Pál Nyíri and Joana Breidenbach, University of Oxford

Total Page:16

File Type:pdf, Size:1020Kb

Pál Nyíri and Joana Breidenbach, University of Oxford Volume 20, Number 2 LIVING IN TRUTH: PHYSICS AS A WAY OF LIFE Pál Nyíri and Joana Breidenbach, University of Oxford © 2002 Pal Nyiri and Joana Breidenbach All Rights Reserved The copyright for individual articles in both the print and online version of the Anthropology of East Europe Review is retained by the individual authors. They reserve all rights other than those stated here. Please contact the managing editor for details on contacting these authors. Permission is granted for reproducing these articles for scholarly and classroom use as long as only the cost of reproduction is charged to the students. Commercial reproduction of these articles requires the permission of the authors. What does it mean to live in truth? Putting people today. After the war, nuclear physics in it negatively is easy enough: it means not particular attracted young people around the lying, not hiding, and not dissimulating. – world as not just the key to powerful weapons Milan Kunderai and unlimited energy but also the answer to fundamental questions about the structure of the The figure of the physicist has a particular universe. Until the late sixties, faith in progress fascination for the popular imagination, and the was as strong a driving force in the Soviet Union figure of the Soviet physicist carries as it was in the West, and physics was seen as connotations of James Bond-ian villainy or, for the central means to that end. Here in particular, the more highbrow, a technocratic elite that countless talented young people studied it. Why? benefited from a good education provided by an To begin with, physics had a solid oppressive society. In this ethnographic study of institutional basis. Right after their takeover, the a group of physicists centered around one of the Bolsheviks decided that physics, which had leading figures of Soviet theoretical physics, lagged far behind the West in Imperial Russia, Vladimir Gribov (1930-1997), we wanted to should be at the cutting edge of scientific explore the ethos and habitus of Soviet scientists research. Natural sciences were to revolutionize who worked at the cutting edge of quantum field the forces of production. As civil war raged theory, plasma physics, nuclear and elementary across the land in 1918, Abram Ioffe, Wilhelm particle research at a time when mediocrity or Roentgen’s student in Göttingen, opened the decay (by international measures) ruled in many Petrograd Physico-Technical Institute, the first of other fields of science, art, and industry.ii We many research institutes to be founded in the argue that in the group we studied, the choice of coming years. After the atomic bomb was physics as a profession was influenced less by dropped in 1945, physics in the Soviet Union the benefits of belonging to the technological gained additional momentum. A nuclear project elite in itself than by the belief that physics was created, huge secret research installations offered both a tolerable living and an officially and important “open” institutes sprang up across sanctioned exemption from ideological make- the country, and a generation of outstanding believe. The physicists of the group we studied scientists matured and catapulted Soviet physics neither lived in ivory towers nor were willing to a premier position on the world stage.iii For accomplices in the state’s nuclear project. instance, Lev Landau was the key figure among Instead they created a non-state social space in the Leningrad theoreticians. Inspired by the which lifestyle and values were substantially cosmopolitan scientific community he had influenced by their belief in physical truth. experienced in Niels Bohr‘s milieu in Window to freedom Copenhagen, he designed a system of physics The fate of theoretical physicists of education consisting of seminars, textbooks, and Gribov’s immediate postwar generation was examinations. Charismatic, provocative, and shaped by a totalitarian state that needed them in uncompromising, Landau created a unique order to modernize and assert itself but was intellectual microclimate that attracted and strongly influenced many disciples and co- deeply suspicious of and hostile to their intellect iv – a state that offered them optimal working workers. conditions, and at the same time wiretapped and When Gribov’s generation entered killed them. university, the Cold War had just started, and Physics was in the 20th century what physicists were in urgent need. Their salaries biotechnology and computer science is to young were increased fourfold, and ample research Volume 20, Number 2 funding made available (Gorelik 2000:133-134). actually impressed with the attacks on More physicists were inducted into the Academy “idealism.” of Sciences, which meant faster access to a Boris Altshuler, today a professor of bearable flat or a dacha and special food theoretical physics at Princeton, recalls his deliveries. Yet salaries stagnated under decision to study physics in the sixties: “Career Khrushchev, and an average physicist in the choices in the Soviet Union were obviously seventies earned less than the bus driver that limited. Many careers either didn’t exist or took him to his institute. Families of physicists, offered no intellectual freedom. The natural like everyone else, spent considerable energy in sciences were the only profession that secured order to satisfy their basic needs, not to mention relative independence both in intellectual and obtaining luxuries. economic terms.” Nevertheless, it was not just the Consequently, many of those who had euphoria for science and privileges that made actually wanted to pursue other professions also young people study physics after World War II; ended up in physics. When Lev Okun, who today it was also the restrictive intellectual climate of divides his time between the Institute of the Soviet Union. The post-Stalinist generation Theoretical and Experimental Physics (ITEP) in of physicists who had come of age in the last war Moscow and CERN in Geneva, finished years lived in a society that denied them secondary school in 1947, he wanted to study opportunities to express the horrors they had literature: experienced under Stalin. To critically minded My friend and I went to Moscow people physics offered a rare ideology-free niche University, to the Department of Philology…and in which one was officially allowed, even we wanted to talk to the dean. But before that, a compelled, to search for the truth. professor [appeared] in this position [bent In the thirties and forties, physics had forward], and he opened the door as if a god was faced attempts of ideological cleansing. there, and he was very frightened and Relativity and quantum mechanics had to be humiliated.… And my friend and I looked at defended from “philosophers’” accusations that each other, and we turned back and never entered they were “bourgeois” and “idealistic” theories. this building again.… I never saw anybody [in Most of the key physicists in Leningrad, physics] who behaved like this. Moscow, and Kharkov were arrested in the The desire for freedom played a role in purges of 1938-39. In 1948, the threat of a prompting many of the most talented students to massive attack on physics arose again, as plans specialize in theoretical physics in their senior were made for a congress at which leading years of study. Experimentalists were vulnerable physicists were to be denounced for ideological to material conditions, whereas the only thing mistakes. If the congress had taken place, the theoreticians needed to work was their brains. In fate of Soviet physics may well have mirrored the country in which they lived, this was a big that of Soviet genetics: Stalin’s protégé, the advantage: Landau performed the calculations agricultural “scientist” Trofim Lysenko had just for his theory of the shock wave in prison; later, succeeded in having genetics banned in the physicists who did not find jobs in science could Soviet Union (Gorelik 2000:162-163). Two days work at home. Not until the seventies was the before the physics congress was due to begin, Soviet Union’s lag in computerization felt in however, it was cancelled. Lavrentii Beriia, the theoretical physics. chief of the secret service, had learned just in While work on projects related to time that work on the bomb was based on the bombs and nuclear power stations was expected, “bourgeois” theories that were heading for outside that obligation physicists enjoyed wide- damnation. According to an anecdote recorded ranging freedoms and little pressure to achieve by Gorelik, Stalin responded with the words, quick results. Boris Altshuler describes the “Let them go. We can always shoot them later.” informal work style of theoreticians at the Landau called this the first case of nuclear Leningrad Institute for Nuclear Physics in deterrence in history.v Gatchina, where he worked between 1978 and Despite such threats, ideology had little 1989, in this way: impact on physics. Although textbook passages We had no particular obligations. We about the Heisenberg uncertainty principle didn’t have to teach, and we were basically free proclaimed that the principle’s interpretation to decide what we wanted to work on. People in should follow Lenin’s thought, only a score of the U.S. can’t imagine that kind of freedom. opportunists and mediocre scientists were Here, you spend a lot of your time writing Volume 20, Number 2 applications for grants that you may or may not said, “Do something like this one more time and get. In Leningrad, if you wanted to switch from we won’t say hello to you again.” solid-state to particle physics, no problem: all Tania Altshuler, later Lionia’s wife and you had to do is perhaps move to another group. who today teaches physics in New Jersey, was From the beginning, Soviet ideology one of the friends. “We had a toast,” she recalls.
Recommended publications
  • ACDIS Occasional Paper
    ACDIS FFIRS:3 1996 OCCPAP ACDIS Library ACDIS Occasional Paper Collected papers of the Ford Foundation Interdisciplinary Research Seminar on Pathological States ISpring 1996 Research of the Program in Arms Control, Disarmament, and International Security University of Illinois at Urbana-Champaign December 1996 This publication is supported by a grant from the Ford Foundation and is produced by the Program m Arms Control Disarmament and International Security at the University of Illinois at Urbana Champaign The University of Illinois is an equal opportunity/ affirmative action institution ACDIS Publication Senes ACDIS Swords and Ploughshares is the quarterly bulletin of ACDIS and publishes scholarly articles for a general audience The ACDIS Occasional Paper series is the principle publication to circulate the research and analytical results of faculty and students associated with ACDIS Publications of ACDIS are available upon request Published 1996 by ACDIS//ACDIS FFIRS 3 1996 University of Illinois at Urbana-Champaign 359 Armory Building 505 E Armory Ave Champaign IL 61820 Program ßfia Asma O esssrelg KJ aamisawE^ «««fl ^sôÊKïÂîMïnsS Secasnsy Pathological States The Origins, Detection, and Treatment of Dysfunctional Societies Collected Papers of the Ford Foundation Interdisciplinary Research Seminar Spring 1996 Directed by Stephen Philip Cohen and Kathleen Cloud Program m Arms Control Disarmament and International Security University of Illinois at Urbana-Champaign 359 Armory Building 505 East Armory Avenue Champaign IL 61820 ACDIS Occasional
    [Show full text]
  • Dmitri Diakonovlooks at Some of the Work Behind Two Equations That Play
    QCD QCD scattering: from DGLAP to BFKL Dmitri Diakonov looks at some of the work behind two equations that play a vital role in calculating QCD scattering processes at today’s high-energy particle colliders. Most particle physicists will be familiar with two famous abbrevia- tions, DGLAP and BFKL, which are synonymous with calculations of high-energy, strong-interaction scattering processes, in particular nowadays at HERA, the Tevatron and most recently, the LHC. The Dokshitzer-Gribov-Lipatov-Alterelli-Parisi (DGLAP) equation and the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation together form the basis of current understanding of high-energy scattering in quantum chromodynamics (QCD), the theory of strong interactions. The cel- ebration this year of the 70th birthday of Lev Lipatov (p33), whose name appears as the common factor, provides a good occasion to look back at some of the work that led to the two equations and its roots in the theoretical particle physics of the 1960s. Quantum field theory (QFT) lies at the heart of QCD. Fifty years ago, however, theoreticians were generally disappointed in their attempts Vladimir Gribov (seen here in 1979) led the group in Leningrad, now St Petersburg, that began to apply QFT to strong interactions. They began to develop methods workn o high-energy scattering in the 1960s. (Courtesy D Diakonov.) to circumvent traditional QFT by studying the unitarity and analyticity constraints on scattering amplitudes, and extending Tullio Regge’s invariant energy of the reaction. ideas on complex angular momenta to relativistic theory. It was At some point Lipatov joined Gribov in the project and together around this time that the group in Leningrad led by Vladimir Gribov, they studied not only deep inelastic scattering but also the inclusive which included Lipatov, began to take a lead in these studies.
    [Show full text]
  • The Russian-A(Merican) Bomb: the Role of Espionage in the Soviet Atomic Bomb Project
    J. Undergrad. Sci. 3: 103-108 (Summer 1996) History of Science The Russian-A(merican) Bomb: The Role of Espionage in the Soviet Atomic Bomb Project MICHAEL I. SCHWARTZ physicists and project coordinators ought to be analyzed so as to achieve an understanding of the project itself, and given the circumstances and problems of the project, just how Introduction successful those scientists could have been. Third and fi- nally, the role that espionage played will be analyzed, in- There was no “Russian” atomic bomb. There only vestigating the various pieces of information handed over was an American one, masterfully discovered by by Soviet spies and its overall usefulness and contribution Soviet spies.”1 to the bomb project. This claim echoes a new theme in Russia regarding Soviet Nuclear Physics—Pre-World War II the Soviet atomic bomb project that has arisen since the democratic revolution of the 1990s. The release of the KGB As aforementioned, Paul Josephson believes that by (Commissariat for State Security) documents regarding the the eve of the Nazi invasion of the Soviet Union, Soviet sci- role that espionage played in the Soviet atomic bomb project entists had the technical capability to embark upon an atom- has raised new questions about one of the most remark- ics weapons program. He cites the significant contributions able and rapid scientific developments in history. Despite made by Soviet physicists to the growing international study both the advanced state of Soviet nuclear physics in the of the nucleus, including the 1932 splitting of the lithium atom years leading up to World War II and reported scientific by proton bombardment,7 Igor Kurchatov’s 1935 discovery achievements of the actual Soviet atomic bomb project, of the isomerism of artificially radioactive atoms, and the strong evidence will be provided that suggests that the So- fact that L.
    [Show full text]
  • Dilution Refrigerator Demagnetization Refrigeration Short History of Temperatures Below 1K
    CRYOGENICS 2 Going below 1 K Welcome to the quantum world! 590B Makariy A. Tanatar History He3 systems Properties of He-3 and He-4 Dilution refrigerator Demagnetization refrigeration Short history of temperatures below 1K 1908 LHe liquefaction by Kamerlingh Onnes 1926 The idea of demagnetization cooling by Debye 1927-31 Realization of demagnetization cooling, <100mK 1945 He-3 liquefaction 1950 The idea of Pomeranchuk refrigerator (cooling by adiabatic solidification of He-3) 1962 The idea of dilution process (Heinz London) with G. R. Clarke, E. Mendoza 1965-66 First dilution refrigerators build in Leiden, Dubna and Manchester reaching 25 mK 1971 Superfluidity of He-3 The kid of the 20th century, parallels space rocket and nuclear studies Similar to space rockets Tsiolkovskiy train generation of low temperatures uses several stages - 4K stage, usually referred to as He bath stage3 or main bath -1K stage, or 1K pot - low temperature unit stage2 The cooling power rapidly decreases with each stage, stages are activated in sequence, functioning of each stage impossible stage1 before full activation of the preceding Important: To reduce cryogen liquid consumption use to a maximum extent cooling power of the first stages Cooling with cryogenic liquids The lighter the better! The lightest is stable He-3 isotope Operation below 4.2 K completely relies on vacuum pumping Pumping oil creates characteristic smell of low-temperature laboratories! Natural He contains 0.000137% of He-3. Thousands of liters of He-3 are used annually in cryogenic applications
    [Show full text]
  • Spinorial Regge Trajectories and Hagedorn-Like Temperatures
    EPJ Web of Conferences will be set by the publisher DOI: will be set by the publisher c Owned by the authors, published by EDP Sciences, 2016 Spinorial Regge trajectories and Hagedorn-like temperatures Spinorial space-time and preons as an alternative to strings Luis Gonzalez-Mestres1;a 1Megatrend Cosmology Laboratory, John Naisbitt University, Belgrade and Paris Goce Delceva 8, 11070 Novi Beograd, Serbia Abstract. The development of the statistical bootstrap model for hadrons, quarks and nuclear matter occurred during the 1960s and the 1970s in a period of exceptional theo- retical creativity. And if the transition from hadrons to quarks and gluons as fundamental particles was then operated, a transition from standard particles to preons and from the standard space-time to a spinorial one may now be necessary, including related pre-Big Bang scenarios. We present here a brief historical analysis of the scientific problematic of the 1960s in Particle Physics and of its evolution until the end of the 1970s, including cos- mological issues. Particular attention is devoted to the exceptional role of Rolf Hagedorn and to the progress of the statisticak boostrap model until the experimental search for the quark-gluon plasma started being considered. In parallel, we simultaneously expose recent results and ideas concerning Particle Physics and in Cosmology, an discuss current open questions. Assuming preons to be constituents of the physical vacuum and the stan- dard particles excitations of this vacuum (the superbradyon hypothesis we introduced in 1995), together with a spinorial space-time (SST), a new kind of Regge trajectories is expected to arise where the angular momentum spacing will be of 1/2 instead of 1.
    [Show full text]
  • Everything About Reggeons” and It Will Consist of Four Parts: 1
    TAUP 2465 - 97 DESY 97 - 213 October 1997 hep - ph 9710546 EVERYTHING ABOUT REGGEONS Part I : REGGEONS IN “SOFT” INTERACTION. Eugene Levin School of Physics and Astronomy, Tel Aviv University Ramat Aviv, 69978, ISRAEL and DESY Theory, Notkrstr. 85, D - 22607, Hamburg, GERMANY [email protected]; [email protected]; Academic Training Program DESY, September 16 - 18, 1997 First revised version Abstract: This is the first part of my lectures on the Pomeron structure which I am going arXiv:hep-ph/9710546v3 7 Jan 1998 to read during this academic year at the Tel Aviv university. The main goal of these lectures is to remind young theorists as well as young experimentalists of what are the Reggeons that have re-appeared in the high energy phenomenology to describe the HERA and the Tevatron data. Here, I show how and why the Reggeons appeared in the theory, what theoretical problems they have solved and what they have failed to solve. I describe in details what we know about Reggeons and what we do not. The major part of these lectures is devoted to the Pomeron structure, to the answer to the questions: what is the so called Pomeron; why it is so different from other Reggeons and why we have to introduce it. In short, I hope that this lectures will be the shortest way to learn everything about Reggeons from the beginning to the current understanding. I concentrate on the problem of Reggeons in this lectures while the Reggeon interactions or the shadowing corrections I plan to discuss in the second part of my lectures.
    [Show full text]
  • APS Announces Winners for 2011
    FACES AND PLACES A w A r ds A selection of 2011 APS prize-winners: (left to right) Yaroslav Derbenev, Gerald Gabrielse and Ian Hinchliffe. (Courtesy Jefferson Lab, Harvard and ATLAS.) APS announces winners for 2011 The American Physical Society (APS) has cooling, and the related neutrino processes and ionization cooling, round-to-flat beam announced its awards for 2011, including and astrophysical phenomena”. transformations, FELs and electron–ion some major prizes in particle physics and The Lars Onsager Prize is another award for colliders.” related fields. theoretical physics, in this case to recognize In nuclear physics the Tom W Bonner With physics at the LHC having started outstanding research in theoretical statistical Prize is to recognize and encourage during 2010, it is appropriate that the physics, including the quantum fluids. The outstanding experimental research in award that recognizes and encourages 2011 award goes to Alexander A Belavin nuclear physics, including the development outstanding achievement in particle of the L D Landau Institute for Theoretical of a method, technique or device that theory – the J J Sakurai Prize for Theoretical Physics, Alexander B Zamolodchikov of significantly contributes in a general way to Particle Physics for 2011– goes to Ian Rutgers University and Alexander M Polyakov nuclear-physics research. Richard F Casten Hinchliffe of the Lawrence Berkeley of Princeton University for their “outstanding of Yale University receives the 2011 prize for National Laboratory (LBNL) and Kenneth contributions to theoretical physics, and “providing critical insight into the evolution Lane of Boston University, together with especially for the remarkable ideas that they of nuclear structure with varying proton and Estia Eichten and Chris Quigg of Fermilab.
    [Show full text]
  • Strong Interactions of Hadrons at High Energies
    This page intentionally left blank STRONG INTERACTIONS OF HADRONS AT HIGH ENERGIES V. N. Gribov was one of the creators of high energy elementary particle physics and the founder of the Leningrad school of theoretical physics. This book is based on his lecture course for graduate students. The lec- tures present a concise, step-by-step construction of the relativistic theory of strong interactions, aiming at a self-consistent description of the world in which total hadron interaction cross sections are nearly constant at very high collision energies. Originally delivered in the mid-1970s, when quarks were fighting for recognition and quantum chromodynamics had barely been invented, the content of the course has not been ‘modern- ized’. Instead, it fully explores the general analyticity and cross-channel unitarity properties of relativistic theory, setting severe restrictions on the possible solution that quantum chromodynamics, as a microscopic theory of hadrons and their interactions, has yet to find. The book is unique in its coverage: it discusses in detail the basic properties of scattering ampli- tudes (analyticity, unitarity, crossing symmetry), resonances and electro- magnetic interactions of hadrons, and it introduces and studies reggeons and, in particular, the key player – the ‘vacuum regge pole’ (pomeron). It builds up the field theory of interacting pomerons, and addresses the open problems and ways of attacking them. Vladimir Naumovich Gribov received his Ph.D. in theoretical physics in 1957 from the Physico-Technical Institute in Leningrad, and be- came the head of the Theory Division of the Particle Physics Department in 1962. From 1971, when the Petersburg (Leningrad) Institute for Nu- clear Physics was organized, Gribov led the Theory Division of the Insti- tute.
    [Show full text]
  • VACUA, VACUUM: the PHYSICS of NOTHING L.B. Okun ABSTRACT
    CERN/TH.7460/94 VACUA, VACUUM: THE PHYSICS OF NOTHING L.B. Okun Theoretical Physics Division, CERN CH - 1211 Geneva23 and ) ITEP, Moscow 117259, Russia ABSTRACT The origin and the early history of several ideas concerning p ossible prop er- ties of the vacuum are brie y sketched. The topics include the CP prop erties of the vacuum, the p ossible existence of a mirror world, phase transitions in the early universe, the vacuum domain walls, and the decay of the false vacuum. Presented at the International Conference on: "The History of Original Ideas and Basic Discoveries in Particle Physics" Erice, Italy, 29 July - 4 August 1994 (Tobe published in the Proceedings of the Conference) ) Permanent address. CERN-TH.7460/94 Octob er 1994 1. Intro duction To think is dicult. This is my p ersonal exp erience. To think ab out nothing is more dicult than ab out something. But this is not the only reason why there exists an old and fruitful tradition of attributing complex prop erties to the vacuum. In this century alone we had such outstanding examples as the ether, the Dirac sea and the non-vanishing vacuum exp ectation values of elds. Sometimes, when using the word \vacuum", physicists do not really mean the vacuum itself, but certain virtual states of particles. For instance, the p olarization of vacuum by a photon is not di erent from any other one-lo op (or many-lo op) Feynman diagram with two (or more than two) external lines. We are dealing here with particles, not with vacuum.
    [Show full text]
  • Lev Landau Was Never to Work Again, He Was Awarded the Nobel Prize Later That Year and His Legacy Lives on to This Day Lev Landau: Physicist and Revolutionary
    A near-fatal accident 40 years ago robbed theoretical physics of one its greatest minds. Although Lev Landau was never to work again, he was awarded the Nobel prize later that year and his legacy lives on to this day Lev Landau: physicist and revolutionary Alexei Kojevnikov LANDAU requires no introduction. He is too well known, al- RCHIVES though not quite as well understood. Several generations A ISUAL of theoretical physicists learned their trade by struggling V through the 10 volumes of his famous Course of Theoretical EGRÈ Physics – known colloquially as Landau and Lifshitz – which S MILIO Landau supervised, although he did not write a single word. AIP E Several dozen physicists – some absolutely first-class – contin- ued to identify themselves as members of the Landau school long after they became scientists in their own right. About a dozen landmark results in physics bear his name. If one were to choose his most important breakthroughs, these would probably be his theory of phase transitions (1937), the theory of superfluidity in liquid helium (1941), the Ginzburg– Landau phenomenological theory of superconductivity (1950) and the Landau “Fermi-liquid” theory (1956). But his fame is Lev Davidovich Landau (1908–1968) was one of the most influential certainly much greater than these concrete results alone might theoretical physicists of the 20th century, winning the 1962 Nobel Prize for suggest – even if one were to include other formulae, such as Physics for his pioneering theories of condensed matter. the Landau diamagnetism of free electrons (1930) or Landau damping in plasmas (1946). Landau’s published papers are so capital, to the middle-class Jewish family of a petroleum en- laconic – consisting mainly of formulae and a few categorical gineer.As a child, Landau was a prodigy and enfant terrible, and statements on what is right and what is wrong, without suf- to some extent he retained childish characteristics well into ficient explanation – that even professional physicists often adult life.
    [Show full text]
  • Physics in a Mad World
    9281_9789814619288_tp.indd 1 5/8/15 9:35 am May 2, 2013 14:6 BC: 8831 - Probability and Statistical Theory PST˙ws This page intentionally left blank :RUOG6FLHQWLÀF 9281_9789814619288_tp.indd 2 5/8/15 9:35 am Published by :RUOG6FLHQWL¿F3XEOLVKLQJ&R3WH/WG 7RK7XFN/LQN6LQJDSRUH 6$RI¿FH:DUUHQ6WUHHW6XLWH+DFNHQVDFN1- .RI¿FH6KHOWRQ6WUHHW&RYHQW*DUGHQ/RQGRQ:&++( British Library Cataloguing-in-Publication Data $FDWDORJXHUHFRUGIRUWKLVERRNLVDYDLODEOHIURPWKH%ULWLVK/LEUDU\ 7UDQVODWLRQIURP5XVVLDQE\-DPHV0DQWHLWK &RYHUGHVLJQE\$QQD/RYVN\ PHYSICS IN A MAD WORLD &RS\ULJKWE\:RUOG6FLHQWL¿F3XEOLVKLQJ&R3WH/WG $OOULJKWVUHVHUYHG7KLVERRNRUSDUWVWKHUHRIPD\QRWEHUHSURGXFHGLQDQ\IRUPRUE\DQ\PHDQV HOHFWURQLFRUPHFKDQLFDOLQFOXGLQJSKRWRFRS\LQJUHFRUGLQJRUDQ\LQIRUPDWLRQVWRUDJHDQGUHWULHYDO system now known or to be invented, without written permission from the publisher. )RUSKRWRFRS\LQJRIPDWHULDOLQWKLVYROXPHSOHDVHSD\DFRS\LQJIHHWKURXJKWKH&RS\ULJKW&OHDUDQFH &HQWHU,QF5RVHZRRG'ULYH'DQYHUV0$6$,QWKLVFDVHSHUPLVVLRQWRSKRWRFRS\ LVQRWUHTXLUHGIURPWKHSXEOLVKHU ,6%1 ,6%1 SEN 3ULQWHGLQ6LQJDSRUH Lakshmi - Physics in a Mad World.indd 1 21/7/2015 11:14:59 AM August 17, 2015 11:16 ws-procs9x6x11pt-9x6 9281-00-TOC page v CONTENTS Preface ix M. Shifman Introduction: Information and Musings 1 M. Shifman Part I. Houtermans Professor Friedrich Houtermans. Works, Life, Fate 91 Victor Frenkel 1. Introduction 93 2. Beginnings 95 3. G¨ottingen 99 4. Berlin 107 5. 1933 119 6. London 125 7. Impressions of Kharkov 129 8. Kharkov: 1935-1937 141 9. Arrests 151 10. Last Months in the USSR (From Charlotte Houtermans’ Diary) 157 11. Descent into the Prisons: 1937-39 172 12. From Desperation to Hope (Continuation of Charlotte Houtermans’ Diary) 180 13. Fighting for Freedom 194 14. Descent into the Prisons: 1939-40 205 15. The Bridge over the River Bug 210 v July 27, 2015 16:53 ws-procs9x6x11pt-9x6 9281-00-TOC page vi vi Contents 16.
    [Show full text]
  • Dmitri Ivanenko
    SCIENCE NEWSLETTER Faculty of Physics, M.V. Lomonosov Moscow State University 1/2014 HOW TO EDUCATE REAL PHYSICISTS Interview with the Dean of the Faculty of Physics, Lomonosov Moscow State University, Prof. N.N. Sysoev taken by Andrew Shmarov and Dan Medovnikov for the project Page 42 (page 42.ru) in February 2014. From basic science to engineering In this issue: ndrew Shmarov: What is this new trend — Engineer- Aing at the Faculty of Physics? Faculty of Physics, Lomonosov Mos- cow State University is seemingly Scientific News 1 an absolutely academic story. And suddenly, words such as engineer- Awards 10 ing... Is that correct that you run Dissertations 12 mostly R&D, rather than engineer- ing? Conferences 14 Nikolay Sysoev: We do both Scientists of Faculty of R&D and design & development Physics, Lomonosov Moscow (D&D) nowadays. The matter is that State University 16 the situation has been changed both in our country and surely in Face-to-School 19 the World. Previously, we were most- ly engaged in basic research and Dan Medovnikov: When I start- then our results were implemented ed to study Physics as a student at at applied institutions. Now, this Lomonosov Moscow State University, does not work. Therefore, in order to my first thoughts were that I came survive, make money and teach our to the temple of high science, will students not only basic research, but do pure theory, will write a beauti- also applications, innovative devel- ful formula on the blackboard. By opments, we try to give them not contrast, first thing I was forced to only the fundamental knowledge, but work on during the first year — an also engineering.
    [Show full text]