Diversity, Ultrastructure, and Comparative Genomics of “Methanoplasmatales”, the Seventh Order of Methanogens

Total Page:16

File Type:pdf, Size:1020Kb

Diversity, Ultrastructure, and Comparative Genomics of “Methanoplasmatales”, the Seventh Order of Methanogens Diversity, ultrastructure, and comparative genomics of “Methanoplasmatales”, the seventh order of methanogens Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) am Fachbereich Biologie der Philipps-Universität Marburg vorgelegt von Kristina Lang, geb. Paul aus Herborn Universitätsstadt Marburg, 2014 Marburg (Lahn), 2014 Die Untersuchungen zur vorliegenden Arbeit wurden von Oktober 2011 bis Oktober 2014 am Max-Planck-Institut für terrestrische Mikrobiologie in Marburg unter der Leitung von Prof. Dr. Andreas Brune durchgeführt. Vom Fachbereich Biologie der Philipps-Universität Marburg als Dissertation angenommen am: 20.10.2014 Erstgutachter: Prof. Dr. Andreas Brune Zweitgutachter: Prof. Dr. Rudolf K. Thauer Tag der Disputation: 09.12.2014 Die in dieser Dissertation beschriebenen Ergebnisse sind in folgenden Publikationen veröffentlicht bzw. zur Veröffentlichung vorgesehen: Paul K, Nonoh JO, Mikulski L, and Brune A. (2012). “Methanoplasmatales,” Thermoplasmatales-related archaea in termite guts and other environments, are the seventh order of methanogens. Appl. Environ. Microbiol.78, 8245–8253. Lang K, Schuldes J, Klingl A, Daniel R, and Brune, A. Comparative genome analysis of “Candidatus Methanoplasma termitum” indicates a new mode of energy metabolism in the seventh order of methanogens. (Eingereicht) Lang K, Mikulski L, Dietrich C, Meuser K, and Brune A. Methanogenic community structure in the digestive tracts of tropical millipedes. (In Vorbereitung) Dietrich C, Nonoh JO, Lang K, Mikulski L, Meuser K, Köhler T, Boga HI, Ngugi DK, Sillam-Dussès D, and Brune A. Not coevolution but host specificity and habitat selection drive archaeal community structure in arthropod guts. (In Vorbereitung) Table of Content Summary ................................................................................................................... 1 Zusammenfassung ................................................................................................... 3 General Introduction ................................................................................................ 6 1.1 Methane ............................................................................................................ 7 1.2 Methanogenic archaea ...................................................................................... 7 1.3 Methanogenic pathways ................................................................................... 8 1.4 Methanogenesis in arthropods ........................................................................ 11 1.5. The uncultured Thermoplasmatales ............................................................... 12 1.6. Aims ............................................................................................................... 14 1.7 References ...................................................................................................... 15 “Methanoplasmatales”: Thermoplasmatales-related archaea in termite guts and other environments are the seventh order of methanogens .............................. 22 2.1 Abstract ........................................................................................................... 23 2.2 Introduction ..................................................................................................... 24 2.3 Material and Methods ...................................................................................... 26 2.4 Results ............................................................................................................ 29 2.5 Discussion ....................................................................................................... 38 2.6 Acknowledgments ........................................................................................... 44 2.7 References ...................................................................................................... 44 Comparative genome analysis of “Candidatus Methanoplasma termitum” indicates a new mode of energy metabolism in the seventh order of methanogens .......................................................................................................... 50 3.1 Abstract ........................................................................................................... 52 3.2 Introduction ..................................................................................................... 53 I 3.3 Material and Methods ...................................................................................... 55 3.4 Results and Discussion ................................................................................... 58 3.5 Acknowledgments ........................................................................................... 79 3.6 References ...................................................................................................... 80 3.7 Supplementary Information ............................................................................. 87 Methanogenic community structure in the digestive tracts of tropical millipedes ................................................................................................................................. 93 4.1 Abstract ........................................................................................................... 94 4.2 Introduction ..................................................................................................... 95 4.3 Material and Method ....................................................................................... 97 4.4 Results ............................................................................................................ 99 4.5 Discussion ..................................................................................................... 110 4.6 Acknowledgments ......................................................................................... 117 4.7 References .................................................................................................... 117 Not coevolution but host specificity and habitat selection drive archaeal community structure in arthropod guts ............................................................. 123 5.1 Abstract ......................................................................................................... 125 5.2 Introduction ................................................................................................... 126 5.3 Material and Methods .................................................................................... 128 5.4 Results .......................................................................................................... 132 5.5 Discussion ..................................................................................................... 161 5.6 Acknowledgements ....................................................................................... 166 5.7 References .................................................................................................... 166 5.8 Supplementary Information ........................................................................... 173 General Discussion .............................................................................................. 176 6.1 The methyl-reducing pathway ....................................................................... 178 6.2 Evolution of genes involved in methanogenesis ........................................... 181 II 6.3 Cell wall less archaea ................................................................................... 187 6.4 Concluding remarks and future perspective .................................................. 190 6.5 References .................................................................................................... 191 Danksagung .......................................................................................................... 197 Erklärung der Eigenständigkeit ........................................................................... 198 III Summary Summary Methanogenic archaea are strict anaerobes that occur in diverse environments like marine and freshwater sediments, soils, hot springs, sewage sludge and the digestive tracts of animals and humans. Methanogens belong to the phylum Euryarchaeota, which comprises both methanogenic and non-methanogenic orders and many lineages of uncultivated archaea with unknown properties. By a comprehensive phylogenetic analysis, we connected the 16S rRNA gene sequences of one of these deep-branching lineages, distantly related to Thermoplasmatales, to a large clade of unknown mcrA gene sequences, a functional marker for methanogenesis. The analysis suggested that both genes stem from the same organism, indicating the methanogenic nature of this group. This was further confirmed by our two highly enriched cultures of methanogenic archaea, Candidatus Methanoplasma termitum strain MpT1 from a higher termite and strain MpM2 from the millipede gut, which had 16S rRNA genes that fell within in this lineage. Together with the recent isolation of Methanomassiliicoccus luminyensis from human feces, the results of our study supported that the entire lineage, distantly related to the Thermoplasmatales, represents the seventh order of methanogens, the “Methanoplasmatales” (now referred to as Methanomassiliicoccales). To gain deeper insight into this novel order of methanogens, we sequenced and analyzed the genome of Ca. Mp. termitum strain MpT1, and compared it to the three other genomes
Recommended publications
  • (Polyphaga, Chrysomelidae) Amália Torrez
    UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO” INSTITUTO DE BIOCIÊNCIAS – RIO CLARO PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS (BIOLOGIA CELULAR E MOLECULAR) MECANISMOS DE DIFERENCIAÇÃO CROMOSSÔMICA EM BESOUROS DA SUBFAMÍLIA CASSIDINAE S.L. (POLYPHAGA, CHRYSOMELIDAE) AMÁLIA TORREZAN LOPES Tese apresentada ao Instituto de Biociências do Câmpus de Rio Claro, Universidade Estadual Paulista, como parte dos requisitos para obtenção do título de Doutora em Ciências Biológicas (Biologia Celular e Molecular) Rio Claro, São Paulo, Brasil Março de 2016 AMÁLIA TORREZAN LOPES MECANISMOS DE DIFERENCIAÇÃO CROMOSSÔMICA EM BESOUROS DA SUBFAMÍLIA CASSIDINAE S.L. (POLYPHAGA, CHRYSOMELIDAE) Orientadora: Profa. Dra. Marielle Cristina Schneider Tese apresentada ao Instituto de Biociências do Câmpus de Rio Claro, Universidade Estadual Paulista, como parte dos requisitos para obtenção do título de Doutora em Ciências Biológicas (Biologia Celular e Molecular) Rio Claro, São Paulo, Brasil Março de 2016 Lopes, Amália Torrezan 591.15 Mecanismos de diferenciação cromossômica em besouros L864m da subfamília Cassidinae s.l. (Polyphaga, Chrysomelidae) / Amália Torrezan Lopes. - Rio Claro, 2016 145 f. : il., figs., tabs. Tese (doutorado) - Universidade Estadual Paulista, Instituto de Biociências de Rio Claro Orientadora: Marielle Cristina Schneider 1. Genética animal. 2. Cariótipo. 3. Genes ribossomais. 4. Heterocromatina constitutiva. 5. Meiose. 6. Sistema cromossômico sexual. I. Título. Ficha Catalográfica elaborada pela STATI - Biblioteca da UNESP Campus de Rio Claro/SP Dedido este trabalho a família Lopes, Edison, Iriana e Ramon, a minha avó Dulce, e a meu marido Henrique, que sempre apoiaram e incentivaram as minhas escolhas. AGRADECIMENTOS Aos meus pais, Edison Lopes e Iriana Lopes, por todo amor, carinho e compreensão. Por estarem sempre ao meu lado torcendo por mim e ajudando a passar mais esta etapa da vida.
    [Show full text]
  • Biomass Power Project Invertebrates Scoping Level
    Biomass Power Project Invertebrates Scoping level John Irish 21 June 2017 Biodata Consultancy cc P.O. Box 30061, Windhoek, Namibia [email protected] 2 Table of Contents 1 Introduction........................................................................................................................3 2 Approach to study..............................................................................................................3 2.1 Terms of reference..........................................................................................................3 2.2 Methodology...................................................................................................................3 2.2.1 Literature survey..........................................................................................................3 2.2.2 Site visits......................................................................................................................5 3 Limitations and Assumptions.............................................................................................5 4 Legislative context..............................................................................................................6 4.1 Applicable laws and policies...........................................................................................6 5 Results...............................................................................................................................7 5.1 Raw diversity...................................................................................................................7
    [Show full text]
  • EDINBURGH ZOO ANIMAL Inventory
    EDINBURGH ZOO ANIMAL inventory BPC – BREEDING PROGRAMME CATEGORY KEY TO INVENTORY ESB European Stud Book EEP European Endangered Species Programme COLUMN 1 shows animals in collection at start date 1/1/11 ISB International Studbook COLUMN 2 shows arrivals into collection from outside Edinburgh *Managed by RZSS COLUMN 3 shows birth of animal at Edinburgh RLC – IUCN RED LIST CATEGORY EX Extinct 4 COLUMN shows neonates which died <30 days of age EW Extinct in the wild COLUMN 5 shows animals which died >30 days of age CR Critically endangered SPECIES UNDER THREAT EN Endangered 6 COLUMN shows animals which left Edinburgh to other collections VU Vulnerable COLUMN 7 shows animals in collection at end date 31/12/11 NT Near threatened LC Least concern SPECIES NOT UNDER THREAT Format is males. females. unsexed DD Data Deficient NE Not Evaluated THREAT STATUS UNKNOWN 01/01/11 Arrivals Births D.N.S Deaths Dispose 31/12/11 BPC RL MAMMALIA MARSUPIALIA Phascolarctus cinereus adustus Queensland koala 2.0.0 2.0.0 ISB LC Potorous tridactylus Long-nosed potoroo 3.1.0 1.0.1 0.0.1 2.0.0 2.1.0 LC Wallabia bicolor Swamp wallaby 3.4.0 0.0.3 0.0.1 3.4.2 ESB LC Phalanger gymnotis Ground cuscus 1.1.0 1.1.0 LC INSECTIVORA Echinops telfairi Lesser hedgehog tenrec 6.4.0 1.0.0 0.1.0 2.1.0 5.2.0 LC HYRACOIDEA Procavia capensis Rock hyrax 1.4.0 5.6.0 2.6.0 4.4.0 LC XENARTHRA Tolypeutes matacus Southern three-banded armadillo 1.0.0 1.0.0 NT Chaetophractus villosus Large hairy armadillo 0.0.0 1.0.0 1.0.0 LC Myrmecophaga tridactyla Giant anteater 1.1.0 0.0.2 0.0.1 1.1.1
    [Show full text]
  • Antennal Lobe Architecture Across Coleoptera
    RESEARCH ARTICLE Variations on a Theme: Antennal Lobe Architecture across Coleoptera Martin Kollmann1, Rovenna Schmidt1,2, Carsten M. Heuer1,3, Joachim Schachtner1* 1 Department of BiologyÐAnimal Physiology, Philipps-University Marburg, Marburg, Germany, 2 Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig University Gieûen, Gieûen, Germany, 3 Fraunhofer-Institut fuÈr Naturwissenschaftlich-Technische Trendanalysen INT, Euskirchen, Germany * [email protected] a11111 Abstract Beetles comprise about 400,000 described species, nearly one third of all known animal species. The enormous success of the order Coleoptera is reflected by a rich diversity of life- styles, behaviors, morphological, and physiological adaptions. All these evolutionary adap- tions that have been driven by a variety of parameters over the last about 300 million years, OPEN ACCESS make the Coleoptera an ideal field to study the evolution of the brain on the interface Citation: Kollmann M, Schmidt R, Heuer CM, between the basic bauplan of the insect brain and the adaptions that occurred. In the current Schachtner J (2016) Variations on a Theme: study we concentrated on the paired antennal lobes (AL), the part of the brain that is typically Antennal Lobe Architecture across Coleoptera. PLoS ONE 11(12): e0166253. doi:10.1371/journal. responsible for the first processing of olfactory information collected from olfactory sensilla pone.0166253 on antenna and mouthparts. We analyzed 63 beetle species from 22 different families and
    [Show full text]
  • List of the Hungarian Scarabaeoidea with the Description of 1994 Resl S 009
    Autor Název titulu Rok Poznámka Uložení Ádám L. A check - list of the Hungarian Scarabaeoidea with the description of 1994 Resl S 009. ten new taxa Ádám L. A new Psammodius species from Hungary 1989 Coleoptera: Scarabaeoidea Resl S 113. Ádám L. Eine neue Aphodius - Art aus Südanatolien 1979 Coleoptera: Scarabaeidae Resl S 112. Ádám L. New species of the genera Omaloplia and Acarina 1994 Coleoptera: Scarabaeoidea Resl S 111. Ahrens Dirk On the Aphodiinae of Nepal - Himalayas (Coleoptera: Scarabaeidae) 1997 Aphodius - lamjungi; kaskiensis; himalocerus; Resl S 178 angustiarum; eberti; jubingensis; ritsemai; pallidicornis; urostigma; monicae; holdereri; teyrovskyi; wolfgangi; annapurnae; phulcokiensis; fruhstorferi; gregori; nainiensis; furvus; dierli; peculator; atd. Ahrens Dirk Über die Verbreitung einiger Aphodius - Arten in Vorderasien (Col., 1997 Aphodius - tauricola; muchei; satyrus; dauricus Resl S 182 Aphodiinae) Balthasar Vladimír Fauna ČSR svazek 8 Brouci listorozí Lamellicornia díl I Pleurosticti 1956 Lucanidae, Scarabaeidae Resl K Balthasar Vladimír Monographie der Scarabaeidae und Aphodiidae der palaearktischen und 1963 Pinotini, Coprini Resl K orientalischen Region. I.Scarabaeinae, Coprinae Balthasar Vladimír Monographie der Scarabaeidae und Aphodiidae der palaearktischen und 1963 Onitini, Oniticellini, Onthophagini Resl K orientalischen Region. II. Coprinae Balthasar Vladimír Monographie der Scarabaeidae und Aphodiidae der palaearktischen und 1964 Aphodiidae Resl K orientalischen Region. III. Aphodiidae Balthasar Vladimír Neue Onthophagus- Arten von Neu - Guinea und den benachbarten 1969 Inseln. Baraud Jacques Coléoptéres Scarabaeoidea d´Europe 1992 Scarabaeoidea Resl K Baraud Jacques Coléoptéres Scarabaeoidea des Archipels atlantiques: Azores, Canaries 1994 Resl S 110. et Madére Baraud Jacques Coléoptéres Scarabaeoidea. Faune de l´Europe occidentale: Belgique, 1977 Resl K France, Grande - Bretagne, Italie, Péninsule ibérique Baraud Jacques Coléoptéres Scarabaeoidea.
    [Show full text]
  • Pupal Vibratory Signals of a Group-Living Beetle That Deter Larvae Are They Mimics of Predator Cues?
    Communicative & Integrative Biology 5:3, 262–264; May/June 2012; G 2012 Landes Bioscience Pupal vibratory signals of a group-living beetle that deter larvae Are they mimics of predator cues? Wataru Kojima,1,* Yukio Ishikawa1 and Takuma Takanashi2 1Graduate School of Agricultural and Life Sciences; The University of Tokyo; Bunkyo-ku, Tokyo Japan; 2Department of Forest Entomology; Forestry and Forest Products Research Institute; Tsukuba, Ibaraki Japan Pupae of some insects produce sounds or vibrations, but the function of the sounds/vibrations has not been clarified in most cases. Recently, we found vibratory communication between pupae and larvae of a group-living beetle Trypoxylus dichotoma, which live in humus soil. The vibratory signals produced by pupae were shown to deter approaching larvae, thereby protecting themselves. In the present study, we tested our hypothesis that pupal signals are mimics of vibratory noises associated with foraging of moles, the most common predators of T. dichotoma. Mole vibrations played back in laboratory experiments deterred larval approaches in the same way as pupal signals. These findings suggest that to deter conspecific larvae, pupae of T. dichotoma may have exploited a preexisting response of larvae to predator vibrations by © emitting2012 deceptive signals. Landes Bioscience. Insect pupae are generally considered inactive and quiescent, but approaching larvae.5 We tested if the pupal vibrations function as some of them generate air-borne sounds and/or substrate-borne deterring signals to larvae. Pupal cells harboring a live pupa were vibrations.1-4 In 1948, Hinton reviewed the mechanisms of less likely to be broken by larvae than those harboring a dead sound/vibration production in the pupae of Lepidoptera,2 and pupa.5 When pupal vibrations were played back near to vacant suggested a defensive function against predators.
    [Show full text]
  • Functional Compartmentation of the Gut in Wood-Feeding Higher Termites (Nasutitermes Spp.)
    TITLE PAGE ECOLOGICAL AND EVOLUTIONARY DRIVERS OF MICROBIAL COMMUNITY STRUCTURE IN TERMITE GUTS Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) am Fachbereich Biologie der Philipps-Universität Marburg, vorgelegt von Carsten Dietrich aus Erfurt. Universitätsstadt Marburg, 2015 Die Untersuchungen zur folgenden Arbeit wurden von Oktober 2011 bis Februar 2015 am Max-Planck- Institut für terrestrische Mikrobiologie in Marburg in der Forschungsgruppe von Prof. Dr. Andreas Brune durchgeführt. Vom Fachbereich Biologie der Philipps-Universität Marburg als Dissertation angenommen am: 11.05.2015 Tag der Disputation: 27.05.2015 Erstgutachter: Prof. Dr. Andreas Brune Zweitgutachter: Prof. Dr. Roland Brandl Drittgutachter: Prof. Dr. Stefan Rensing III IV Publications Folgende Publikationen sind aus dieser Dissertation entstanden: Brune A und Dietrich C (2015). The termite gut microbiota: Digesting the diversity in the light of ecology and evolution. Ann. Rev. Microbiol. 69. Dietrich C und Brune A (2014). The complete mitogenomes of six higher termite species reconstructed from metagenomic datasets (Cornitermes sp., Cubitermes ugandensis, Microcerotermes parvus, Nasutitermes corniger, Neocapritermes taracua, and Termes hospes). Mitochondr. DNA. Dec 4:1-2. Dietrich C*, Köhler T* und Brune A (2014). The cockroach origin of the termite gut microbiota: patterns in bacterial community structure reflect major evolutionary events. Appl. Environ. Microbiol. 80:2261-2269. Dietrich C*, Nonoh J*, Lang K, Mikulski L, Meuser K, Köhler T, Boga HI, Ngugi DK, Sillam-Dussès S und Brune A (eingereicht). Habitat selection and vertical inheritance drive archaeal community structure in arthropod guts. Köhler T, Dietrich C, Scheffrahn RH und Brune A (2012). High-resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes spp.).
    [Show full text]
  • Bottom, D. Derbyana Lettowvorbecki, Makonde Highland, Tanzania
    Frontispiece. Two characteristic Dicronorhina species, males; top, D. cavifrons, Djougou, Benin; bottom, D. derbyana lettowvorbecki, Makonde highland, Tanzania. TAXONOMIC REVIEW OF THE AFROTROPICAL GENUS DISKONORHINA HOPE, WITH NOTES ON ITS RELATIVES (COLEOPTERA: CETONIIDAE) by R.W. LEKKERKERK and J. KRIKKEN Lekkerkerk, R.W. & J. Krikken: Taxonomic review of the Afrotropical genus Dicronorhina Hope, with notes on its relatives (Coleoptera: Cetoniidae). Zool. Verh. Leiden 233, 9-vii-1986: 1-46, figs. 1-24, frontispiece, tables 1-3. — ISSN 0024-1652. Key words: Coryphocerina; Afrotropical genera; Dicronorhina; key; species; variability. The Afrotropical genus Dicronorhina Hope (= Dicranorrhina auctorum, unjustified emenda- tion) is diagnosed and discussed. The characters of the species, subspecies and varieties are ex- amined, and presented in a synoptic table and in an analytical key. An annotated checklist of the species, subspecies and varieties is given. Three species are recognized; in one species, five subspecies are recognized. Several varieties are discussed. Two new varietal names are proposed. A key to the genera of larger Afrotropical Goliathini with horned males is given. The phylogeny of the Dicronorhina species and their position among the other Afrotropical Coryphocerina is briefly discussed. R.W. Lekkerkerk & J. Krikken, Rijksmuseum van Natuurlijke Historie, Postbus 9517, 2300 RA Leiden, The Netherlands. CONTENTS Introduction 4 Terminology and further explanation 4 The genus Dicronorhina Hope 6 Synoptic table of characters
    [Show full text]
  • EDINBURGH ZOO ANIMAL Inventory
    EDINBURGH ZOO ANIMAL inventory BPC – BREEDING PROGRAMME CATEGORY KEY TO INVENTORY ESB European Stud Book EEP European Endangered Species Programme COLUMN 1 shows animals in collection at start date 01/01/12 ISB International Studbook COLUMN 2 shows birth of animal *Managed by RZSS COLUMN 3 shows arrivals into collection RLC – IUCN RED LIST CATEGORY EW Extinct in the wild SPECIES UNDER THREAT 4 COLUMN shows animals which died >30 days of age CR Critically endangered COLUMN 5 shows animals which left Edinburgh to other collections EN Endangered VU Vulnerable 6 COLUMN shows animals in collection at end date 31/12/12 NT Near threatened SPECIES NOT UNDER THREAT LC Least concern DD Data Deficient THREAT STATUS UNKNOWN Format is males. females. unsexed NE Not Evaluated 01/01/12 Births Arrivals Deaths Departures 31/12/12 BPC RL MAMMALIA MARSUPIALIA Phascolarctus cinereus adustus Koala 2.0.0 2.0.0 ISB LC Phalanger gymnotis Ground cuscus 1.1.0 0.1.0 1.0.0 LC Potorous tridactylus Long-nosed potoroo 2.2.0 1.0.0 3.2.0 0.0.0 LC Wallabia bicolor Swamp wallaby 6.5.0 0.2.2 2.0.0 0.0.1 8.7.1 ESB LC INSECTIVORA Echinops telfairi Lesser hedgehog tenrec 5.2.0 1.0.0 3.2.0 1.0.0 LC HYRACOIDEA Procavia capensis Rock hyrax 4.4.0 0.1.1 1.3.1 3.2.0 LC XENARTHRA Chaetophractus villosus Large hairy armadillo 1.0.0 1.0.0 LC Tolypeutes matacus Southern three-banded armadillo 1.0.0 1.0.0 NT Myrmecophaga tridactyla Giant anteater 1.2.0 0.0.1 0.1.0 1.1.1 EEP NT PRIMATES Eulemur coronatus Crowned lemur 0.0.0 1.1.0 1.1.0 ESB VU Eulemur macaco flavifrons Sclater's lemur 1.1.0
    [Show full text]
  • 2013. Gada Darbības Pārskats
    Eiropas Zoodārzu un akvāriju asociācija (European Association of Zoos and Aquaria) dibināta 1988. gadā. 2013. gada nogalē EAZA apvieno 345 organizācijas no 41 valsts. Rīgas zooloģiskais dārzs EAZA uzņemts 1992. gadā. Apdraudēto sugu Eiropas programmas – EEP (European Endangered Species Programme). 2013. gada nogalē EAZA uztur 388 EEP un Eiropas ciltsgrāmatas – ESB (European Studbook). 2013. gadā Rīgas zooloģiskais dārzs piedalās 67 EEP, ESB u.c. ciltsgrāmatās. Foto: Māris Lielkalns Foto: Mīļie draugi! Starptautiskā sugu uzskaites sistēma – ISIS (International Species Paldies zoodārza darbiniekiem par paveikto! Information System) uztur plašāko dzīvnieku datu Vēlu mūsu kolektīvam veiksmi, labu veselību bāzi pasaules zoodārzos. un nezūdošu entuziasmu mūsu kopīgajā 2013. gadā ISIS apvieno vairāk darbā. Lai zooloģiskajā dārzā nekā 800 dalīborganizāciju no 84 valstīm, uzkrāti dati daudz apmeklētāju, kuru prieks būs mūsu par 2,6 miljoniem dzīvnieku. lielākais gandarījums. Rīgas zoodārzā ISIS ietvaros no 1993. gada lietojam datorizēto dzīvnieku uzskaites programmu ARKS (Animal Record Keeping System), no 2012. gada septembra – jauno uzskaites programmu ZIMS (Zoological Rolands Greiziņš Information Management Rīgas Nacionālā zooloģiskā dārza System). valdes priekšsēdētājs 1 RīGas NacioNālais zooloģiskais dāRzs 2013. Gadā Rīgas zoodārzs dibināts 1912. gada 14. oktobrī. Pašrei- Ūdensvada maģistrālo sadales mezglu remonts un zējā teritorija – 20 ha. pārbūve. 1992. gadā Rīgas zoodārzs iestājās Eiropas Zoodārzu Kanalizācijas maģistrālā cauruļvada smilšu uztvērē- un akvāriju asociācijā – EAZA (European Association of ja tīrīšana un pārbūve. Zoos and Aquaria). Bijušā lācēnu aploka konstrukciju demontāža un te- 1993. gadā izveidota Rīgas zoodārza filiāle “Cīruļi” Liepā- ritorijas labiekārtošana. jas rajona Kalvenes pagastā (pašreizējā teritorija – 132 ha). Bijušās Pērtiķu mītnes āra voljeru konstrukciju de- Rīgas zoodārza līdzšinējais svarīgākais ieguldījums montāža un teritorijas apzaļumošana.
    [Show full text]
  • SYNTHESIS and PHYLOGENETIC COMPARATIVE ANALYSES of the CAUSES and CONSEQUENCES of KARYOTYPE EVOLUTION in ARTHROPODS by HEATH B
    SYNTHESIS AND PHYLOGENETIC COMPARATIVE ANALYSES OF THE CAUSES AND CONSEQUENCES OF KARYOTYPE EVOLUTION IN ARTHROPODS by HEATH BLACKMON Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS AT ARLINGTON May 2015 Copyright © by Heath Blackmon 2015 All Rights Reserved ii Acknowledgements I owe a great debt of gratitude to my advisor professor Jeffery Demuth. The example that he has set has shaped the type of scientist that I strive to be. Jeff has given me tremendous intelectual freedom to develop my own research interests and has been a source of sage advice both scientific and personal. I also appreciate the guidance, insight, and encouragement of professors Esther Betrán, Paul Chippindale, John Fondon, and Matthew Fujita. I have been fortunate to have an extended group of collaborators including professors Doris Bachtrog, Nate Hardy, Mark Kirkpatrick, Laura Ross, and members of the Tree of Sex Consortium who have provided opportunities and encouragement over the last five years. Three chapters of this dissertation were the result of collaborative work. My collaborators on Chapter 1 were Laura Ross and Doris Bachtrog; both were involved in data collection and writing. My collaborators for Chapters 4 and 5 were Laura Ross (data collection, analysis, and writing) and Nate Hardy (tree inference and writing). I am also grateful for the group of graduate students that have helped me in this phase of my education. I was fortunate to share an office for four years with Eric Watson.
    [Show full text]
  • Rigazoo2015.Pdf
    Eiropas Zoodārzu un akvāriju asociācija (European Association of Zoos and Aquaria) dibināta 1988. gadā. 2015. gada nogalē EAZA apvieno 377 organizācijas no 43 valstīm. Rīgas zooloģiskais dārzs EAZA uzņemts 1992. gadā. Apdraudēto sugu Eiropas programmas – EEP (European Endangered Species Programme). 2015. gada nogalē EAZA uztur 395 EEP un Eiropas Foto: Māris Lielkalns Foto: ciltsgrāmatas – ESB (European Studbook). Mīļie kolēģi! 2015. gadā Rīgas zooloģiskais dārzs piedalās 68 EEP, ESB u.c. Paldies zoodārza kolektīvam par godprātīgi veikto ciltsgrāmatās darbu! Pēdējos gados nevaram iepriecināt apmeklētājus ar Starptautiskā sugu jaunām lielajām ekspozīcijām. To cenšamies kompen- uzskaites sistēma – ISIS sēt, uzturot zoodārzu labā kārtībā, savu iespēju robe- (International Species žās sakārtojot esošās ekspozīcijas, veicot labiekārtoša- Information System) nu, veidojot apstādījumus utt., lai apmeklētāji justos uztur plašāko dzīvnieku datu bāzi pasaules pie mums gaidīti. zoodārzos. 2015. gadā Sākot gatavoties mūsu valsts simtgades sagaidīša- ISIS apvieno vairāk nekā nai, cerēsim, ka ar Rīgas pilsētas atbalstu Latvijas simt- 1000 dalīborganizāciju no gandrīz 90 valstīm, gadi varēsim atzīmēt ar sen iecerēto Āfrikas savannas uzkrāti dati par ekspozīciju. Tas būtu labs ieguldījums valsts jubilejā un 3,5 miljoniem dzīvnieku. skaista dāvana gan mūsu apmeklētājiem, gan mums Rīgas zoodārzā ISIS ietvaros no 1993. gada pašiem. lietojam datorizēto Vēlu mūsu darbiniekiem enerģiju, izdomu un varē- dzīvnieku uzskaites šanu, lai varam sevi parādīt no vislabākās puses. programmu ARKS (Animal Record Keeping System), no 2012. gada septembra – jauno uzskaites programmu ZIMS (Zoological Information Management System). Rolands Greiziņš Rīgas Nacionālā zooloģiskā dārza valdes priekšsēdētājs 1 rīgAs nAcionālAis zooloģiskAis Dārzs 2015. gADā Rīgas zoodārzs atvērts 1912. gada 14. oktobrī. Pašrei- 2015. gadā Rīgas zoodārzā vairojās septiņas EEP sugas.
    [Show full text]