Everything About Reggeons” and It Will Consist of Four Parts: 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dmitri Diakonovlooks at Some of the Work Behind Two Equations That Play
QCD QCD scattering: from DGLAP to BFKL Dmitri Diakonov looks at some of the work behind two equations that play a vital role in calculating QCD scattering processes at today’s high-energy particle colliders. Most particle physicists will be familiar with two famous abbrevia- tions, DGLAP and BFKL, which are synonymous with calculations of high-energy, strong-interaction scattering processes, in particular nowadays at HERA, the Tevatron and most recently, the LHC. The Dokshitzer-Gribov-Lipatov-Alterelli-Parisi (DGLAP) equation and the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation together form the basis of current understanding of high-energy scattering in quantum chromodynamics (QCD), the theory of strong interactions. The cel- ebration this year of the 70th birthday of Lev Lipatov (p33), whose name appears as the common factor, provides a good occasion to look back at some of the work that led to the two equations and its roots in the theoretical particle physics of the 1960s. Quantum field theory (QFT) lies at the heart of QCD. Fifty years ago, however, theoreticians were generally disappointed in their attempts Vladimir Gribov (seen here in 1979) led the group in Leningrad, now St Petersburg, that began to apply QFT to strong interactions. They began to develop methods workn o high-energy scattering in the 1960s. (Courtesy D Diakonov.) to circumvent traditional QFT by studying the unitarity and analyticity constraints on scattering amplitudes, and extending Tullio Regge’s invariant energy of the reaction. ideas on complex angular momenta to relativistic theory. It was At some point Lipatov joined Gribov in the project and together around this time that the group in Leningrad led by Vladimir Gribov, they studied not only deep inelastic scattering but also the inclusive which included Lipatov, began to take a lead in these studies. -
Regge Poles and Elementary Particles
Regge poles and elementary particles R J EDEN Cavendish Laboratory, University of Cambridge Contents Page 1. Introduction . 996 1.l. Preliminary remarks . 996 1.2. Units . 997 1.3. Quantum numbers . 998 1.4. Two-body reactions . 998 1.5. Resonances and particles , . 999 1.6. Kinematics of r;N collisions . 1001 1.7. The physical scattering region . 1002 1.8. Cross sections and collision amplitudes . 1003 2. Experimental survey . I 1005 2.1. Total cross sections. 1006 2.2. Phases of forward amplitudes . 1007 2.3. Elastic cross sections (integrated) . 1008 2.4. Differential elastic cross sections . 1009 2.5. Exchange cross sections . 1010 2.6. Backward scattering . 1012 2.7. Polarization and spin parameters . 1013 2.8. Large-angle scattering . 1013 2.9. Quasi-two-body reactions . 1013 2.10. Photoproduction . 1014 2.1 1. Multiparticle production . * 1015 2.12. Inclusive reactions . 1016 3. Theoretical survey . 1017 3.1. Relativistic kinematics for two-body collisions . 1017 3.2. Analyticity and crossing symmetry . 1018 3.3. Dispersion relations . 1020 3.4. Scattering amplitudes and the S matrix . 1020 3.5. Partial wave expansions . 1021 3.6. Resonances and Regge poles . 1022 4. Basic ideas in Regge theory . 1023 4.1. Regge trajectories and sequences of particles . 1023 4.2. Exchanged trajectories and high-energy behaviour . 1025 4.3. Extended partial wave amplitudes and Regge poles . 1027 4.4. Partial wave series and the Sommerfeld-Watson tra.nsform . 1029 4.5. Branch cuts in the angular momentum plane . 1031 5. Applications of Regge pole models . 1032 5.1. Preliminary summary of properties . -
Arxiv:1909.05177V2 [Hep-Th] 16 Jan 2020 3 Regge Theory 20 3.1 the Regge Limit 20 3.2 Complex Angular Momentum 22 3.3 Regge Poles 25
SciPost Physics Lecture Notes Submission QMUL-PH-19-25 Aspects of High Energy Scattering C. D. White1* 1 Centre for Research in String Theory, School of Physics and Astronomy, Queen Mary University of London, 327 Mile End Road, London E1 4NS, UK * [email protected] January 17, 2020 Abstract Scattering amplitudes in quantum field theories are of widespread interest, due to a large number of theoretical and phenomenological applications. Much is known about the possible behaviour of amplitudes, that is independent of the details of the underlying theory. This knowledge is often neglected in modern QFT courses, and the aim of these notes - aimed at graduate students - is to redress this. We review the possible singularities that amplitudes can have, before examining the generic behaviour that can arise in the high-energy limit. Finally, we illustrate the results using examples from QCD and gravity. Contents 1 Motivation 2 2 Scattering and the S-matrix 3 2.1 The S-matrix 3 2.2 Properties of the S-matrix 6 2.3 Analyticity 9 2.4 Physical regions and crossing 16 arXiv:1909.05177v2 [hep-th] 16 Jan 2020 3 Regge Theory 20 3.1 The Regge limit 20 3.2 Complex angular momentum 22 3.3 Regge poles 25 4 Examples in QCD and gravity 28 4.1 High energy scattering in QCD 28 4.2 High energy scattering in gravity 32 References 34 1 SciPost Physics Lecture Notes Submission 1 Motivation Much research in contemporary theoretical high energy physics involves scattering amplitudes (see e.g. refs. [1, 2] for recent reviews), which are themselves related to the probabilities for interactions between various objects to occur. -
ELEMENTARY PARTICLES in PHYSICS 1 Elementary Particles in Physics S
ELEMENTARY PARTICLES IN PHYSICS 1 Elementary Particles in Physics S. Gasiorowicz and P. Langacker Elementary-particle physics deals with the fundamental constituents of mat- ter and their interactions. In the past several decades an enormous amount of experimental information has been accumulated, and many patterns and sys- tematic features have been observed. Highly successful mathematical theories of the electromagnetic, weak, and strong interactions have been devised and tested. These theories, which are collectively known as the standard model, are almost certainly the correct description of Nature, to first approximation, down to a distance scale 1/1000th the size of the atomic nucleus. There are also spec- ulative but encouraging developments in the attempt to unify these interactions into a simple underlying framework, and even to incorporate quantum gravity in a parameter-free “theory of everything.” In this article we shall attempt to highlight the ways in which information has been organized, and to sketch the outlines of the standard model and its possible extensions. Classification of Particles The particles that have been identified in high-energy experiments fall into dis- tinct classes. There are the leptons (see Electron, Leptons, Neutrino, Muonium), 1 all of which have spin 2 . They may be charged or neutral. The charged lep- tons have electromagnetic as well as weak interactions; the neutral ones only interact weakly. There are three well-defined lepton pairs, the electron (e−) and − the electron neutrino (νe), the muon (µ ) and the muon neutrino (νµ), and the (much heavier) charged lepton, the tau (τ), and its tau neutrino (ντ ). These particles all have antiparticles, in accordance with the predictions of relativistic quantum mechanics (see CPT Theorem). -
E-36: the First Proto-Megascience Experiment at NAL
FERMILAB-PUB-16-523 ACCEPTED !"#$%&'()&*+,-.&/,0.0"1)23-4+)54)&!67),+8)5.&3.&9:; Vitaly!S.!Pronskikh! Fermi!National!Accelerator!Laboratory,!Batavia,!USA! <5.,0=>4.+05& E-36,!an!experiment!,-!small!angle!proton-proton!scattering9!began!testing!equipment!in!the!National Accelerator!Laboratory’s!newl'!achieved!100-GeV!beam!on!February!12,!1972,!marking!the!beginning!of NAL’s!experimental!program.!This!experiment9!which!drew!collaborators!from!NAL9!Joint!Institute!for Nuclear! Research! (JINR! a$! Dubna,! USSR),! the! University! of! Rochester! (Rochester,! New! YorkV! and Rockefeller!University!(New!York!City)!was!significant!not!only!as!a!milestone!in!Fermilab’s!history!but!also as!%!model!of!cooperation!between!the!East!and!West!at!a!time!when!Cold!War!tensions!still!ran!high.!An examination!of!the!origin,!operation,!a-H!resoluti,-!of!E-?@!and!th2!chain!of!experiments!it!spawned reveals!the!complex!interplay!oO!science!and!politics!tha$!drove!these!experiments!as!well!as!seed.!of!the megascience!paradig3!that!has!come!to!dominate!high-energy!physi6.!research!since!the!1970s. !67),+8)5.&3()3=&0?&@AB& Quantum!chromodynamics!(QCD)! only! bega-! t,! emerge! whe-! asymptotic! freedom! was! discusseH! by! David!Gross,!Frank!Wilczek19!and!David!Politzer2!in!the!early!seventies,!when!E36!was!already!underway)! Despite!the!fact!that!QCU!is!currentl'!a!standard!tool!fo+!the!calculation!of!hadron!scattering!amplitudes,! its! application! to! the! study! of! many! processes! measured! at! high-energy! accelerators! is! still! quite! complicated)! -
Strong Interactions of Hadrons at High Energies
This page intentionally left blank STRONG INTERACTIONS OF HADRONS AT HIGH ENERGIES V. N. Gribov was one of the creators of high energy elementary particle physics and the founder of the Leningrad school of theoretical physics. This book is based on his lecture course for graduate students. The lec- tures present a concise, step-by-step construction of the relativistic theory of strong interactions, aiming at a self-consistent description of the world in which total hadron interaction cross sections are nearly constant at very high collision energies. Originally delivered in the mid-1970s, when quarks were fighting for recognition and quantum chromodynamics had barely been invented, the content of the course has not been ‘modern- ized’. Instead, it fully explores the general analyticity and cross-channel unitarity properties of relativistic theory, setting severe restrictions on the possible solution that quantum chromodynamics, as a microscopic theory of hadrons and their interactions, has yet to find. The book is unique in its coverage: it discusses in detail the basic properties of scattering ampli- tudes (analyticity, unitarity, crossing symmetry), resonances and electro- magnetic interactions of hadrons, and it introduces and studies reggeons and, in particular, the key player – the ‘vacuum regge pole’ (pomeron). It builds up the field theory of interacting pomerons, and addresses the open problems and ways of attacking them. Vladimir Naumovich Gribov received his Ph.D. in theoretical physics in 1957 from the Physico-Technical Institute in Leningrad, and be- came the head of the Theory Division of the Particle Physics Department in 1962. From 1971, when the Petersburg (Leningrad) Institute for Nu- clear Physics was organized, Gribov led the Theory Division of the Insti- tute. -
1 Early String Theory As a Challenging Case Study for Philosophers Elena Castellani Dipartimento Di Filosofia, Universit`Adi Firenze
1 Early string theory as a challenging case study for philosophers Elena Castellani Dipartimento di Filosofia, Universit`adi Firenze 1.1 Introduction The history of the origins and first developments of string theory, from Veneziano’s formulation of his famous scattering amplitude in 1968 to the so- called first string revolution in 1984, provides invaluable material for philo- sophical reflection. The reasons why this episode in the history of modern physics – one still largely unknown to the philosophy of science community despite its centrality to theoretical physics – represents a particularly in- teresting case study are several and of various nature. It is the aim of the present Chapter to illustrate some of them. In general, the story of the construction of a new scientific theory has an evident interest in itself, as a concrete example of how a particular theory has been discovered and developed by a given community and over a certain period of time. On the other hand, case studies taken from the history of sci- ence are commonly used, by those philosophers of science who pay attention to actual scientific practice, to provide some evidence for or against given positions on traditional epistemological or methodological issues. In other words, historical case studies are attributed, with respect to philosophical ‘theories’ on given aspects of the scientific enterprise, a role analogous to that of the data of experience in scientific theories. These aspects can be of a very general character, such as those regarding the methodology, aim and evaluation of scientific theories; or of a more specific kind, such as the significance of a certain principle, argument or concept. -
Pál Nyíri and Joana Breidenbach, University of Oxford
Volume 20, Number 2 LIVING IN TRUTH: PHYSICS AS A WAY OF LIFE Pál Nyíri and Joana Breidenbach, University of Oxford © 2002 Pal Nyiri and Joana Breidenbach All Rights Reserved The copyright for individual articles in both the print and online version of the Anthropology of East Europe Review is retained by the individual authors. They reserve all rights other than those stated here. Please contact the managing editor for details on contacting these authors. Permission is granted for reproducing these articles for scholarly and classroom use as long as only the cost of reproduction is charged to the students. Commercial reproduction of these articles requires the permission of the authors. What does it mean to live in truth? Putting people today. After the war, nuclear physics in it negatively is easy enough: it means not particular attracted young people around the lying, not hiding, and not dissimulating. – world as not just the key to powerful weapons Milan Kunderai and unlimited energy but also the answer to fundamental questions about the structure of the The figure of the physicist has a particular universe. Until the late sixties, faith in progress fascination for the popular imagination, and the was as strong a driving force in the Soviet Union figure of the Soviet physicist carries as it was in the West, and physics was seen as connotations of James Bond-ian villainy or, for the central means to that end. Here in particular, the more highbrow, a technocratic elite that countless talented young people studied it. Why? benefited from a good education provided by an To begin with, physics had a solid oppressive society. -
Derivation of Regge Trajectories from the Conservation of Angular Momentum in Hyperbolic Space
Send Orders for Reprints to [email protected] 4 The Open Nuclear & Particle Physics Journal, 2013, 6, 4-9 Open Access Derivation of Regge Trajectories from the Conservation of Angular Momentum in Hyperbolic Space * B.H. Lavenda Università degli Studi, Camerino 62032, MC, Italy Abstract: Regge trajectories can be simply derived from the conservation of angular momentum in hyperbolic space. The condition to be fulfilled is that the hyperbolic measure of distance and the azimuthal angle of rotation in the plane be given by the Bolyai-Lobachevsky angle of parallelism. Resonances or bound states that lie along a Regge trajectory are relativistic rotational states of the particle that are quantized by the condition that the difference in angular momentum between the rest mass, assumed to be the lead particle on the trajectory, and the relativistic rotational state is an integer. Since the hyperbolic expression for angular momentum is entirely classical, it cannot take into account signature, and whether exchange degeneracy is broken or not. However, the changes in the angular momentum are in excellent agreement with non-exchange degeneracy which assumes four different rest masses in the case of , , a2, and f mesons trajectories, as well as in the case where there is only one rest mass in exchange degeneracy. A comparison is made between the critical and supercritical Pomeron trajectories; whereas the former has resonaces with higher masses, it has corresponding smaller linear dimensions. Keywords: Regge trajectories, conservation of angular momentum in hyperbolic space, relativistic rotational states. INTRODUCTION center of mass of the tube. The motion is considered relativistic, but since a uniform rotating string is not an Regge trajectories link bound states and resonances with inertial system, the Lorentz contraction cannot be employed. -
List of Publications Peter Goddard
List of Publications Peter Goddard 1. Anomalous Threshold Singularities in S-Matrix Theory Il Nuovo Cimento 59A, 335{355 (1969). 2. Nonphysical Region Singularities of the S-Matrix Journal of Mathematical Physics 11, 960{974 (1970). 3. with A.R. White TCP Signature and Non-Compact Covariance Conditions in Crossed Partial Wave Analysis: The Three Reggeon Vertex Nuclear Physics B17, 45{87 (1970). 4. with A.R. White The Three Reggeon Vertex: Analyticity, Asymptotics and the Toller Pole Model Nuclear Physics B17, 88{116 (1970). 5. with A.R. White Complex Helicity and the Sommerfeld-Watson Transform of Group Theoretic Expansions Il Nuovo Cimento 1A, 645{679 (1971). 6. with A.R. White Landau Singularities in Multi-Regge Theory and Fixed Angle Behaviour Il Nuovo Cimento 3A, 25{44 (1971). 7. with P.H. Frampton and D.A. Wray Perturbative Unitarity of Dual Loops Il Nuovo Cimento 3A, 755{762 (1971). 8. Analytic Renormalisation of Dual One Loop Amplitudes Il Nuovo Cimento 4A, 349{362 (1971). 9. with R.C. Brower Generalised Virasoro Models Lettere al Nuovo Cimento 1, 1075{1081 (1971). 10. with R.E. Waltz One Loop Amplitudes in the Model of Neveu and Schwarz Nuclear Physics B34, 99{108 (1971). 11. with R.C. Brower Collinear Algebra for the Dual Model Nuclear Physics B40, 437{444 (1972). 1 12. with R.C. Brower Physical States in the Dual Resonance Model Proceedings of the International School of Physics \Enrico Fermi" Course LIV (Aca- demic Press, New York and London, 1973) 98{110. 13. with A.R. White The Zero in the Three Pomeron Vertex Physics Letters 38B, 93{98 (1972). -
1 Hadronic Regge Trajectories in the Resonance Energy Region
Hadronic Regge Trajectories in the Resonance Energy Region A.E. Inopin Department of Physics and Technology, V.N. Karazin Kharkov National University, Kharkov 61077, Ukraine & Virtual Teacher Ltd., Vancouver, Canada. Nonlinearity of hadronic Regge trajectories in the resonance energy region has been proved. Contents I. Introduction 2 II. Theoretical Models 2 II.1. h–expansion model 2 II.2. K-deformed alg ebra model 7 II.3. String models 9 a) Olsson model 9 b) Soloviev string quark model (SQM) 12 c) Burakovsky-Goldman string model 16 d) Sharov string model 19 II.4. Nonrelativistic quark models 22 a) Inopin model 22 b) Fabre de La Ripelle model 27 c) Martin model 32 II.5. Spectrum generating algebra model(s) 33 II.6. Relativistic and semirelativistic models 38 a) Basdevant model 38 b) Semay model 40 c) Relativistic flux tube model (RFT) 41 d) Point form of relativistic quantum mechanics 43 e) Semiclassical relativistic model 44 f) ‘t Hooft 1/N c model 46 g) Dominantly orbital state description (DOS) 50 h) Durand model 51 i) Relativistic model of Martin 54 j) Nambu-Jona-Lasinio model of Shakin 55 k) Lagae model 56 II.7. WKB -type models 57 a) Bohr-Sommerfeld quantization and meson spectroscopy 57 b) Fokker -type confinement models of Duviryak 60 II.8. Cylindrically deformed quark bag model 62 II.9. Phenomenological and analytic interpolating models 64 a) Sergeenko model 64 b) Filipponi model 69 II.10. Results based solely on work with PDG 70 a) Analysis of Tang and Norbury 70 b) Naked about hadronic RT 74 II.11. -
Interactions in Higher-Spin Gravity: a Holographic
Interactions in Higher-Spin Gravity: A Holographic Perspective Dissertation by Charlotte Sleight Interactions in Higher-Spin Gravity: A Holographic Perspective Dissertation an der Fakult¨atf¨urPhysik der Ludwig{Maximilians{Universit¨at M¨unchen vorgelegt von Charlotte Sleight aus Hull, Großbritannien M¨unchen,den 2. Mai 2016 Dissertation Submitted to the faculty of physics of the Ludwig{Maximilians{Universit¨atM¨unchen by Charlotte Sleight Supervised by Prof. Dr. Johanna Karen Erdmenger Max-Planck-Institut f¨urPhysik, M¨unchen 1st Referee: Prof. Dr. Johanna Karen Erdmenger 2nd Referee: Prof. Dr. Dieter L¨ust Date of submission: May 2nd 2016 Date of oral examination: July 26th 2016 To my dad, sister, and the wonderful memory of my mum. \Die Probleme werden gel¨ost,nicht durch Beibringen neuer Erfahrungen, sondern durch Zusammenstellung des l¨angstBekannten." | Ludwig Wittgenstein Zusammenfassung Die vorliegende Dissertation widmet sich der Untersuchung der H¨ohereSpin-Gravitation auf einem Anti-de-Sitter-Raum (AdS). Es gibt Hinweise darauf, dass dem Hochen- ergiebereich der Quantengravitation eine große (H¨ohereSpin-) Symmetriegruppe zu- grundeliegt und somit eine m¨ogliche effektive Beschreibung dieses Beriechs durch eine H¨ohereSpin-Theorie gegeben ist. Die Reaslisierung einer Quantengravitation mit dieser Symmetrie ist insbesondere in der String Theorie bei hohen Energien gegeben, wenn die Stringspannung vernachl¨assigtwerden kann. Die Untersuchung der H¨ohereSpin-Theorien ist von physikalischer Relevanz, weil ihre unendlichdimensionale Symmetrie als Leitprinzip verwendet werden kann, um neue Erkenntnisse ¨uber die Quantengravitation bei Energien jenseits der heute experimen- tall erreichbaren Energieskalen zu gewinnen. Es muss dabei ber¨ucksichtigt werden, dass die verf¨ugbarennichtlinearen Formulierungen der H¨ohere-Spin-Theorien unendlich viele Hilfsfelder mit einschließen, so dass selbst grundlegende Eigenschaften wie Unitarit¨at oder Kausalit¨atnoch nicht vollst¨andigverstanden sind.