Ten Years After the Revolution

Total Page:16

File Type:pdf, Size:1020Kb

Ten Years After the Revolution Ten years after the revolution by Burton Richter In his inaugural talk as Direc­ tor of the Stanford Linear Accelerator Center last No­ vember, Burton Richter chose the theme 'Where Are We Going at SLAC?'. The occa­ sion also coincided with the tenth anniversary of the 'No­ vember Revolution' — the simultaneous discovery by Sam Ting and his group at Brookhaven and by Richter and the Mark I collaboration working at the SPEAR elec­ tron-positron collider at SLAC of a new kind of particle (the J/psi) which did not fit in with the established ideas of the time. Here are some ex­ tracts from Richter's inaugural talk. 'In high energy physics an interplay of experiment/theory and technol­ ogy advances our understanding of nature. These three horses pull understanding of how our physical The recent inauguration of Burton Richter as Director of the Stanford Linear the chariot of science forward; universe works. These new models Accelerator Center coincided with the tenth sometimes one pulls harder than require new experiments, and the anniversary of the 'November revolution', another, but all three are neces­ accomplishment of those new ex­ the simultaneous discovery by the groups of Richter (left) at Stanford and Sam Ting sary. In deference to our visitors periments requires new tools, par­ (right) of the J/psi, a new kind of particle from Washington, I should say ticularly new accelerators, to give which at first didn't fit in... that there is a fourth element in­ us the ability to probe more deeply (Photos Stanford) volved; it is money, and it might into matter. This sounds very evo­ be likened to the harness that lutionary, and sometimes it is, but hitches those three horses to that sometimes progress in science I joined a group of scientists who elegant chariot. comes about from revolutionary believed as I did, but who back What might be termed the advances in theory or experiment. then at least were considered odd 'standard model' for the advance Stanford University and SLAC by most physicists who thought of science involves an interplay of have played a major role in both that experiments at proton accel­ experiment, theory, and technolo­ the evolutionary and revolutionary erators were 'the only way to go'. gy. The experimenters, guided by advance in high energy physics as When I first arrived at Stanford, what we know, test the present long as I have been here, 28 years. the Mark III linac had just recently theories and uncover new facts It is unusual for a scientist to stay begun operation. It was a bold that sometimes fit and sometimes in one place so long, but when I step in energy, moving linac tech­ don't fit into our existing world first came to Stanford in 1956 I nology from the tens of MeV that model. The theorists take the out­ believed that the electron beams were the maximum energies of put of the experiments, particularly available from the accelerators at existing machines to over 800 those things that don't quite fit, Stanford were the best tools with MeV. Mark III was a remarkably and use them to extend the theo­ which to gain a better under­ large machine — all of 300 feet retical model to get at a deeper standing of the structure of matter. long! It was a technological tour Construction begins in 1970 for the SPEAR electron-positron collider at Stanford. This modest machine provided (and continues to provide) a physics harvest out of all proportion to its size and showed the worth of colliding beam machines. de force in its time, and it was used for many important physics experiments. Robert Hofstadter used its beams to measure the shape of the proton, showing that it was not a point particle and de­ termining its size. The advances in accelerator technology pioneered at the Stan- ord High Energy Physics Labora­ tory (HEPL) were, in the long run, probably just as important as the experiments done with the ma­ chine. The first colliding beam stor­ age ring was built there both to pioneer a new technology and to carry out experiments at a new energy inaccessible without the new technology. All major accel­ erators under construction today are colliders of one type or anoth­ er, and they all owe much to those early Stanford efforts on colliding beams that showed the way to get much higher energy for a given cost. While all this.was going on, a ney Drell put it at the time, 'there SPEAR, the first paper on higher group of scientists led by 'Pief seemed to be seeds in the grapes.' energy electron-positron colliding anofsky were thinking about the It changed our view of the suba­ beam systems was written by fiext step in linear accelerators. In tomic world. John Rees. Out of that paper came 1956 the conceptual design began In parallel with many important the machine that is now PEP, of a new giant machine, then called linac experiments, work began on which began its experimental pro­ 'the Monster' because it was so colliding beams. In 1961 Dave Rit- gramme in 1980 with a new set very large. The first beam from son and I started the design of of experiments of even greater that accelerator, the 10 000-foot- what would be the SPEAR storage sophistication than what had gone long SLAC linac, was delivered in ring. Construction started in 1970, before. 1966. and the turnon was in 1972. Here, In 1978 work began here on a The SLAC linac was a huge ex­ too, together with the innovation new kind of colliding beam device trapolation in technology, taking in accelerators was innovation in — what is now called the SLC (for linacs from the then 300-foot ma­ experimental apparatus. The Mark Stanford Linear Collider). The need chine at HEPL to 10 000 feet at I magnetic detector was a powerful for a new technology in colliding SLAC. Together with the innova­ tool in its own right, and has been beam devices became apparent tions in linac technology came the forerunner of much more so­ to some of us when we took a innovations in experimental appa­ phisticated devices of the same hard look at the greatest of all the ratus. The first major experiment general type at accelerators all storage ring colliders, the LEP pro­ proved the worth of the entire over the world. The SPEAR stor­ ject being built at CERN. This ma­ effort, showing that the proton age ring is still going strong, and chine is 27 kilometres around and had a substructure — it was not we are making major improve­ will cost more than half a billion elementary, but seemed to be ments to increase its colliding dollars. The scaling laws for elec­ made up of still smaller entities beam intensity. tron storage rings are well known; very tightly bound inside. As Sid­ In 1970, before the turnon of size and cost go as the square of Aerial view of the Stanford Laboratory site showing the two-mile linac in the background. Shown dotted are the arcs for the new Stanford Linear Collider, a novel concept in colliding beam machines in which electron and positron beams from the linac will be led round to collide just once, rather than continuously circulating in a ring. The tunnels for the SLC arcs have been cut, and the project is scheduled for completion in 1986. the energy. Given this scaling law, lifetime. The big SLAC linac itself exploited. to go up a factor of 10 in energy — the reason for building this Lab­ What now? With the completion would require a machine of some oratory — is no longer being used of SLC in 1986, our linac will be 2700 kilometres in circumference for frontier high energy physics back as a forefront facility. It is costing about 50 billion dollars. A experiments, but serves as an in­ the heart of the linear collider, but new technique was needed to con­ jector for our present generation it will have undergone considerable tinue at a price that our real mas­ of storage rings. However the Lab­ improvement. Beginning with ters, the taxpayers, would consider oratory is still doing frontier re­ 1986, a new era of experiments to be reasonable, and the SLC search, thanks to innovations in will start at SLAC that we all ex­ seems to be that technology. accelerators and technology. Work pect to contribute important new No Laboratory is static. No tool on those innovations proceeds information to our evolving view for physics research has an infinite while the 'old' facilities are being of the structure of the physical universe. We can expect some­ their studies already. The first is accelerator gradient, or more than thing like 10 or 15 years of pro­ that much more efficient radiofre- six times what is now used in the ductive experiments from the SLC. quency power sources than our SLAC linac. Since this has been Indeed, the first SLC improvement present klystrons strongly impact demonstrated in a section about project is already under design the design of the large linear col­ 1 foot long, I have issued a chal­ (polarized beams) even though the lider and can sharply reduce the lenge to the Technical Division: machine is not yet complete. We cost for a given energy. Necessity deliver a 1 GeV accelerator less have a clear idea of what we will is indeed the mother of invention, than 30 feet long for less than one be doing until the second half of and, in response to this need, an million dollars' I expect they will •*he 1990s.
Recommended publications
  • Appendix E Nobel Prizes in Nuclear Science
    Nuclear Science—A Guide to the Nuclear Science Wall Chart ©2018 Contemporary Physics Education Project (CPEP) Appendix E Nobel Prizes in Nuclear Science Many Nobel Prizes have been awarded for nuclear research and instrumentation. The field has spun off: particle physics, nuclear astrophysics, nuclear power reactors, nuclear medicine, and nuclear weapons. Understanding how the nucleus works and applying that knowledge to technology has been one of the most significant accomplishments of twentieth century scientific research. Each prize was awarded for physics unless otherwise noted. Name(s) Discovery Year Henri Becquerel, Pierre Discovered spontaneous radioactivity 1903 Curie, and Marie Curie Ernest Rutherford Work on the disintegration of the elements and 1908 chemistry of radioactive elements (chem) Marie Curie Discovery of radium and polonium 1911 (chem) Frederick Soddy Work on chemistry of radioactive substances 1921 including the origin and nature of radioactive (chem) isotopes Francis Aston Discovery of isotopes in many non-radioactive 1922 elements, also enunciated the whole-number rule of (chem) atomic masses Charles Wilson Development of the cloud chamber for detecting 1927 charged particles Harold Urey Discovery of heavy hydrogen (deuterium) 1934 (chem) Frederic Joliot and Synthesis of several new radioactive elements 1935 Irene Joliot-Curie (chem) James Chadwick Discovery of the neutron 1935 Carl David Anderson Discovery of the positron 1936 Enrico Fermi New radioactive elements produced by neutron 1938 irradiation Ernest Lawrence
    [Show full text]
  • Proton Remains Puzzling
    Proton remains puzzling The 10th Circum-Pan-Pacific Symposium on High Energy Spin Physics Taipei, October 5-8, 2015 Haiyan Gao Duke University and Duke Kunshan University 1 Lepton scattering: powerful microscope! • Clean probe of hadron structure • Electron (lepton) vertex is well-known from QED • One-photon exchange dominates, higher-order exchange diagrams are suppressed (two-photon physics) • Vary the wave-length of the probe to view deeper inside 2 ' " 2 2 % dσ α E GE +τGM 2 θ 2 2 θ = $ cos + 2τGM sin ' 2 2 2 4 θ τ = −q / 4M dΩ 4E sin E # 1+τ 2 2 & 2 Virtual photon 4-momentum! q = k − k' = (q,ω) Q2 = −q2 1 k’ α = 137 2 k € What is inside the proton/neutron? 1933: Proton’s magneHc moment 1960: ElasHc e-p scaering Nobel Prize Nobel Prize In Physics 1943 In Physics 1961 Oo Stern Robert Hofstadter "for … and for his thereby achieved discoveries "for … and for his discovery of the magne;c concerning the structure of the nucleons" moment of the proton". g =2 Form factors Charge distributions 6 ! 1969: Deep inelasHc e-p scaering 1974: QCD AsymptoHc Freedom Nobel Prize in Physics 1990 Nobel Prize in Physics 2004 Jerome I. Friedman, Henry W. Kendall, Richard E. Taylor David J. Gross, H. David Politzer, Frank Wilczek "for their pioneering inves;ga;ons "for the discovery of asympto;c concerning deep inelas;c sca<ering of freedom in the theory of the strong electrons on protons …". 3 interacon". From J.W. Qiu Tremendous advances in electron scattering Unprecedented capabilities: • High Intensity • High Duty Factor • High Polarization • Parity
    [Show full text]
  • Nobel Prize Physicists Meet at Lindau
    From 28 June to 2 July 1971 the German island town of Lindau in Nobel Prize Physicists Lake Constance close to the Austrian and Swiss borders was host to a gathering of illustrious men of meet at Lindau science when, for the 21st time, Nobel Laureates held their reunion there. The success of the first Lindau reunion (1951) of Nobel Prize win­ ners in medicine had inspired the organizers to invite the chemists and W. S. Newman the physicists in turn in subsequent years. After the first three-year cycle the United Kingdom, and an audience the dates of historical events. These it was decided to let students and of more than 500 from 8 countries deviations in the radiocarbon time young scientists also attend the daily filled the elegant Stadttheater. scale are due to changes in incident meetings so they could encounter The programme consisted of a num­ cosmic radiation (producing the these eminent men on an informal ber of lectures in the mornings, two carbon isotopes) brought about by and personal level. For the Nobel social functions, a platform dis­ variations in the geomagnetic field. Laureates too the Lindau gatherings cussion, an informal reunion between Thus chemistry may reveal man­ soon became an agreeable occasion students and Nobel Laureates and, kind’s remote past whereas its long­ for making or renewing acquain­ on the last day, the traditional term future could well be shaped by tances with their contemporaries, un­ steamer excursion on Lake Cons­ the developments mentioned by trammelled by the formalities of the tance to the island of Mainau belong­ Mössbauer, viz.
    [Show full text]
  • Its Selflessness,Friendliness, Statesmanship, Helped to Establish
    Leonard I. Schiff died on January 19, 1971 in the midst of a full life, which was unusual for its selflessness, friendliness, statesmanship, and remarkable scientific productivity. He was a teacherand scholar of extraordinary breadth. In his memory and to affirm the high standards in lecturing and research that he so greatly helped to establish, it is most fitting to bring to Stanford a diverse group of outstanding physicists. The Physics Department is establishing a memorial fund, which will be used to support an annual Distinguished Lectureship for physicists of great distinction who will be invited to give a memorial lecture open to the public. Ii is hoped that sufficient funds will be raised to enable the Distinguished Lecturer on occasion to remain in the Department for an extensive stay so that he can interact with students and faculty. Contributions and pledges to the Leonard I. Schiff Memorial Fund should be mailed to the Departmentof Physics, Stanford University, California 94305. Felix Bloch David Ritson Marvin Chodorow Arthur Schawlow William Fairbank Melvin Schwartz Alexander Fetter Alan Schwettman Stanley Hanna Dirk Walecka Robert Hofstadter Stanley Wojcicki William Little Mason Yearian Walter Meyerhof A Distinguished Lectureship in memory of Leonard I. Schiff Professor of Physics Stanford University DistinguishedLectures in memory An invitation to attend the of Leonard I. Schiff: 1976DistinguishedLectures inmemoryof 1972 "HadronStructure and High Energy Collisions" LEONARD I. SCHIFF by Chen Ning Yang Professor of Physics Stanford University 1973 "The Approachto Thermal Equilibrium and Other Steady States" by Willis EugeneLamb, Jr. 1974 "The Evolution of a Nuclear Reaction" by Herman Feshbach 1975 "The World as Quarks, Leptons and Bosons" by Murray Gell-Mann Leonard I.
    [Show full text]
  • Sidney D. Drell 1926–2016
    Sidney D. Drell 1926–2016 A Biographical Memoir by Robert Jaffe and Raymond Jeanloz ©2018 National Academy of Sciences. Any opinions expressed in this memoir are those of the authors and do not necessarily reflect the views of the National Academy of Sciences. SIDNEY daVID DRELL September 13, 1926–December 21, 2016 Elected to the NAS, 1969 Sidney David Drell, professor emeritus at Stanford Univer- sity and senior fellow at the Hoover Institution, died shortly after his 90th birthday in Palo Alto, California. In a career spanning nearly 70 years, Sid—as he was universally known—achieved prominence as a theoretical physicist, public servant, and humanitarian. Sid contributed incisively to our understanding of the elec- tromagnetic properties of matter. He created the theory group at the Stanford Linear Accelerator Center (SLAC) and led it through the most creative period in elementary particle physics. The Drell-Yan mechanism is the process through which many particles of the Standard Model, including the famous Higgs boson, were discovered. By Robert Jaffe and Raymond Jeanloz Sid advised Presidents and Cabinet Members on matters ranging from nuclear weapons to intelligence, speaking truth to power but with keen insight for offering politically effective advice. His special friendships with Wolfgang (Pief) Panofsky, Andrei Sakharov, and George Shultz highlighted his work at the interface between science and human affairs. He advocated widely for the intellectual freedom of scientists and in his later years campaigned tirelessly to rid the world of nuclear weapons. Early life1 and work Sid Drell was born on September 13, 1926 in Atlantic City, New Jersey, on a small street between Oriental Avenue and Boardwalk—“among the places on the Monopoly board,” as he was fond of saying.
    [Show full text]
  • Proton Radius Puzzle Intensified
    Proton Charge Radius 7th Workshop on Hadron Physics in China and Opportunities Worldwide Kunshan, August 3-7, 2015 Haiyan Gao Duke University and Duke Kunshan University 1 QCD: still unsolved in non-perturbative region Gauge bosons: gluons (8) • 2004 Nobel prize for ``asympto5c freedom’’ • non-perturbave regime QCD ????? • One of the top 10 challenges for physics! • QCD: Important for discovering new physics beyond SM • Nucleon structure is one of the most ac5ve areas What is inside the proton/neutron? 1933: Proton’s magne+c moment 1960: Elas+c e-p scaering Nobel Prize Nobel Prize In Physics 1943 In Physics 1961 Oo Stern Robert Hofstadter "for … and for his thereby achieved discoveries "for … and for his discovery of the magne7c moment concerning the structure of the nucleons" of the proton". g =2 Form factors Charge distributions 6 ! 1969: Deep inelas+c e-p scaering 1974: QCD Asymptoc Freedom Nobel Prize in Physics 1990 Nobel Prize in Physics 2004 Jerome I. Friedman, Henry W. Kendall, Richard E. Taylor David J. Gross, H. David Politzer, Frank Wilczek "for their pioneering inves7ga7ons "for the discovery of asympto7c concerning deep inelas7c sca9ering of freedom in the theory of the strong electrons on protons …". interacon". 3 Lepton scattering: powerful microscope! • Clean probe of hadron structure • Electron (lepton) vertex is well-known from QED • Vary probe wave-length to view deeper inside 2 ' " 2 2 % dσ α E GE +τGM 2 θ 2 2 θ 2 2 = $ cos + 2τGM sin ' q / 4M 2 4 θ τ = − dΩ 4E sin E # 1+τ 2 2 & 2 Virtual photon 4-momentum! q = k − k' = (q,ω) Q2 = −q2 1 k’ α = 137 4 k € Unpolarized electron-nucleon scaOering (Rosenbluth Separa5on) • Elas+c e-p cross sec+on • At fixed Q2, fit dσ/dΩ vs.
    [Show full text]
  • FELIX BLOCH October 23, 1905-September 10, 1983
    NATIONAL ACADEMY OF SCIENCES F E L I X B L O C H 1905—1983 A Biographical Memoir by RO BE R T H OFSTADTER Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1994 NATIONAL ACADEMY OF SCIENCES WASHINGTON D.C. FELIX BLOCH October 23, 1905-September 10, 1983 BY ROBERT HOFSTADTER ELIX BLOCH was a historic figure in the development of Fphysics in the twentieth century. He was one among the great innovators who first showed that quantum me- chanics was a valid instrument for understanding many physi- cal phenomena for which there had been no previous ex- planation. Among many contributions were his pioneering efforts in the quantum theory of metals and solids, which resulted in what are called "Bloch Waves" or "Bloch States" and, later, "Bloch Walls," which separate magnetic domains in ferromagnetic materials. His name is associated with the famous Bethe-Bloch formula, which describes the stopping of charged particles in matter. The theory of "Spin Waves" was also developed by Bloch. His early work on the mag- netic scattering of neutrons led to his famous experiment with Alvarez that determined the magnetic moment of the neutron. In carrying out this resonance experiment, Bloch realized that magnetic moments of nuclei in general could be measured by resonance methods. This idea led to the discovery of nuclear magnetic resonance, which Bloch origi- nally called nuclear induction. For this and the simulta- neous and independent work of E.
    [Show full text]
  • James W. Rohlf Boston University
    Institute for Theoretical and Experimental Physics, Moscow, 3 December 2003 20 The Quest for 10− Meters James W. Rohlf Boston University Rohlf/ITEP – p.1/76 ITEP Forces and Distance Rohlf/ITEP – p.2/76 ITEP Discovery of the electron 1897 J. J. Thompson ...birth of the spectrometer! Note: The charge to mass depends on the speed, which is hard to measure! The ingenuity of the experiment was to add a magnetic field to cancel the electric deflection. Rohlf/ITEP – p.3/76 ITEP Electron e/m J.J. Thomson The electron gets acceleration 2 vy vyvx vx tan θ a = t = L = L with B field on and no deflection, E vx = B e a Etanθ m = E = LB2 E is field that produces deflection θ B is field that produces no deflection. Rohlf/ITEP – p.4/76 ITEP Classical electron radius Big trouble at a distance where electrostatic potential energy exceeds electron mass energy: ke2 2 r > mc This occurs when ke2 1:44 eV nm 15 r < = · 3 10− m mc2 0:511 MeV ' × Rohlf/ITEP – p.5/76 ITEP Rutherford scattering 1909 The detector consisted of a fluorescent screen and Hans Geiger looking through a microscope for light flashes. This experience is, no doubt, what motivated him to invent the Geiger counter! Rohlf/ITEP – p.6/76 ITEP Cross section definition transition rate σ = incident flux effective area of target Examples: 28 2 nuclear barn (b) = 10− m ∼ pp (high energy) 50 mb ∼ W/Z0 discovery at SPS nb ∼ rare processes at LHC fb ∼ Rohlf/ITEP – p.7/76 ITEP Rutherford scattering dσ 2 ~c 2 1 d cos θ α (E ) (1 cos θ)2 ∼ k − (∆p)2 = 2(mv)2(1 cos θ) − dσ = 2πbdb Can only happen if: force is 1/r2 • nucleus is pointlike • J=1, m=0 photon • Rohlf/ITEP – p.8/76 ITEP Davisson-Germer discovering electron waves “We have become accustomed to think of the atom as rather like a solar system..
    [Show full text]
  • Nobel Laureates with Their Contribution in Biomedical Engineering
    NOBEL LAUREATES WITH THEIR CONTRIBUTION IN BIOMEDICAL ENGINEERING Nobel Prizes and Biomedical Engineering In the year 1901 Wilhelm Conrad Röntgen received Nobel Prize in recognition of the extraordinary services he has rendered by the discovery of the remarkable rays subsequently named after him. Röntgen is considered the father of diagnostic radiology, the medical specialty which uses imaging to diagnose disease. He was the first scientist to observe and record X-rays, first finding them on November 8, 1895. Radiography was the first medical imaging technology. He had been fiddling with a set of cathode ray instruments and was surprised to find a flickering image cast by his instruments separated from them by some W. C. Röntgenn distance. He knew that the image he saw was not being cast by the cathode rays (now known as beams of electrons) as they could not penetrate air for any significant distance. After some considerable investigation, he named the new rays "X" to indicate they were unknown. In the year 1903 Niels Ryberg Finsen received Nobel Prize in recognition of his contribution to the treatment of diseases, especially lupus vulgaris, with concentrated light radiation, whereby he has opened a new avenue for medical science. In beautiful but simple experiments Finsen demonstrated that the most refractive rays (he suggested as the “chemical rays”) from the sun or from an electric arc may have a stimulating effect on the tissues. If the irradiation is too strong, however, it may give rise to tissue damage, but this may to some extent be prevented by pigmentation of the skin as in the negro or in those much exposed to Niels Ryberg Finsen the sun.
    [Show full text]
  • Special Collections of the University of Miami Libraries ASM0466 Kursunoglu, Behram Papers Container List
    Special Collections of the University of Miami Libraries ASM0466 Kursunoglu, Behram Papers Container List Box Title or No. Description 1 Papers and Bound Periodicals 1967-1978 2 Videocassettes 3 Videocassettes 4 Videocassettes 5 Videocassettes 6 Videocassettes 7 Videocassettes 8 Audiocassettes 9 Documents pertaining to visiting professors A-E 10 Documents pertaining to visiting professors F-On 11 Documents pertaining to visiting professors Op-Sn 12 Documents pertaining to visiting professors St-Z The following is a list of visiting professors that are represented in the collection: * = Nobel Laureate The numbers after the names signify the number of files. *Nikolai Basov, Russian Academy of Sciences, Lebedev Institute *Hans A. Bethe, Cornell University Gregory Breit, Yale University Nikolai Bogolubov, Soviet Academy of Sciences, Moscow University * Walter H. Brattain, Columbia University Special Collections of the University of Miami Libraries ASM0466 Kursunoglu, Behram Papers Container List Box Title or No. Description Jocelyn Bell Burnell, Cambridge University H.B.G. Casimir, Phillips, Eindhoven, Netherlands Britton Chance, University of Pennsylvania *Leon Cooper, Brown University Jean Couture, Former Sec. of Energy for France *Francis H.C. Crick, Salk Institute Richard Dalitz, Oxford University *Hans G. Dehmelt, University of Washington *Max Delbruck, of California Tech. *P.A.M. Dirac (16), Cambridge University Freeman Dyson (2), Institute For Advanced Studies, Princeton *John C. Eccles, University of Buffalo *Gerald Edelman, Rockefeller University, NY *Manfred Eigen, Max Planck Institute Göttingen *Albert . Einstein (2), Institute For Advance Studies, Princeton *Richard Feynman, of California Tech. *Paul Flory, Stanford University *Murray Gell-Mann, of CaliforniaTech. *Dona1d Glaser, Berkeley, UniversityCa1. Thomas Gold, Cornell University Special Collections of the University of Miami Libraries ASM0466 Kursunoglu, Behram Papers Container List Box Title or No.
    [Show full text]
  • Nobel Laureates Foretell Future Based on Past Achievements
    . RESEARCH IN NUCLEAR MEDICINE ‘U z @1 Nobel Laureates Foretell Future VI Based on Past Achievements ‘U z W hLNil@@@i1\11 @. @@h)\\@tndSolomonA. help diagnose and treat such diseases as prostate I l@CF'.@)11I)CL@11@c@citching adult—onset and ovariancancers. Otherlaureateshave used @ in thc 1@itcI @)@()@theyneversus radionuclides to study the fundamentals of neu pcclc(@1thcir n@ct@Ih()Ii@ii@@iuJic@using ‘3I—labeledropeptides, cellular communication mechanisms in'@@ilit'i\\OU1J @..purtI'IL@@(@lL@'\Cl()j)fllClltofahostofnev' and cholesterol receptors, which they foresee Icc1Ui@R)@1c@@..l@tL@t•N@flIlk1 “1@1I@\\observed that the will furtherthe understanding ofcancer and heart I,ftIR)ILtI\ C ii'@@@ii1inc1c@iicJ llin thcpancreasmore disease. Given the advances made so far,Newsline slowly in dia called on several Nobel laureates to discuss their betic patients. groundbreaking research with radionuclides, to I They specu predict the significance oftheir findings on further lated that the research and to speculate on the role nuclear I slower clear medicine imaging will play in future advances. ance was caused by the The Technique that Spawned a New binding of Erain Medicine radiolabeled Radioimmunoassay measures concentrations of insulin to an unknown substance by comparing the ratio of antibodies the substance's ability to disrupt antigen binding made by a to the already known disruptive actions of specific diabetic antibodies. Measurements are obtained by the patient's body use ofradionuclides such as ‘@‘Iand @°Cowhich in response to synthetic insulin facilitate the reaction ofa radioactive antigen with treatments. They found, however, a specific antibody.Radioimmunoassayhasbecome thatthistheorywasimpossibleto a useful prospective device to evaluate protein and prove because the immunologi enzyme binding to cells and to gauge the effec cal technology availableatthat tiveness ofvarious tracersin combating a wide van time was not capable of detecting ety ofdiseases.
    [Show full text]
  • Robert Hofstadter 1915–1990
    NATIONAL ACADEMY OF SCIENCES ROBERT HOFSTADTER 1915–1990 A Biographical Memoir by JEROME I. FRIEDMAN AND WILLIAM A. LITTLE Any opinions expressed in this memoir are those of the authors and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoirs, VOLUME 79 PUBLISHED 2001 BY THE NATIONAL ACADEMY PRESS WASHINGTON, D.C. ROBERT HOFSTADTER February 5, 1915–November 17, 1990 BY JEROME I. FRIEDMAN AND WILLIAM A. LITTLE OBERT HOFSTADTER WAS BORN in New York City, educated R on the East Coast, but spent most of his academic ca- reer at Stanford University. He is best known for his work on determining the distribution of charge and magnetic moment in the nuclei of atoms and of the nucleons them- selves, for which he was awarded a Nobel Prize in 1961. He extended the work done in the early part of the twentieth century by Ernest Rutherford, who had shown that atoms were composite, containing electrons and a nucleus many thousands of times smaller than the atom. Rutherford dis- covered this by scattering alpha particles from thin metal foils of the elements and measuring the number of par- ticles scattered as a function of the angle. The surprisingly large number of particles that were scattered through large angles could only be explained by collisions with a heavy, very small, perhaps point-like, positively charged object, which he called the nucleus. Some 40 years later Hofstadter determined the internal structure of such nuclei by scattering high-energy electrons from thin targets and measuring the distribution of the number of these electrons as a function of angle.
    [Show full text]