi-stage and requires the development of various components to create the desired neo-tissue or organ. In several current TE strategies, biomaterials are essential compo- nents. While several polymers are established for their use as biomaterials, careful consideration of the cellular environment and interactions needed is required in selecting a polymer for a given Citation: Reddy, M.S.B.; Ponnamma, application.
    [Show full text]
  • When Does a Material Become a Biomaterial?
    When does a material become a biomaterial? Prof. Dr. Ir. Jan Van Humbeeck MTM-K.U.Leuven 1 When it is allowed making contact with human tissue 2 The goal of using biomaterials: Assisting in • Regenerating • Repairing • Supporting • Replacing defect tissues and esthetic parts. 3 Origin of defects in the body • Life quality: – congenital defects – development defects – diseases – accidents – aesthetic reasons • Tissue degeneration due to aging: – Osteoporosis – Hart failure – Wear of joints 4 A problem of aging Czech expression: If you’re over 60 and wake up one morning and nothing hurts, then you’re probably dead. 5 What is a biomaterial? • A biomaterial is a nonviable material used in a (medical) device, intended to interact with biological systems (biofunctionality). (Williams, 1987) • A biomaterial is a material intended to interface with biological systems to evaluate, treat, augment or replace any tissue, organ or function of the body. • A biomaterial is a material that should perform an intended function over a definite amount of time in a specific biological environment, as good as possible. • Biomaterials are inorganic or organic materials that are biocompatible and can be implanted in the human body to replace or repair failing tissue. 6 History of biomaterials • 1° generation-materials: based on replacing tissue or replacing a function with as low as possible interaction with the surrounding tissue. Those materials were found in the classic industrial markets. Those materials were selected because of their corrosion resistance or inertness when in contact with a tissue. • metals: SS, Ti, Co-Cr • polymers: UHMWPE, PMMA, PMDS • ceramics: Al2O3 7 Did Georg Washingthon A false toe made of out of wood and leather had a wooden set of teeth? was found on a 3,000-year-old mummified body of an Egyptian noblewoman Cripple with supporting pole.
    [Show full text]
  • CASODEX (Bicalutamide)
    HIGHLIGHTS OF PRESCRIBING INFORMATION • Gynecomastia and breast pain have been reported during treatment with These highlights do not include all the information needed to use CASODEX 150 mg when used as a single agent. (5.3) CASODEX® safely and effectively. See full prescribing information for • CASODEX is used in combination with an LHRH agonist. LHRH CASODEX. agonists have been shown to cause a reduction in glucose tolerance in CASODEX® (bicalutamide) tablet, for oral use males. Consideration should be given to monitoring blood glucose in Initial U.S. Approval: 1995 patients receiving CASODEX in combination with LHRH agonists. (5.4) -------------------------- RECENT MAJOR CHANGES -------------------------- • Monitoring Prostate Specific Antigen (PSA) is recommended. Evaluate Warnings and Precautions (5.2) 10/2017 for clinical progression if PSA increases. (5.5) --------------------------- INDICATIONS AND USAGE -------------------------- ------------------------------ ADVERSE REACTIONS ----------------------------- • CASODEX 50 mg is an androgen receptor inhibitor indicated for use in Adverse reactions that occurred in more than 10% of patients receiving combination therapy with a luteinizing hormone-releasing hormone CASODEX plus an LHRH-A were: hot flashes, pain (including general, back, (LHRH) analog for the treatment of Stage D2 metastatic carcinoma of pelvic and abdominal), asthenia, constipation, infection, nausea, peripheral the prostate. (1) edema, dyspnea, diarrhea, hematuria, nocturia, and anemia. (6.1) • CASODEX 150 mg daily is not approved for use alone or with other treatments. (1) To report SUSPECTED ADVERSE REACTIONS, contact AstraZeneca Pharmaceuticals LP at 1-800-236-9933 or FDA at 1-800-FDA-1088 or ---------------------- DOSAGE AND ADMINISTRATION ---------------------- www.fda.gov/medwatch The recommended dose for CASODEX therapy in combination with an LHRH analog is one 50 mg tablet once daily (morning or evening).
    [Show full text]
  • Biomaterial Scaffolds in Pediatric Tissue Engineering
    0031-3998/08/6305-0497 Vol. 63, No. 5, 2008 PEDIATRIC RESEARCH Printed in U.S.A. Copyright © 2008 International Pediatric Research Foundation, Inc. Biomaterial Scaffolds in Pediatric Tissue Engineering MINAL PATEL AND JOHN P. FISHER Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742 ABSTRACT: This article reviews recent developments and major immune system is not completely developed. However, pedi- issues in the use and design of biomaterials for use as scaffolds in atric patients have exhibited a higher regenerative capacity com- pediatric tissue engineering. A brief history of tissue engineering and pared with adults because younger cells have undergone less the limitations of current tissue-engineering research with respect to stress and age damage. This review studies novel biomaterials as pediatric patients have been introduced. An overview of the charac- scaffolds and pediatric tissue-engineering applications. teristics of an ideal tissue-engineering scaffold for pediatric applica- tions has been presented, including a description of the different types of scaffolds. Applications of scaffolds materials have been high- CHARACTERISTICS OF AN IDEAL SCAFFOLD lighted in the fields of drug delivery, bone, cardiovascular, and skin tissue engineering with respect to the pediatric population. This Before developing a scaffold for any tissue-engineering review highlights biomaterials as scaffolds as an alternative treatment application, the material and biologic properties have to be method for pediatric surgeries due to the ability to create a functional evaluated. Initially, depending upon the application, mechan- cell-scaffold environment. (Pediatr Res 63: 497–501, 2008) ical properties should be studied keeping in mind the sur- rounding environment of the scaffold once placed in an in vivo he field of tissue engineering involves replacement of system.
    [Show full text]
  • A Mini-Review of Dental Implant Biomaterials
    Mini Review Modifying an Implant: A Mini-review of Dental Implant Biomaterials Oliver K. Semisch-Dieter1, Andy H. Choi1, Besim Ben-Nissan1 and Martin P. Stewart1,* Abstract 1School of Life Sciences, Faculty of Science, University Dental implants have been used as far back as 2000BC, and since then have developed into highly sophisti- of Technology Sydney, Ultimo, cated solutions for tooth replacement. It is becoming increasingly important for the materials used in dental implants to exhibit and maintain favorable long-term mechanical, biological and more recently, aesthetic NSW, Australia properties. This review aims to assess the biomaterials used in modern dental implants, introducing their properties, and concentrating on modifications to improve these biomaterials. Focus is drawn to the promi- nent biomaterials, titanium (Ti) and zirconia due to their prevalence in implant dentistry. Additionally, novel coatings and materials with potential use as viable improvements or alternatives are reviewed. An effective *Correspondence to: dental biomaterial should osseointegrate, maintain structural integrity, resist corrosion and infection, and not Martin P. Stewart cause systemic toxicity or cytotoxicity. Current materials such as bioactive glass offer protection against bio- E-mail: martin.stewart@uts. film formation, and when combined with a titanium–zirconium (TiZr) alloy, provide a reliable combination edu.au of properties to represent a competitive alternative. Further long-term clinical studies are needed to inform the development of next-generation materials. Received: September 7 2020 Revised: December 7 2020 Keywords Accepted: January 4 2021 Biocompatibility, biomaterials, dental implant, titanium, zirconia. Published Online: March 19 2021 Significance Statement Available at: Biomaterials have become essential for modern implants.
    [Show full text]
  • Scientific Summary, Digital Implant Solutions
    Atlantis® Simplant® Scientific Summary Digital Implant Solutions Comprehensive solutions for all phases of implant dentistry Welcome Are you looking for information about the excellent results with our individually designed Atlantis abutments and suprastructures and how to achieve simplicity, freedom, esthetics, and reliability when treating your patients? Or do you want to explore the research findings behind Simplant, a comprehensive digitial 3D system developed to accomplish more accurate and predictable implant treatment? You will find the answers here, and much more. This Scientific Summary provides a synopsis of the key research findings supporting our digital solutions including Atlantis patient-specific prosthetic solutions and computer guided implant treatment with Simplant. Each summary is based on facts retrieved from the original research article. The Scientific Summary focuses on the following topics: Atlantis® 9 Simplant® 23 References 30 Summary by Dentsply Sirona Implants of facts retrieved from the original articles. For a more comprehensive view of the documentation and research on our products, please refer to our Scientific Reviews. The Scientific Reviews are available for download at www.dentsplyimplants.com/science To improve readability for our customers, Dentsply Sirona does not use ® or ™ in body copy. However, Dentsply Sirona Implants does not waive any right to the trademark and nothing herein shall be interpreted to the contrary. Ongoing innovation For two decades, the Atlantis products and services have been
    [Show full text]
  • Mechanical Properties of Biomaterials
    Mechanical Properties of Biomaterials Academic Resource Center Determining Biomaterial Mechanical Properties • Tensile and Shear properties • Bending properties • Time dependent properties Tensile and Shear properties • Types of forces that can be applied to material: a) Tensile b) Compressive c) Shear d) Torsion Tensile Testing • Force applied as tensile, compressive, or shear. • Parameters measured: Engineering stress (σ) and Engineering strain (ԑ). • σ = F/A0 : Force applied perpendicular to the cross section of sample • ԑ = (li-l0)/l0: l0 is the length of sample before loading, li is the length during testing. Compression Testing • Performed mainly for biomaterials subjected to compressive forces during operation. E.g. orthopedic implants. • Stress and strain equations same as for tensile testing except force is taken negative and l0 larger than li. • Negative stress and strain obtained. Shear Testing • Forces parallel to top and bottom faces • Shear stress (τ) = F/A0 • Shear strain (γ)= tanθ ; θ is the deformation angle. • In some cases, torsion forces may be applied to sample instead of pure shear. Elastic Deformation • Material 1: Ceramics • Stress proportional to strain. • Governed by Hooke’s law: σ = ԑE; τ=Gγ • E :Young’s modulus G: Shear modulus - measure of material stiffness. • Fracture after applying small values of strain: ceramics are brittle in nature. Elastic and Plastic deformation. • Material 2: Metal • Stress proportional to strain with small strain; elastic deformation. • At high strain, stress increases very slowly with increased strain followed by fracture: Plastic deformation. Elastic and Plastic deformation. • Material 3: Plastic deformation polymer • Stress proportional to strain with small strain; elastic deformation. • At high strain, stress nearly independent of strain, shows slight increase: Plastic deformation.
    [Show full text]
  • The Costs and Benefits of Moving to the ICD-10 Code Sets
    CHILDREN AND ADOLESCENTS This PDF document was made available from www.rand.org as a public CIVIL JUSTICE service of the RAND Corporation. EDUCATION ENERGY AND ENVIRONMENT Jump down to document HEALTH AND HEALTH CARE 6 INTERNATIONAL AFFAIRS POPULATION AND AGING The RAND Corporation is a nonprofit research PUBLIC SAFETY SCIENCE AND TECHNOLOGY organization providing objective analysis and effective SUBSTANCE ABUSE solutions that address the challenges facing the public TERRORISM AND HOMELAND SECURITY and private sectors around the world. TRANSPORTATION AND INFRASTRUCTURE U.S. NATIONAL SECURITY Support RAND Purchase this document Browse Books & Publications Make a charitable contribution For More Information Visit RAND at www.rand.org Explore RAND Science and Technology View document details Limited Electronic Distribution Rights This document and trademark(s) contained herein are protected by law as indicated in a notice appearing later in this work. This electronic representation of RAND intellectual property is provided for non-commercial use only. Permission is required from RAND to reproduce, or reuse in another form, any of our research documents for commercial use. This product is part of the RAND Corporation technical report series. Reports may include research findings on a specific topic that is limited in scope; present discus- sions of the methodology employed in research; provide literature reviews, survey instruments, modeling exercises, guidelines for practitioners and research profes- sionals, and supporting documentation;
    [Show full text]
  • Frequently Asked Questions
    LEARNING ABOUT THE CARDIOMEMS™ HF SYSTEM FREQUENTLY ASKED QUESTIONS WHAT IS THE CARDIOMEMS HF SYSTEM? CAN A MAGNETIC RESONANCE IMAGING (MRI) The CardioMEMS™ HF System is the first and SCAN BE DONE WITH THE PA SENSOR? only FDA-approved heart failure monitor proven to Patients can have an MRI scan under certain significantly reduce heart failure hospital admissions conditions. Talk with the doctor ordering the MRI and improve quality of life.1 scan to ensure that he or she knows that you have a CardioMEMS PA Sensor. HOW DOES THE CARDIOMEMS HF SYSTEM HELP A HEART FAILURE PATIENT? WILL THE PA SENSOR INTERFERE WITH AN MRI, Changes in PA pressures are an early indicator of A PACEMAKER OR AN IMPLANTABLE worsening heart failure. This can occur even before CARDIOVERTER DEFIBRILLATOR (ICD)? the patient notices symptoms such as shortness of No, the PA sensor will not interfere with a pacemaker breath or weight gain. or an ICD, even when a reading is being taken. Patients can have an MRI scan under certain conditions. Talk The CardioMEMS HF System comes with an with the doctor ordering the MRI scan to ensure that electronics unit used at home to take daily he or she knows that you have a PA sensor. measurements of PA pressures. These PA pressure readings are sent wirelessly to a secure website CAN PATIENTS TRAVEL WITH THE CARDIOMEMS for the clinician to review. This allows the care team HF SYSTEM? to confidently adjust medications without a patient Yes, patients can travel with the CardioMEMS HF feeling symptoms or needing a hospital or clinic visit.
    [Show full text]
  • Science First Volume 5, Issue 1 2018
    Science First Volume 5, Issue 1 2018 NobelActive® Over 10 years of clinical experience Cover NobelActive is an implant like no other. The back-tapered coronal design of NobelActive is designed to optimize bone and soft tissue volume for natural-looking esthetics. This is highlighted in the image in the foreground and the left inset. The right inset image focuses on a mesenchymal stem cell adhered to the proven TiUnite® implant surface. The background image shows the 3D mesh of the upper surface fading into a 2D outline illustration, combined with a NobelActive rendering focusing on the upper part of the implant. Contents NobelActive Over ten years of clinical experience with NobelActive® 4 Scientific evidence backs NobelActive® implants 5 Key studies 6 Clinical cases 9 Overview of studies 12 References 15 NobelActive Over ten years of clinical experience with NobelActive® The innovation of NobelActive represented a breakthrough in implant design, harmonizing biomedical engineering expertise with the clinical needs and the wisdom of clinicians. NobelActive’s expanding tapered implant body condenses bone gradually while the apex with drilling blades enables a smaller osteotomy. These features help to achieve good primary stability in demanding situations, such as soft bone or extraction sockets. Perfect harmony of drilling protocol, geometric design Good primary stability in demanding situations, and implant surface such as soft bone or extraction sockets The NobelActive surgical protocol and implant design are designed to provide good primary stability and support immediate loading. Reverse-cutting flutes with drilling blades on the apex enable experienced clinicians to adjust the implant position during placement for an optimized restorative orientation, particularly in extraction sites.
    [Show full text]
  • Silk-Based Biomaterials for Tissue Engineering
    C H A P T E R 1 Silk-based Biomaterials for Tissue Engineering V. Kearns, A.C. MacIntosh, A. Crawford and P.V. Hatton* Summary ilks are fibrous proteins, which are spun by a variety of species including silkworms and spiders. Silks have common structural components and have a hierarchical structure. Silkworm silk must be S degummed for biomedical applications in order to remove the immunogenic sericin coating. It may subsequently be processed into a variety of forms, often via the formation of a fibroin solution, including films, fibres and sponges, and used in combination with other materials such as gelatine and hydroxyapatite. Spider silks do not have a sericin coating and may be used in natural fibre form or processed via formation of a spidroin solution. Both silkworm and spider silks have been reported to support attachment and proliferation of a variety of cell types. Silks have subsequently been investigated for use in tissue engineering. This chapter provides a general overview of silk biomaterials, discussing their processing, biocompatibility and degradation behaviour and paying particular attention to their applications in tissue engineering. KEYWORDS: Silk; Fibroin; Spidroin; Tissue engineering. *Correspondence to: Professor Paul V Hatton, Centre for Biomaterials & Tissue Engineering, School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield, S10 2TA, UK. Email: [email protected] Tel: +44 (114) 271 7938 Fax: +44 (114) 279 7050. Topics in Tissue Engineering, Vol. 4. Eds. N Ashammakhi, R Reis, & F Chiellini © 2008. Kearns et al. Silk Biomaterials 1. INTRODUCTION Silks are fibrous proteins, which are spun into fibres by a variety of insects and spiders [1].
    [Show full text]