The Evolutionary Ecology of Seed Size

Total Page:16

File Type:pdf, Size:1020Kb

The Evolutionary Ecology of Seed Size Chapter 2 The Evolutionary Ecology of Seed Size Michelle R. Leishman, Ian J. Wright, Angela T. Moles and Mark Westoby Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia Introduction of seed mass. Unlike many other areas of comparative plant ecology, we have sub- Seed mass is a trait that occupies a pivotal stantial published information from several position in the ecology of a species. It links different scales and research styles. As well the ecology of reproduction and seedling as field experiments and demographic establishment with the ecology of vegeta- studies with a few species at a time, we tive growth, strategy sectors that are other- have simple experiments with larger num- wise largely disconnected (Grime et al., bers of species (ten to 50), quantification of 1988; Shipley et al., 1989; Leishman and seed mass and its correlates in whole-vege- Westoby, 1992). tation types (hundreds of species) and tests There is a startling diversity of shapes of consistency across different continents. and sizes of seeds among the plant species The wide-scale quantification began as of the world. Seeds range from the dust early as Salisbury (1942) and Baker (1972), seeds of the Orchidaceae and some sapro- but has been much added to and consoli- phytic and parasitic species (around 10Ϫ6 dated over the past 10 years (e.g. Mazer, g), across ten orders of magnitude to the 1989, 1990; Leishman and Westoby, 1994a; double coconut Lodoicea seychellarum Leishman et al., 1995; Eriksson and (104 g) (Harper et al., 1970). Within species, Jakobsson, 1998). The work spanning large seed size typically spans less than half an numbers of species is complementary to order of magnitude (about fourfold: detailed experiments involving only a few Michaels et al., 1988). Most within-species species, giving a stronger sense of how variation occurs within plant rather than widely the results from particular experi- among plants or populations (Michaels et ments can be generalized. al., 1988; Obeso, 1993; Vaughton and Much of the literature examines how Ramsey, 1998), indicating environmental natural selection on seed size might be effects during development rather than influenced by various environmental fac- genetic differences between mothers. This tors. In this context, it is at first glance sur- chapter is concerned with the differences prising that seed size varies within in seed size among species, and the conse- communities across a remarkable five to six quences for vegetation dynamics and com- orders of magnitude (Leishman et al., 1995; munity composition. Fig. 2.1). Further, there is strong overlap of During the last 10–15 years, there has seed-size distributions between quite dif- been considerable progress in the ecology ferent habitats. Within the temperate zone, © CAB International 2000. Seeds: The Ecology of Regeneration in Plant Communities, 2nd edition 31 (ed. M. Fenner) 32 M.R. Leishman et al. Fig. 2.1. Frequency histograms of seed dry mass from eight floras. The floras originate from four continents and include representatives from tropical and temperate biomes and a diversity of environmental condi- tions, vegetation types and phylogenetic histories. Data from western New South Wales, central Australia, Sydney (Leishman et al., 1995); Northern Territory, Nigeria (Lord et al., 1997); Californian chaparral (Keeley, 1991); Indiana dunes (Mazer, 1989); and Sheffield (Grime et al., 1988). Seed masses are grouped into half- log classes. differences between communities account Components and measurement of for only about 4% of the variation in seed seed size size between species (Leishman et al., 1995). Differences between the tropics and Seeds consist of an embryo plus the temperate zone are somewhat larger endosperm (sometimes termed the seed (Lord et al., 1995), but variation within a reserve), plus a protective seed-coat or habitat remains a very large component testa. Many seeds have distinctive disper- of overall between-species variation. sal appendages attached to the seed, such Alternative mechanisms that might shape as plumes and hairs for wind dispersal, this wide within-habitat variation have not hooks and barbs for adhesion dispersal, yet been fully formulated theoretically, elaiosomes for ant dispersal and arils or much less exposed to strong experimental flesh for vertebrate dispersal. These disper- hypothesis tests. sal appendages plus the seed are termed Evolutionary Ecology of Seed Size 33 the diaspore. The mass of dispersal struc- coat. For example, for the Sydney data set ture and the proportion of seed mass that is (Westoby et al., 1990) r 2 = 0.92, P < 0.0005, seed-coat can vary considerably between while the percentage of dry seed mass due species. to the seed-coat varied between 1.2 and There is no single measure of seed size 96%, with a mean value of 43%. In a that is ideal for all purposes. For dis- smaller data set of woody perennials from cussing seedling establishment, seed a range of habitats in New South Wales reserve mass best reflects the resources (Wright and Westoby, 1999), seed mass and available to the seedling. For discussing reserve mass were again tightly correlated the size of the object that has to be moved (r 2 = 0.99, P < 0.0005), while % coat varied by a given dispersal mechanism, seed mass from 7 to 57%, with a mean of 30%. In nei- including the seed-coat is most relevant. ther data set was there a relationship For discussing costs to the mother per seed between % coat and seed mass. produced, mass of the whole diaspore is To the extent that mineral nutrients as better than seed mass, though still not a well as energy are decisive during seedling complete measure of all costs of reproduc- establishment, the mineral nutrient content tion. Westoby (1998) recommended dry of the seed would be just as informative as seed mass, including seed-coat but exclud- seed mass. The nutrient content is the ing dispersal structures, as an ecological product of the nutrient concentration and strategy axis, partly as a compromise seed mass, but, since there is much greater among alternative measures, partly because cross-species variation in seed mass than it is easiest to measure and partly to main- in nutrient concentration (e.g. 6.7 versus tain comparability with the majority of 1.7 orders of magnitude in the c. 1500 existing data. At the same time, increasing species of Barclay and Earle, 1974), in large numbers of studies go to the trouble to dis- data sets seed mass and nutrient content sect diaspores into components where it tend to be correlated (even if mass and seems relevant (e.g. Westoby et al., 1990; concentration themselves are not). Some Jurado and Westoby, 1992; Leishman and authors have reported a negative associa- Westoby, 1994b, c). Fortunately, in data tion between seed mass and nutrient con- sets spanning a wide range of seed mass, centration (e.g. Fenner (1983) for 24 the alternative measures will be strongly species of Asteraceae; Grubb and Burslem correlated. Suppose, for example, that two (1998) within species for the majority of 12 species have dispersal structure mass 0 and South-East Asian trees; Grubb et al. (1998) 300% of seed mass: this can only reverse for 194 species from lowland tropical diaspore-mass ranking, relative to seed- rainforest) while others have found no cor- mass ranking, for species whose seeds dif- relation (e.g. Kitajima (1996a) for 12 tropi- fer in mass by less than a factor of three. cal woody species of Bignoniaceae, Thus, in data sets spanning orders of mag- Bombacaceae, Leguminosae; Grubb and nitude of seed mass, there is a strong posi- Burslem (1998) across the 12 South-East tive relationship between log dry diaspore Asian tree species; Milberg et al. (1998) for mass and log dry seed mass: e.g. in western 21 Eucalyptus, Banksia and Hakea New South Wales, n = 243, r 2 = 0.71; species). Thus, no consistent relationship central Australia, n = 199, r 2 = 0.83; has emerged between seed mass and nutri- Sydney, n = 286, r 2 = 0.97. On the other ent concentration, although evidence is hand, among sets of species spanning only beginning to emerge that variation in these (say) three- to fourfold in seed mass, attributes should be considered simultane- diaspore-mass ranking could be substan- ously with measures of allocation to seed tially different from seed-mass ranking. defence structures, such as seed-coats Similarly, log seed mass and log seed (Grubb et al., 1998). reserve mass tend to be closely correlated, The seed size of a species represents even though substantial variation exists in the amount of maternal investment in an the proportion of mass due to the seed- individual offspring, or how much ‘packed 34 M.R. Leishman et al. lunch’ an embryo is provided with to start the model is that, if a mother plant is in a its journey in life. Seed size represents a position to allocate more resources to seed fundamental trade-off, within the strategy output, it should produce more seeds of of a species, between producing more the same size. The physiological machin- small seeds versus fewer larger seeds from ery of seed provisioning should have been a given quantity of resource allocated to selected to approximate this outcome, reproduction. The trade-off and its conse- rather than increasing the size of a fixed quences were formalized in the model by number of seeds. In order to generate this Smith and Fretwell (1974). There is always prediction, the exact shape of the selection pressure to produce more seeds, Smith–Fretwell function is not important. since more seeds represent more offspring All that is required is for there to be some (although there may be a lower limit to the minimum size for a seed to have any seed size that permits a functional seedling chance of establishing and for there to be to be produced (Raven, 1999)).
Recommended publications
  • Evolutionary Ecology of Pollination and Reproduction of Tropical Plants
    TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT - Vol. V - Evolutionary Ecology af Pollination and Reproduction of Tropical Plants - M. Quesada, F. Rosas, Y. Herrerias-Diego, R. Aguliar, J.A. Lobo and G. Sanchez-Montoya EVOLUTIONARY ECOLOGY OF POLLINATION AND REPRODUCTION OF TROPICAL PLANTS M. Quesada and F. Rosas Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, México. Y. Herrerias-Diego Universidad Michoacana de San Nicolás de Hidalgo, Michoacán, México. R. Aguilar IMBIV - UNC - CONICET, C.C. 495,(5000) Córdoba, Argentina J.A. Lobo Escuela de Biología, Universidad de Costa Rica G. Sanchez-Montoya Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, México. Keywords: Pollination, tropical plants, diversity, mating systems, gender, conservation. Contents 1. Introduction 1.1. The Life Cycle of Angiosperms 1.2. Overview of Angiosperm Diversity 2. Degree of specificity of pollination system 3. Diversity of pollination systems 3.1. Beetle Pollination (Cantharophily) 3.2. Lepidoptera 3.2.1. Butterfly Pollination (Psychophily) 3.2.2. Moth Pollination (Phalaenophily) 3.3. Hymenoptera 3.3.1. Bee PollinationUNESCO (Melittophily) – EOLSS 3.3.2. Wasps 3.4. Fly Pollination (Myophily and Sapromyophily) 3.5. Bird Pollination (Ornitophily) 3.6. Bat PollinationSAMPLE (Chiropterophily) CHAPTERS 3.7. Pollination by No-Flying Mammals 3.8. Wind Pollination (Anemophily) 3.9. Water Pollination (Hydrophily) 4. Reproductive systems of angiosperms 4.1. Strategies that Reduce Selfing and/or Promote Cross-Pollination. 4.2. Self Incompatibility Systems 4.2.1. Incidence of Self Incompatibility in Tropical Forest 4.3. The Evolution of Separated Sexes from Hermaphroditism 4.3.1. From Distyly to Dioecy ©Encyclopedia Of. Life Support Systems (EOLSS) TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT - Vol.
    [Show full text]
  • Selection on Floral Morphology and Environmental Determinants of Fecundity in a Hawk Moth-Pollinated Violet'
    Ecoiog~calMonographs, 63(3), 1993. pp. 25 1-275 LC 1993 by the Ecological Society of America SELECTION ON FLORAL MORPHOLOGY AND ENVIRONMENTAL DETERMINANTS OF FECUNDITY IN A HAWK MOTH-POLLINATED VIOLET' CARLOSM. HERRERA Estacidn Bioldgica de Dofiana, Apartado 1056, E-41080 SeviNa, Spain Abstract. This paper presents the results of a 5-yr field study on the determinants of individual variation in maternal fecundity (seed production) in the narrowly endemic violet Viola cazorlensis (Violaceae), at a southeastern Spanish locality. Flowers of this species are characterized by a very long, thin spur and broad morphological variability, and are pol- linated by a single species of day-flying hawk moth (Macroglossum stellatarum; Lepidop- tera, Sphingidae). The primary aim of this investigation was to answer the question, What are the relative importances, as explanations of individual differences in fecundity, of variability in floral traits and of other fecundity determinants that are of an extrinsic nature, such as microhabitat type and interactions with herbivores? The floral morphology of individual V. cazorlensis plants was characterized by means of both "conventional," linear measurements of the size of flower parts (petals, spur, peduncle), and shape analysis of corolla outline (using thin-plate splines relative warps analysis). Spatial (among substrate types) and temporal (among years) patterns of variation in flower, fruit, and seed production by V. cazorlensis plants are described, with particular emphasis on the comparative effects of floral morphology, herbivory (by mammalian ungulates and two species of lepidopteran larvae), and substrate type (rock cliffs, bare rocks at ground level, and sandy soils), on cumulative seed production at the individual plant level.
    [Show full text]
  • Ecology: Definition, Scope and Relationship with Other Sciences
    Ecology: Definition, Scope and Relationship with other sciences By Shalinder Kaur Department of Botany P.G.G.C.G. – 11 Chandigarh The word "ecology" ("oekologie") (coined by German scientist Ernst Haeckel,1866) was derived from the Greek ―oikos” meaning "household" and logos meaning "science:" the "study of the household of nature." Ecology is not synonymous with environment, environmentalism, or environmental science. Ecology is closely related to physiology, evolutionary biology, genetics and ethology. An understanding of how biodiversity affects ecological function is an important focus area in ecological studies. Ecology: branch of science that deals with interaction between living organisms with each other and their surroundings. Ecological systems are studied at several different levels from individuals and populations to ecosystems and biosphere level. Ecology is a multi-disciplinary science, drawing on many other branches of science. Applied ecology is the practice of employing ecological principles and understanding to solve real world problems. E.g. calculating fish population, measuring environmental impact from construction or logging, building a case for the conservation of a species, and determining the most effective way to protect a species. In a broader sense, ecology can also mean: Natural environment: using the principles and methods of ecology. Human Ecology: looks at humans and their interactions with the natural environment. Scope of Ecology Ecology can be studied at several levels, from proteins and nucleic acids (in biochemistry and molecular biology), cells (in cellular biology), organisms (in botany, zoology, and other similar disciplines), and finally at the level of populations, communities, and ecosystems — which are the subjects of ecology. Because of its focus on the broadest level of life and on the interrelations between living beings and their environment, ecology draws heavily on other branches of science, such as geology and geography, meteorology, pedology, chemistry, and physics.
    [Show full text]
  • Urban Plant Ecophysiology
    4 Urban Plant Ecophysiology Nancy Falxa Sonti* USDA Forest Service, Baltimore, Maryland Introduction understanding and managing the fluxes of heat, water, gases and nutrients that underlie Plants have long been cultivated to improve urban ecosystem science and that help make quality of life in dense human settlements, cities both liveable and sustainable (Alberti, mitigating the environmental stresses of ur- 2005). The past few decades have seen a rise ban living. Urban landscape elements include in research on plant community ecology, but gardens, trees and lawns designed to provide ecophysiological studies have lagged behind, aesthetic and functional benefits to local resi- possibly due to methodological challenges, or dents, as well as urban natural areas that re- due to the recent popularity of other topics in flect the native biome vegetation. Different plant biology (Beyschlag and Ryel, 2007). types of informal green space are typically A systematic approach to urban plant found in interstitial urban areas wherever ecophysiology that is tied to decision making plants find space, light, water and nutrients to can support efforts to improve both liveabil- grow (Rupprecht and Byrne, 2014). A grow- ity and sustainability of cities via plant physi- ing body of literature evaluates the health and ological function. Plants are the foundation of well- being benefits of these diverse types of most nature- based solutions to environmental, intentional and unintentional urban nature, social and economic challenges, and physi- and advocates for their inclusion in sustain- ological function is the engine that drives the able urban design (Konijnendijk et al., 2013; provision of associated ecosystem services. Kowarik, 2018; Threlfall and Kendal, 2018).
    [Show full text]
  • BIO 1500: Plant Physiological Ecology (Previously Known As Plant Ecology)
    BIO 1500: Plant Physiological Ecology (previously known as Plant Ecology) Lectures: Tuesdays and Thursdays, 9 – 10:20am (H hour), Smith-Buonanno Hall rm 207 Laboratory: Labs will be held on Thursdays in the Environmental Science Center (greenhouses). One or two lab sections will be available (TBD) Instructor: Prof. Erika Edwards Office: 303 Walter Hall Phone: 863-2081 Email: [email protected] Office hours: Wednesday, 1-3 pm Teaching assistant: Matt Ogburn, [email protected], office hours TBD Course Overview This is an advanced botany course, preferably for students that have taken either BIO43 or BIO44 in addition to BIO20; otherwise permission must be obtained from the instructor. A keen interest in plants is a must. Aims and objectives: The primary aim of BIO 1500 is to examine the role of the environment in shaping the anatomical, physiological, and ecological diversity of vascular plants. Lectures will provide an overview of plant-environment interactions, focusing on anatomical and physiological adaptations of leaves, stems, and roots to different habitats. A comparative, phylogenetic approach will be emphasized. This is a hybrid lecture/seminar course, where classes will consist of both chalkboard lectures by the professor as well as discussions of articles from the primary literature. In addition, BIO 1500 is designed to be a hands-on course, and lectures are viewed mostly as supplements to the semester-long greenhouse project that will provide students with first-hand experience in measuring and interpreting plant functional traits. Students will work on a set of group projects that are designed to test long-standing assumptions about the evolution and adaptive nature of certain plant traits.
    [Show full text]
  • Bio 345 Field Botany Fall 2013 Professor Mark Davis Macalester College (Office: Rice 104; 696-6102) Office Hours - M: 1:30-3:00 P.M
    Bio 345 Field Botany Fall 2013 Professor Mark Davis Macalester College (Office: Rice 104; 696-6102) Office Hours - M: 1:30-3:00 p.m. Wed: 1:30-3:00 p.m. GENERAL INFORMATION Biology 345-01 (02): (Field Botany) is a course in plant taxonomy, plant geography, and plant ecology. Students will learn the principles of plant classification and, through first hand experience, the techniques of plant identification, collection, and preservation. Students also will be introduced to the fields of plant geography and plant ecology. Particular attention will be given to the taxonomy, geography, and ecology of plants growing in the North Central United States. Weekly field trips to nearby habitats will enable students to become familiar with many local species. This is a course for anyone who enjoys plants and wants to learn to identify them and learn more about them, as well as for students with a scientific interest in plant taxonomy and ecology. Note: this syllabus and other course materials can also be found on Moodle. READINGS: Readings from Barbour and Billings (2000), North American Terrestrial Vegetation, Cambridge U Press (in Bio Student Lounge); Judd et al. (2008), Plant Systematics: A Phylogenetic Approach, Sinauer Associates (in Bio Student Lounge); & readings to be assigned. LECTURES: MWF 10:50 - 11:50 a.m. in OR284. Please come to class on time!!!! LABORATORY/FIELD TRIPS/DISCUSSIONS: Thurs: 8:00 - 11:10 a.m. During September, and October we will usually take field trips during the weekly laboratory time. These will be local botanizing trips and will provide students with the opportunity to develop and practice their identification skills in the field.
    [Show full text]
  • Tree Life History Strategies: the Role of Defenses
    For personal use only. Can. J. For. Res. Downloaded from www.nrcresearchpress.com by Virginia Tech Univ Lib on 06/06/17 For personal use only. Can. J. For. Res. Downloaded from www.nrcresearchpress.com by Virginia Tech Univ Lib on 06/06/17 For personal use only. Can. J. For. Res. Downloaded from www.nrcresearchpress.com by Virginia Tech Univ Lib on 06/06/17 For personal use only. Can. J. For. Res. Downloaded from www.nrcresearchpress.com by Virginia Tech Univ Lib on 06/06/17 For personal use only. Can. J. For. Res. Downloaded from www.nrcresearchpress.com by Virginia Tech Univ Lib on 06/06/17 For personal use only. Can. J. For. Res. Downloaded from www.nrcresearchpress.com by Virginia Tech Univ Lib on 06/06/17 For personal use only. Can. J. For. Res. Downloaded from www.nrcresearchpress.com by Virginia Tech Univ Lib on 06/06/17 For personal use only. Can. J. For. Res. Downloaded from www.nrcresearchpress.com by Virginia Tech Univ Lib on 06/06/17 For personal use only. Can. J. For. Res. Downloaded from www.nrcresearchpress.com by Virginia Tech Univ Lib on 06/06/17 For personal use only. Can. J. For. Res. Downloaded from www.nrcresearchpress.com by Virginia Tech Univ Lib on 06/06/17 For personal use only. Can. J. For. Res. Downloaded from www.nrcresearchpress.com by Virginia Tech Univ Lib on 06/06/17 For personal use only. Can. J. For. Res. Downloaded from www.nrcresearchpress.com by Virginia Tech Univ Lib on 06/06/17 For personal use only.
    [Show full text]
  • PLANT ECOLOGY 11:216:332 Fall 2018
    PLANT ECOLOGY 11:216:332 Fall 2018 PLANT ECOLOGY SYLLABUS Meeting Times Lecture: 9:15–10:35am Monday & Thursday, Bartlett Hall Rm 123 Labs: 1:00–5:00 pm, Monday, Tuesday, Wednesday, or Thursday, meet in front of the ENR building unless otherwise noted in the lab schedule below. Professor: Dr. Myla F.J. Aronson Email: [email protected] Office: 105 Blake Hall, 93 Lipman Drive, Cook Campus Office hours: Monday 11:00am-1:00pm Lab/Field Instructors: Mike Allen, [email protected]. Office hours: Wednesdays 10:00am-12:00pm. Oliver Stringham, [email protected]. Office hours: Tuesdays 10:00am-12:00pm. COURSE DESCRIPTION Ecology is the study of interrelationships between organisms and their biotic and abiotic environments. As a basic science, ecology informs us about the processes governing the patterns we observe in nature. From an applied perspective, it is critical that we understand ecology as it provides insights and solutions to many of the environmental issues we are confronted with in our daily lives. In this course we will focus specifically on the ecology of plants. Plant ecology is the study of the distribution and abundance of plants and their interactions with the abiotic environment and other organisms. In this course, we will examine plant life histories, populations, communities, and plant-animal interactions (pollination, dispersal, herbivory). Labs includes greenhouse, field experiments, and field trips with an exploration of plant biodiversity of the campus and region. Terrestrial systems are emphasized. COURSE LEARNING GOALS This course is an introduction to plant ecology. Through the lectures, readings, assignments, field trips, and computer labs you will gain a broader understanding of the key concepts in plant ecology and get experience in applying these concepts by collecting, analyzing, and interpreting data from several local plant communities.
    [Show full text]
  • Plant Ecology and Biostatistics
    BSCBO- 203 B.Sc. II YEAR Plant Ecology and Biostatistics DEPARTMENT OF BOTANY SCHOOL OF SCIENCES UTTARAKHAND OPEN UNIVERSITY PLANT ECOLOGY AND BIOSTATISTICS BSCBO-203 BSCBO-203 PLANT ECOLOGY AND BIOSTATISTICS SCHOOL OF SCIENCES DEPARTMENT OF BOTANY UTTARAKHAND OPEN UNIVERSITY Phone No. 05946-261122, 261123 Toll free No. 18001804025 Fax No. 05946-264232, E. mail [email protected] htpp://uou.ac.in UTTARAKHAND OPEN UNIVERSITY Page 1 PLANT ECOLOGY AND BIOSTATISTICS BSCBO-203 Expert Committee Prof. J. C. Ghildiyal Prof. G.S. Rajwar Retired Principal Principal Government PG College Government PG College Karnprayag Augustmuni Prof. Lalit Tewari Dr. Hemant Kandpal Department of Botany School of Health Science DSB Campus, Uttarakhand Open University Kumaun University, Nainital Haldwani Dr. Pooja Juyal Department of Botany School of Sciences Uttarakhand Open University, Haldwani Board of Studies Late Prof. S. C. Tewari Prof. Uma Palni Department of Botany Department of Botany HNB Garhwal University, Retired, DSB Campus, Srinagar Kumoun University, Nainital Dr. R.S. Rawal Dr. H.C. Joshi Scientist, GB Pant National Institute of Department of Environmental Science Himalayan Environment & Sustainable School of Sciences Development, Almora Uttarakhand Open University, Haldwani Dr. Pooja Juyal Department of Botany School of Sciences Uttarakhand Open University, Haldwani Programme Coordinator Dr. Pooja Juyal Department of Botany School of Sciences Uttarakhand Open University, Haldwani UTTARAKHAND OPEN UNIVERSITY Page 2 PLANT ECOLOGY AND BIOSTATISTICS BSCBO-203 Unit Written By: Unit No. 1-Dr. Pooja Juyal 1, 4 & 5 Department of Botany School of Sciences Uttarakhand Open University Haldwani, Nainital 2-Dr. Harsh Bodh Paliwal 2 & 3 Asst Prof. (Senior Grade) School of Forestry & Environment SHIATS Deemed University, Naini, Allahabad 3-Dr.
    [Show full text]
  • I BSC II SEMESTER CBCS BOTANY PAPER-II Plant Ecology, Phytogeography, Plant Pathology
    I BSC II SEMESTER CBCS BOTANY PAPER-II Plant ecology, Phytogeography, Plant Pathology SREE SIDDAGANGA COLLEGE OF ARTS, SCIENCE and COMMERCE B.H. ROAD, TUMKUR (AFFILIATED TO TUMKUR UNIVERSITY) BOTANY PAPER-II STUDY MATERIAL K.S.Gitanjali Page 1 I BSC II SEMESTER CBCS BOTANY PAPER-II Plant ecology, Phytogeography, Plant Pathology UNIT-1 (2 Hr) Introduction and Scope of Ecology The branch of Biology that deals with the study of interrelationships and interdependence between biotic and Abiotic factors in an environment is called “Ecology or “Environmental biology”. In 1886 German Zoologist Ernst Haekal coined the term ‘Ecology’. It is derived from Greek words where ‘Oikos ‘means ‘home’. And ‘logos’ means ‘to study’. Odum Defines Ecology as “The study of structure and function of nature”. The term ‘Environment is derived from French word where ‘Environer’ means ‘to encircle ‘or ‘to surround’. “The study of interactions of man with the living and non living components of environment and interdisciplinary field study is referred as “Environmental studies”. SCOPE OF ECOLOGY 1. Study of Ecology provides knowledge for proper maintenance of natural resources. 2. It helps to understand the harmful effects of pollution, need for its control. 3. It provides knowledge about population, their interactions with environment. And necessity of maintenance of delicate balance between living and none living components of nature. 4. It provides Knowledge on Biodiversity, their types, reasons of depletion, their importance and methods of conservation. 5. It helps to take suitable steps to prevent the extinction of species and protect endangered (Species towards extinction) and endemic (Species restricted to a particular geographical region) species.
    [Show full text]
  • Seed Dispersal Distances: a Typology Based on Dispersal Modes and Plant Traits
    Bot. Helv. 117 (2007): 109 – 124 0253-1453/07/020109-16 DOI 10.1007/s00035-007-0797-8 Birkhäuser Verlag, Basel, 2007 Botanica Helvetica Seed dispersal distances: a typology based on dispersal modes and plant traits Pascal Vittoz1 and Robin Engler2 1 Faculty of Geosciences and Environment, University of Lausanne, Bâtiment Biophore, CH-1015 Lausanne, Switzerland; e-mail: [email protected] (corresponding author) 2 Department of Ecology and Evolution, University of Lausanne, Bâtiment Biophore, CH-1015 Lausanne, Switzerland; e-mail: [email protected] Manuscript accepted 14 May 2007 Abstract Vittoz P. and Engler R. 2007. Seed dispersal distances: a typology based on dispersal modes and plant traits. Bot. Helv. 117: 109 – 124. The ability of plants to disperse seeds may be critical for their survival under the current constraints of landscape fragmentation and climate change. Seed dispersal distance would therefore be an important variable to include in species distribution models. Unfortunately, data on dispersal distances are scarce, and seed dispersal models only exist for some species with particular dispersal modes. To overcome this lack of knowledge, we propose a simple approach to estimate seed dispersal distances for a whole regional flora. We reviewed literature about seed dispersal in temperate regions and compiled data for dispersal distances together with information about the dispersal mode and plant traits. Based on this information, we identified seven “dispersal types” with similar dispersal distances. For each type, upper limits for the distance within which 50% and 99% of a species seeds will disperse were estimated with the 80th percentile of the available values.
    [Show full text]
  • A Historical Perspective on Problems in Botany Teaching
    A Historical Perspective on Problems in Botany Teaching David R. Hershey B OZNIAK (1994) and Uno (1994) have recently en Age of Botany Teaching" dozens of botany text- called attention to some of the many problems books were published by the leading botanical scien- facing botany teaching,but their analyses lacked tists of the day including Asa Gray, Francis Darwin, a historicalperspective. This article discusses how the CharlesBessey, JohnCoulter and LibertyHyde Bailey. many problems in botany teaching are interrelated, The last three were Presidents of the American Asso- and most have existed since at least the early 1900s.In ciation for the Advancement of Science. There was this article, botany is defined as the whole field of even a complaint that there were too many botany Downloaded from http://online.ucpress.edu/abt/article-pdf/58/6/340/47662/4450174.pdf by guest on 02 October 2021 plant biology encompassing any discipline with a textbooks (Beal 1907). Botany teaching articles ap- majorfocus on the plant kingdom, including horticul- peared in leading researchjournals like Scienceand the ture, agronomy, forestry, plant pathology, weed sci- BotanicalGazette, there were manuals on high school ence, plant physiology, plant morphology, plant ge- botany teaching (Ganong 1910,Lloyd 1907),there was netics, plant ecology, plant taxonomy, etc. Botany a botany science projectbook for students (Osterhout teaching at both the precollege and introductorycol- 1905), and numerous botany education articles ap- lege levels will be considered. peared in School Scienceand Mathematicsand other educationjournals. Botany was also a majorpart of the Botany Neglect in Biology Teaching nature study and school gardening movements (Big- elow 1911).
    [Show full text]