A Mini-Review of Dental Implant Biomaterials

Total Page:16

File Type:pdf, Size:1020Kb

A Mini-Review of Dental Implant Biomaterials Mini Review Modifying an Implant: A Mini-review of Dental Implant Biomaterials Oliver K. Semisch-Dieter1, Andy H. Choi1, Besim Ben-Nissan1 and Martin P. Stewart1,* Abstract 1School of Life Sciences, Faculty of Science, University Dental implants have been used as far back as 2000BC, and since then have developed into highly sophisti- of Technology Sydney, Ultimo, cated solutions for tooth replacement. It is becoming increasingly important for the materials used in dental implants to exhibit and maintain favorable long-term mechanical, biological and more recently, aesthetic NSW, Australia properties. This review aims to assess the biomaterials used in modern dental implants, introducing their properties, and concentrating on modifications to improve these biomaterials. Focus is drawn to the promi- nent biomaterials, titanium (Ti) and zirconia due to their prevalence in implant dentistry. Additionally, novel coatings and materials with potential use as viable improvements or alternatives are reviewed. An effective *Correspondence to: dental biomaterial should osseointegrate, maintain structural integrity, resist corrosion and infection, and not Martin P. Stewart cause systemic toxicity or cytotoxicity. Current materials such as bioactive glass offer protection against bio- E-mail: martin.stewart@uts. film formation, and when combined with a titanium–zirconium (TiZr) alloy, provide a reliable combination edu.au of properties to represent a competitive alternative. Further long-term clinical studies are needed to inform the development of next-generation materials. Received: September 7 2020 Revised: December 7 2020 Keywords Accepted: January 4 2021 Biocompatibility, biomaterials, dental implant, titanium, zirconia. Published Online: March 19 2021 Significance Statement Available at: Biomaterials have become essential for modern implants. A suitable implant biomaterial integrates into the https://bio-integration.org/ body to perform a key function, whilst minimizing negative immune response. Focusing on dentistry, the use of dental implants for tooth replacement requires a balance between bodily response, mechanical structure and performance, and aesthetics. This mini-review addresses the use of biomaterials in dental implants with significant comparisons drawn between Ti and zirconia. Attention is drawn to optimizing surface modifi- cation processes and the additional use of coatings. Alternatives and novel developments are addressed, providing potential implications of combining biomaterials to form novel composites that combine and synergize the benefits of each material. Introduction situation, and optimizing the clinically rel- evant performance of that therapy” [2]. Biomaterials are crucial for modern med- The application of biomaterials as a ical applications, and in the last several dental implant is shown in Figure 1A; an decades, these materials have been refined endosseous fixture is used to replace the and improved for applications seen in root and support a dental prosthesis. Dental dentistry, orthopedics, drug delivery, and implants have become an evidence-based cardiology. Candidate materials include treatment for the replacement of missing polymers, metals (and their alloys), cera- teeth. Selecting a biomaterial for a den- mics, composites (e.g. carbon fiber), and tal implant requires additional considera- glass. For clinical use, the material must tions for biological, mechanical, and aes- not cause any adverse or damaging effects thetic properties. Modern dental implants to the patient [1]. This concept is known need to feature effective osseointegration as biocompatibility and was described by and maintain long-term stability of their Williams as, “the ability of a biomaterial favorable properties to maintain both the to perform its desired function with respect implant’s structure and the integrity of sur- to a medical therapy, without eliciting any rounding hard and soft tissue [3, 4]. undesirable local or systemic effects in the This review aims to assess the current recipient or beneficiary of that therapy, but state of biomaterials (Ti, zirconia, and generating the most appropriate beneficial novel materials) used in dental implants. cellular or tissue response to that specific Materials are assessed on their attributes, 12 BIOI 2021, Vol 2, No. 1, 12–21 https://bio-integration.org doi: 10.15212/bioi-2020-0034 © 2021 The Authors. Creative Commons Attribution 4.0 International License Mini Review BIOI 2021 AB Figure 1 (A) Illustrates a cross-sectional view of a dental implant and the surrounding oral tissue. (B) Selecting the appropriate material to use for the implant requires considerations of implant durability, cell adhesion, and physiological implications for implant biocompatibility, and aesthetic concerns for patient satisfaction. characteristics, comparison of strengths and weaknesses, deterring biofilm formation. Current surface topographies biocompatibility, and new advancements in addressing any include anodization, sandblasting, and polishing, however, issues or concerns. conclusive evidence on which specific surface topographies are optimal and why remains undetermined [9]. Titanium Alternative alloys Ti is widely used for medical applications and is currently It is known that Ti can form alloys to solve reactivity concerns the most commonly used material for dental implants. The [1]. Vanadium (V) and aluminum (Al) are common alloying popularity is in part due to the combination of its tensile elements for Ti (seen in Ti6Al4V alloy). Individually each strength, biocompatibility, ability to osseointegrate, density, element has shown potential adverse effects in high concen- corrosion resistance, and inert properties. Pure Ti, while trations, causing carcinogenicity and neurotoxicity [10–12]. being safe for most clinical use, has been observed to form However, reports on V also demonstrate antidiabetic effects an accumulation of Ti ions around the implant site. While and resulted in reduced weight gain and gastrointestinal dis- no material is entirely bioinert, such ions released from an comfort [1, 13]. Attempts are being made to replace these implant that fails to osseointegrate may induce proinflam- alloying elements with less toxic elements such as niobium matory responses from sensitization. Such failure occurs (Nb), tantalum (Ta), and palladium (Pd), to improve biocom- when there is a lack of biomechanical stability due to inad- patibility; however, Ti6Al4V remains a common choice [14]. equate osseointegration. Stability can be promoted by mod- When comparing a Ti alloy to surgical stainless steel and ifying the implant’s physiochemical properties and surface cobalt alloys, the superior quality of Ti is its corrosion resist- topography. Observations from failed Ti implants show an ance. The ability for Ti alloys to withstand corrosive environ- increased lymph node Ti ion concentration by 7.4–9 times ments and develop an oxide layer with a shorter repassiva- and lung Ti ion concentration by 2.2–3.8 times when com- tion time compared to other metal alloys, aids in preventing pared to a successfully integrated implant [5, 6] (Table 1). a release of ions which can potentially be toxic (cobalt) or Ti dental implants have been occasionally observed to result cause allergic reactions (nickel, found in stainless steel) [15]. in an allergic reaction. However, the exact mechanism for Ti A unique alloy, TiZr has shown clinical success in the past ion release and systemic effects remains unclear [7]. decade. Under the trade name Roxolid, Institut Straumann Surface modifications of Ti implants are performed to AG, Basel, Switzerland (a 15% Zr, 85% Ti composition), the improve osseointegration and modulate cell adhesion. The TiZr alloy was designed for dental implants, becoming a via- largest post-operative issue with such implants is biofilm-in- ble alternative to zirconia and other Ti-based implants [16]. duced mucositis, inflammation of mucous membranes, TiZr offers enhanced osseointegration compared to Ti6Al4V which can further develop into peri-implantitis, the inflam- and pure Ti and avoids the use of toxic alloying elements. mation of the gum and the surrounding bone structure. The Additionally, corrosion resistance can potentially reduce first generation of surface modification was developed in problems associated with peripheral Ti ion concentrations the 1960s, where machined Ti (smooth surface) was used [17–19]. A recent study observed that TiZr retains the ability to promote osseointegration by leaving a small degree of for surface enhancement without compromising the mechan- roughness. Second generation surface modifications have ical strength of the implant [20]. While TiZr dental implants been widely available since the 1990s and improve on the do not offer the aesthetic qualities of zirconia, they demon- first generation by creating a microscopically rough surface strate highly preferable qualities among clinically available topography. Finally, the current third generation (also known Ti alloy options. as bioactive surfaces) maintains similar roughness to the sec- TiNb is another alloy with favorable properties and ond generation and are modified chemically or topographi- provides a low elastic modulus similar to human cortical cally to promote osseointegration [8]. Most surface topogra- bone. It is clinically significant as it reduces the issue of phies minimize vertical deviation to 1 μm or less, effectively stress concentration between the implant and bone, thus Oliver K. Semisch-Dieter
Recommended publications
  • Presence of ROS in Inflammatory Environment of Peri-Implantitis Tissue
    Journal of Clinical Medicine Article Presence of ROS in Inflammatory Environment of Peri-Implantitis Tissue: In Vitro and In Vivo Human Evidence 1, 2, 2, 3 4 Eitan Mijiritsky y, Letizia Ferroni y, Chiara Gardin y, Oren Peleg , Alper Gultekin , Alper Saglanmak 4, Lucia Gemma Delogu 5, Dinko Mitrecic 6, Adriano Piattelli 7, 8, 2,9, , Marco Tatullo z and Barbara Zavan * z 1 Head and Neck Maxillofacial Surgery, Department of Otoryngology, Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Weizmann street 6, 6423906 Tel-Aviv, Israel; [email protected] 2 Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; [email protected] (L.F.); [email protected] (C.G.) 3 Department of Otolaryngology Head and Neck Surgery and Maxillofacial Surgery, Tel-Aviv Sourasky Medical Center, Sackler School of Medicine, Tel Aviv University, 701990 Tel-Aviv, Israel; [email protected] 4 Istanbul University, Faculty of Dentistry, Department of Oral Implantology, 34093 Istanbul, Turkey; [email protected] (A.G.); [email protected] (A.S.) 5 University of Padova, DpT Biomedical Sciences, 35133 Padova, Italy; [email protected] 6 School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Šalata 12, 10 000 Zagreb, Croatia; [email protected] 7 Department of Medical, Oral, and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy; [email protected] 8 Marrelli Health-Tecnologica Research Institute, Biomedical Section, Street E. Fermi, 88900 Crotone, Italy; [email protected] 9 Department of Medical Sciences, University of Ferrara, via Fossato di Mortara 70, 44123 Ferara, Italy * Correspondence: [email protected] Co-first author.
    [Show full text]
  • Overview of Biomaterials and Their Use in Medical Devices
    © 2003 ASM International. All Rights Reserved. www.asminternational.org Handbook of Materials for Medical Devices (#06974G) CHAPTER 1 Overview of Biomaterials and Their Use in Medical Devices A BIOMATERIAL, as defined in this hand- shapes, have relatively low cost, and be readily book, is any synthetic material that is used to available. replace or restore function to a body tissue and Figure 1 lists the various material require- is continuously or intermittently in contact with ments that must be met for successful total joint body fluids (Ref 1). This definition is somewhat replacement. The ideal material or material restrictive, because it excludes materials used combination should exhibit the following prop- for devices such as surgical or dental instru- erties: ments. Although these instruments are exposed A biocompatible chemical composition to to body fluids, they do not replace or augment • avoid adverse tissue reactions the function of human tissue. It should be noted, Excellent resistance to degradation (e.g., cor- however, that materials for surgical instru- • rosion resistance for metals or resistance to ments, particularly stainless steels, are reviewed biological degradation in polymers) briefly in Chapter 3, “Metallic Materials,” in Acceptable strength to sustain cyclic loading this handbook. Similarly, stainless steels and • endured by the joint shape memory alloys used for dental/endodon- A low modulus to minimize bone resorption tic instruments are discussed in Chapter 10, • High wear resistance to minimize wear- “Biomaterials for Dental Applications.” • debris generation Also excluded from the aforementioned defi- nition are materials that are used for external prostheses, such as artificial limbs or devices Uses for Biomaterials (Ref 3) such as hearing aids.
    [Show full text]
  • CASODEX (Bicalutamide)
    HIGHLIGHTS OF PRESCRIBING INFORMATION • Gynecomastia and breast pain have been reported during treatment with These highlights do not include all the information needed to use CASODEX 150 mg when used as a single agent. (5.3) CASODEX® safely and effectively. See full prescribing information for • CASODEX is used in combination with an LHRH agonist. LHRH CASODEX. agonists have been shown to cause a reduction in glucose tolerance in CASODEX® (bicalutamide) tablet, for oral use males. Consideration should be given to monitoring blood glucose in Initial U.S. Approval: 1995 patients receiving CASODEX in combination with LHRH agonists. (5.4) -------------------------- RECENT MAJOR CHANGES -------------------------- • Monitoring Prostate Specific Antigen (PSA) is recommended. Evaluate Warnings and Precautions (5.2) 10/2017 for clinical progression if PSA increases. (5.5) --------------------------- INDICATIONS AND USAGE -------------------------- ------------------------------ ADVERSE REACTIONS ----------------------------- • CASODEX 50 mg is an androgen receptor inhibitor indicated for use in Adverse reactions that occurred in more than 10% of patients receiving combination therapy with a luteinizing hormone-releasing hormone CASODEX plus an LHRH-A were: hot flashes, pain (including general, back, (LHRH) analog for the treatment of Stage D2 metastatic carcinoma of pelvic and abdominal), asthenia, constipation, infection, nausea, peripheral the prostate. (1) edema, dyspnea, diarrhea, hematuria, nocturia, and anemia. (6.1) • CASODEX 150 mg daily is not approved for use alone or with other treatments. (1) To report SUSPECTED ADVERSE REACTIONS, contact AstraZeneca Pharmaceuticals LP at 1-800-236-9933 or FDA at 1-800-FDA-1088 or ---------------------- DOSAGE AND ADMINISTRATION ---------------------- www.fda.gov/medwatch The recommended dose for CASODEX therapy in combination with an LHRH analog is one 50 mg tablet once daily (morning or evening).
    [Show full text]
  • Scientific Summary, Digital Implant Solutions
    Atlantis® Simplant® Scientific Summary Digital Implant Solutions Comprehensive solutions for all phases of implant dentistry Welcome Are you looking for information about the excellent results with our individually designed Atlantis abutments and suprastructures and how to achieve simplicity, freedom, esthetics, and reliability when treating your patients? Or do you want to explore the research findings behind Simplant, a comprehensive digitial 3D system developed to accomplish more accurate and predictable implant treatment? You will find the answers here, and much more. This Scientific Summary provides a synopsis of the key research findings supporting our digital solutions including Atlantis patient-specific prosthetic solutions and computer guided implant treatment with Simplant. Each summary is based on facts retrieved from the original research article. The Scientific Summary focuses on the following topics: Atlantis® 9 Simplant® 23 References 30 Summary by Dentsply Sirona Implants of facts retrieved from the original articles. For a more comprehensive view of the documentation and research on our products, please refer to our Scientific Reviews. The Scientific Reviews are available for download at www.dentsplyimplants.com/science To improve readability for our customers, Dentsply Sirona does not use ® or ™ in body copy. However, Dentsply Sirona Implants does not waive any right to the trademark and nothing herein shall be interpreted to the contrary. Ongoing innovation For two decades, the Atlantis products and services have been
    [Show full text]
  • The Costs and Benefits of Moving to the ICD-10 Code Sets
    CHILDREN AND ADOLESCENTS This PDF document was made available from www.rand.org as a public CIVIL JUSTICE service of the RAND Corporation. EDUCATION ENERGY AND ENVIRONMENT Jump down to document HEALTH AND HEALTH CARE 6 INTERNATIONAL AFFAIRS POPULATION AND AGING The RAND Corporation is a nonprofit research PUBLIC SAFETY SCIENCE AND TECHNOLOGY organization providing objective analysis and effective SUBSTANCE ABUSE solutions that address the challenges facing the public TERRORISM AND HOMELAND SECURITY and private sectors around the world. TRANSPORTATION AND INFRASTRUCTURE U.S. NATIONAL SECURITY Support RAND Purchase this document Browse Books & Publications Make a charitable contribution For More Information Visit RAND at www.rand.org Explore RAND Science and Technology View document details Limited Electronic Distribution Rights This document and trademark(s) contained herein are protected by law as indicated in a notice appearing later in this work. This electronic representation of RAND intellectual property is provided for non-commercial use only. Permission is required from RAND to reproduce, or reuse in another form, any of our research documents for commercial use. This product is part of the RAND Corporation technical report series. Reports may include research findings on a specific topic that is limited in scope; present discus- sions of the methodology employed in research; provide literature reviews, survey instruments, modeling exercises, guidelines for practitioners and research profes- sionals, and supporting documentation;
    [Show full text]
  • Frequently Asked Questions
    LEARNING ABOUT THE CARDIOMEMS™ HF SYSTEM FREQUENTLY ASKED QUESTIONS WHAT IS THE CARDIOMEMS HF SYSTEM? CAN A MAGNETIC RESONANCE IMAGING (MRI) The CardioMEMS™ HF System is the first and SCAN BE DONE WITH THE PA SENSOR? only FDA-approved heart failure monitor proven to Patients can have an MRI scan under certain significantly reduce heart failure hospital admissions conditions. Talk with the doctor ordering the MRI and improve quality of life.1 scan to ensure that he or she knows that you have a CardioMEMS PA Sensor. HOW DOES THE CARDIOMEMS HF SYSTEM HELP A HEART FAILURE PATIENT? WILL THE PA SENSOR INTERFERE WITH AN MRI, Changes in PA pressures are an early indicator of A PACEMAKER OR AN IMPLANTABLE worsening heart failure. This can occur even before CARDIOVERTER DEFIBRILLATOR (ICD)? the patient notices symptoms such as shortness of No, the PA sensor will not interfere with a pacemaker breath or weight gain. or an ICD, even when a reading is being taken. Patients can have an MRI scan under certain conditions. Talk The CardioMEMS HF System comes with an with the doctor ordering the MRI scan to ensure that electronics unit used at home to take daily he or she knows that you have a PA sensor. measurements of PA pressures. These PA pressure readings are sent wirelessly to a secure website CAN PATIENTS TRAVEL WITH THE CARDIOMEMS for the clinician to review. This allows the care team HF SYSTEM? to confidently adjust medications without a patient Yes, patients can travel with the CardioMEMS HF feeling symptoms or needing a hospital or clinic visit.
    [Show full text]
  • Science First Volume 5, Issue 1 2018
    Science First Volume 5, Issue 1 2018 NobelActive® Over 10 years of clinical experience Cover NobelActive is an implant like no other. The back-tapered coronal design of NobelActive is designed to optimize bone and soft tissue volume for natural-looking esthetics. This is highlighted in the image in the foreground and the left inset. The right inset image focuses on a mesenchymal stem cell adhered to the proven TiUnite® implant surface. The background image shows the 3D mesh of the upper surface fading into a 2D outline illustration, combined with a NobelActive rendering focusing on the upper part of the implant. Contents NobelActive Over ten years of clinical experience with NobelActive® 4 Scientific evidence backs NobelActive® implants 5 Key studies 6 Clinical cases 9 Overview of studies 12 References 15 NobelActive Over ten years of clinical experience with NobelActive® The innovation of NobelActive represented a breakthrough in implant design, harmonizing biomedical engineering expertise with the clinical needs and the wisdom of clinicians. NobelActive’s expanding tapered implant body condenses bone gradually while the apex with drilling blades enables a smaller osteotomy. These features help to achieve good primary stability in demanding situations, such as soft bone or extraction sockets. Perfect harmony of drilling protocol, geometric design Good primary stability in demanding situations, and implant surface such as soft bone or extraction sockets The NobelActive surgical protocol and implant design are designed to provide good primary stability and support immediate loading. Reverse-cutting flutes with drilling blades on the apex enable experienced clinicians to adjust the implant position during placement for an optimized restorative orientation, particularly in extraction sites.
    [Show full text]
  • Which Antibiotic Regimen Prevents Implant Failure Or Infection After Dental Implant Surgery? a Systematic Review and Meta-Analysis
    Journal of Cranio-Maxillo-Facial Surgery 46 (2018) 722e736 Contents lists available at ScienceDirect Journal of Cranio-Maxillo-Facial Surgery journal homepage: www.jcmfs.com Review Which antibiotic regimen prevents implant failure or infection after dental implant surgery? A systematic review and meta-analysis * Fabio Rodríguez Sanchez a, , Carlos Rodríguez Andres b, Iciar Arteagoitia c, d a Epidemiology and Public Health Department, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, 48940, Bilbao, Spain b School of Medicine and Nursing, University of the Basque Country (UPV/EHU) (Professor and Head of Epidemiology and Public Health Department), Barrio Sarriena, s/n, 48940, Bilbao, Spain c Department of Stomatology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, 48940, Bilbao, Spain d BioCruces Health Research Institute Member, Cruces University Hospital, Plaza de Cruces, 48903, Barakaldo, Spain article info abstract Article history: Objective: To assess which antibiotic regimen prevents dental implant failures or postoperative in- Paper received 8 January 2018 fections following dental implant placement. Accepted 8 February 2018 Materials and methods: Systematic review and meta-analysis. Data sources: Pubmed, Cochrane, Science Available online 26 February 2018 Direct, and EMBASE via OVID were searched up to August 2017. Only randomized controlled clinical trials (RCT) using antibiotics were included. Outcome measures were set on dental implant failures or post- Keywords: operative infection incidence after dental implant surgery. Three reviewers independently undertook Dental-implant surgery risk of bias assessment and data extraction. Stratified meta-analyses of binary data using fixed-effects Antibiotics fi Amoxicillin models were performed using Stata 14.0.
    [Show full text]
  • Contraindications to Magnetic Resonance Imaging
    Downloaded from heart.bmj.com on 8 November 2009 Contraindications to magnetic resonance imaging T Dill Heart 2008;94;943-948 doi:10.1136/hrt.2007.125039 Updated information and services can be found at: http://heart.bmj.com/cgi/content/full/94/7/943 These include: Data supplement "web only appendix" http://heart.bmj.com/cgi/content/full/94/7/943/DC1 References This article cites 23 articles, 9 of which can be accessed free at: http://heart.bmj.com/cgi/content/full/94/7/943#BIBL 1 online articles that cite this article can be accessed at: http://heart.bmj.com/cgi/content/full/94/7/943#otherarticles Rapid responses You can respond to this article at: http://heart.bmj.com/cgi/eletter-submit/94/7/943 Email alerting Receive free email alerts when new articles cite this article - sign up in the box at service the top right corner of the article Topic collections Articles on similar topics can be found in the following collections Clinical diagnostic tests (18476 articles) Drugs: cardiovascular system (22273 articles) Epidemiology (4597 articles) Notes To order reprints of this article go to: http://journals.bmj.com/cgi/reprintform To subscribe to Heart go to: http://journals.bmj.com/subscriptions/ Downloaded from heart.bmj.com on 8 November 2009 Education in Heart NON-INVASIVE IMAGING Contraindications to magnetic resonance imaging T Dill c Additional references are Magnetic resonance imaging (MRI) is a method turned on and off the rapid changing magnetic published online only at http:// that has evolved continuously during the past fields can induce electrical currents in electri- heart.bmj.com/content/vol94/ cally conductive devices and may directly cause issue7 20 years, yielding MR systems with stronger static magnetic fields, faster and stronger gradient neuromuscular stimulation.
    [Show full text]
  • Architecture and Low Power Management of a Deep-Tissue Medical Implant System Powered by Human Body Energy Harvesting
    Architecture and Low Power Management of a Deep-tissue Medical Implant System Powered by Human Body Energy Harvesting Elisabeth Benke1a, Adrian Fehrle1b, Johannes Ollech2c, Simon Schrampfer2d and Jörg Franke1e 1Institute for Factory Automation and Production Systems, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany 2Sentinum UG, Nürnberg, Germany {elisabeth.benke, adrian.fehrle, joerg.franke}@faps.fau.de, {j.ollech, s.schrampfer}@sentinum.de Keywords: Implantable Medical Devices, Energy Harvesting, Power Management, Hybrid Energy Storage Systems. Abstract: Active mechatronic implants applied to provide therapy of insufficient bodily functions and acquisition of biomedical data are an emerging field in the context of Medicine 4.0. Wireless data transmission between the implant and out-body devices enables patients and health care professionals to access physiological data as well as take technical control and also allows for home monitoring solutions. Due to the limitations associated with primary batteries or conventional wireless power transferring methods in deep-tissue layers, human body energy harvesting is a promising alternative or complement for power supply. A high efficient power management in order to reduce the implanted device’s energy consumption is not only requested to effectively use the limited amounts of energy harvested but also contributes to extend implantation times and thus avoid invasive surgical procedures. This paper presents solution approaches for both software- and hardware-based low power management and storage options for active deep-tissue implants using hybrid energy storage systems and considering miniaturisation requirements of devices powered by energy harvesting. 1 INTRODUCTION limitations, especially regarding size, bio- compatibility and the implantation depth power can While battery-powered medical implant devices such be transferred into.
    [Show full text]
  • Summary Report Icd-9-Cm Coordination And
    SUMMARY REPORT ICD-9-CM COORDINATION AND MAINTENANCE COMMITTEE May 13, 1999 Introductions and Overview Pat Brooks welcomed the participants to the ICD-9-CM Coordination and Maintenance Committee meeting. All participants introduced themselves. An overview of the Committee was provided. It was mentioned that items discussed at this meeting were for consideration for revisions to take place October 1, 2000. It was explained that no final decisions would take place at this meeting. Written comments after the meeting were encouraged. The time line for the ICD-9-CM process was reviewed. No changes to ICD-9-CM on October 1, 1999 Special emphasis was given to one item included in the handout prepared by Pat Brooks. There will be no changes to the ICD-9-CM on October 1, 1999. Because of major efforts to ensure that all Medicare computer systems are ready to function on January 1, 2000, no ICD-9-CM code changes were allowed. Coders will continue using their current ICD-9-CM code books until October 1, 2000. As explained in the handout, all code changes proposed at the June 4, 1998 and November 2, 1998 will be considered for the next updates which will go into effect October 1, 2000. Reports of this meeting can be found on CMS’s home page (cms.hhs.gov) under Events and Meetings. Approval of future coding systems - Administrative Simplification The participants were encouraged to review information on Administrative Simplification as it applies to standards for national coding systems. The Transaction notice of proposed rulemaking published May 7, 1998 provides detailed information on these new requirements.
    [Show full text]
  • Artificial Organs: an Overview Evanjali Pradhan* Department of Biomedical Engineering, Utkal University, University in Bhubaneswar, Odisha, India
    Engineer OPEN ACCESS Freely available online al ing ic & d e M m e d o i i c B a f l o D l e a v Journal of Biomedical Engineering and n i r c u e s o J ISSN: 2475-7586 Medical Devices Editorial Artificial Organs: An Overview Evanjali Pradhan* Department of Biomedical Engineering, Utkal University, University in Bhubaneswar, Odisha, India EDITORIAL have probably been around since ancient times, with the simple peg leg being the most well-known. An artificial organ is human made organ device or tissue that is implanted into a human collaborating with living tissue, to The development of artificial limbs has accelerated since then. replicate or augment a particular function or functions in order New plastics and other materials, such as carbon fibre, have made it for the patient to return to a normal life as soon as possible. For possible to make artificial limbs stronger and lighter, reducing the example- Artificial organs may also be used to replace bones and amount of extra energy required to operate the limbs. Additional joints, such as those used in hip replacements. materials have made it possible to look much more natural for artificial limbs. [nine] Prostheses can be classified approximately Purpose as upper- and lower-extremity and can take many shapes and sizes. New developments in artificial limbs provide additional stages of Artificial organ design and installation, which is initially a very human body incorporation. time-consuming and costly operation, may require several years Bladder: Neural prostheses are a set of devices that can replace of ongoing maintenance services that a natural organ does not a motor, sensory or cognitive mode that may have been affected require.
    [Show full text]