The Impact of Airtightness on System Design by Wagdy A.Y

Total Page:16

File Type:pdf, Size:1020Kb

The Impact of Airtightness on System Design by Wagdy A.Y The Impact of Airtightness On System Design By Wagdy A.Y. Anis, AIA t is commonly believed that infiltration is due to poorly weather- Q = C(∆p)n (1) II stripped doors and windows. Although this is partly true, the fact is where 80% or more of infiltration is due to the many imperfections that are Q = volume flow rate, cfm C = Flow coefficient, cfm/(in. designed or built into exterior envelopes. “Will we have enough fresh w.g.)n air to breathe?” is a concern about air-tightening the envelope. ∆p = Pressure difference ANSI/ASHRAE Standard 62-1999, Ventilation for Acceptable Indoor Air n = an exponent ranging be- tween 0.5 and 1.0. An exponent of 0.65 Quality has taken care of that problem. Doesn’t air tightening cause represents many cases of wall and win- sick buildings? To quote, Joseph Lstiburek, Ph.D., P.Eng., Member dow leakage. ASHRAE,1 “in order to control air, you must first contain it.” Figure 1 illustrates the relationship between pressure difference and flow through building openings. Air pressure acting on building enve- that are connected to the building en- Three major sources of air pressure on lopes can wreak havoc with building per- velope. buildings are wind pressure, stack pres- formance if not properly understood and sure, and HVAC fan pressure. Two minor adequately designed for. Uncontrolled air Leakage Characteristics2 pressures are changing barometric air pressure across the building envelope and Air leakage can occur through pores pressure and temperature differentials within the building itself can cause in- in materials, cracks, holes, or other open- across the building envelope. They are filtration and exfiltration that overpower ings. Flow is produced by a pressure dif- inconsequential relative to the three HVAC systems. By disrupting the HVAC ference that provides the energy to over- major pressures. design, pressures can cause discomfort come friction and other losses. Air leak- and create infection control and indoor age transfers heat, water vapor, smoke, Air Leakage From Wind Pressure air quality problems. odors, dust, and other pollutants, either Although peak pressures are important In heating climates, exfiltrating air car- from outdoors into the building or from for structural calculations, mean values are ries with it water vapor and lost energy. sources within the building. more appropriate for computing infiltra- The water vapor condenses and causes Airflow characteristics vary according tion rates. Time-averaged surface pressures many problems, from wetting to bacte- to the size and shape of the opening. Long are proportional to the wind velocity given rial growth and deterioration of the build- paths with small cross-sections may ex- by Bernoulli’s equation, as follows: ing envelope. hibit laminar flow and have resistance 2 ρ U (2) In cooling climates, water vapor is proportional to velocity. Larger holes p = a H v 2 carried in with the infiltrating air, caus- may act like orifices with resistance to g where ing condensation, mold, and bacterial flow varying with the square of velocity. p = surface pressure, lb/ft2 growth. Moisture-laden air can travel Usually, different kinds of openings con- v within interstitial spaces due to nega- tribute to the total leakage. It is not prac- About the Author tive pressures inside those spaces. The tical to identify, measure, or calculate Wagdy Anis, AIA, is a principal and director of moisture can condense in strange each individually. Overall flow rates for Technical Resources at Shepley Bulfinch Richardson places like interior walls and ceilings the aggregate of openings take the form: and Abbott, Boston. ASHRAE Journal|December 2001 31 ∆ Pressure Figure 1: Airflow Difference rate is determined by the size of the hole and the pres- Flow Rate (cfm) sure difference. Area of Opening Figure 2: Stack effect. UH = approach wind speed at up- wind wall height H, ft/s ρ 3 a = outdoor air density, lb/ft g = gravitational acceleration, ft/s2 The difference between pressure on the envelope surface and local outdoor atmospheric pressure at the same level in an undisturbed wind approaching the building is given by Wind Pressure Heating Climate Stack Pressure = ⋅ ps C p pv (3) where 2 ps = difference in pressure, lb/ft Cp = local wind pressure coefficient (depends on ter- rain). Of the three major air pressures, wind is usually the greatest. If the wind hits the building broadside, air infiltrates on the windward side and exfiltrates on the other three sides and through the roof. If the wind hits at an angle, it positively pressurizes two sides, and air exfiltrates on the two leeward sides and through the roof. HVAC Fan Pressure Combined Effect Infiltrating air is unconditioned for temperature and mois- Figure 3: Combined wind, stack and fan pressure. ture content and can contain pollutants. It causes discomfort Absolute air pressure changes more rapidly with height out- and can cause imbalances in spaces such as patient isolation doors than indoors, causing the pressure differential. Mechani- rooms, protected environment rooms, or chemical storage ar- cal and elevator shafts, stairs, and atria connect the bottom of eas that are designed for controlled pressure, thus compromis- the building to the top and transfer the stack pressure at each ing pollutant control. floor to the envelope. Figure 2 illustrates stack effect. Chapters 16 and 26 of the 2001 ASHRAE Handbook—Fun- The taller the building, the higher the stack pressure. In damentals quantify wind pressures on buildings and their ef- heating climates, air exfiltrates at the top and is replaced by air fects on mechanical systems. infiltrating at the bottom of the building. In cooling climates, the opposite occurs. Cold air coming in can cause discomfort Stack Effect at the lower floors and overpower the heating system. In a 40- Have you ever approached the front door of a building in story building, with a 13 ft (4 m) story height, temperatures of winter and found the door really difficult to pull open, and 20°F (–7°C) outdoors and 70°F (21°C) indoors, and assuming then it opened with a “whoosh?” This condition is due to stack openings of equal area at the top and bottom of the building, effect. Stack effect or “chimney effect” in buildings is caused the infiltration stack pressure at street level (and exfiltration by the difference in weight of the column of conditioned air at the top of the building) is 0.4 in. w.g. (100 Pa). inside the building versus the air outside the building. This The design of garage exhaust systems needs to account for difference in weight creates a pressure difference across the stack pressure in the building above. Stack pressure can ex- building envelope. ceed exhaust fan static pressure. If it does, a garage under a 32 December 2001|ASHRAE Journal Mean Normalized Leakage Rate building can be a source of pollutants that are sucked into the 2 Building Type cfm/ft at 0.3 in. w.g. building. A good passive solution to the problem would be to 2 (No. in Sample) (L/s·m at 75 Pa) use vestibules and door weather stripping to isolate and com- Type 1 Data Type 2 Data Type 3 Data partmentalize the garage from the building above at stairs, Multi Unit Residence Buildings elevator shafts, and other physical connections that allow this Canada (12) 0.628 (3.19) stack pressure to connect the building to the garage. Compart- Canada (3) 0.787 (4.00) mentalizing the building horizontally into individual stories Canada (6) 0.636 (3.23) or small groups of a few stories and disconnecting them from Office Buildings the shafts fools the building into acting like a stack of single- Canada (8) 0.488 (2.48) story or low-rise buildings, thereby reducing stack effect. U.S. (7) 1.163 (5.91) Great Britain (12) 1.486 (7.55) Outside air and exhaust fans in multistory apartment build- Great Britain (13) 1.313 (6.67) ings often are not selected to account for stack pressure. Multi- Schools story systems with vertical ducts or shafts, such as bathroom Canada (11) 0.291 (1.48) exhaust systems in hotels, have been known to fail miserably, U.S. (14) 0.480 (2.44) with the bathroom exhaust from lower floors being sucked Commercial into the bathrooms at the upper stories of the building. If pas- Canada (8) 0.266 (1.35) sive compartmentalization is not part of the design, individual U.S. (68) 1.217 (6.18) systems that serve each floor might be necessary to overcome Canada (10) 2.746 (13.95) Industrial stack effect. Controls that include pressure sensors and vari- Great Britain (5) 1.368 (6.95) able speed drives then can adjust fan speed to account for Great Britain (2) 4.433 (22.52) changing pressures on the envelope. Supply systems with ver- Sweden (9) 0.285 (1.45) tical duct distribution shafts have to work against varying pres- Institutional sures during the year. There seems to be no easy solution that Canada (2) 0.169 (0.86) allows the original balancing to work reliably at all times. Type 1 Data: Test performed on whole building; total envelope area (includ- Have you ever noticed how some brick buildings will turn ing below grade) used to calculate NLR at 0.3 in. w.g. (75 Pa) whitish with efflorescence at the top parapet? That is due to air Type 2 Data: Test performed on whole building using different test pres- escaping at the juncture of the top floor’s walls and roof. Mois- sures; Data converted to NLR at 0.3 in. w.g. (75 Pa). ture in the exfiltrating air condenses on the back or within the Type 3 Data: Test performed on individual floors or suites; Exterior wall brick, dissolving salts from the masonry.
Recommended publications
  • Investigation of the Impact of Commercial Building Envelope Airtightness on HVAC Energy Use
    NISTIR 7238 Investigation of the Impact of Commercial Building Envelope Airtightness on HVAC Energy Use Steven J. Emmerich Tim McDowell Wagdy Anis NISTIR 7238 Investigation of the Impact of Commercial Building Envelope Airtightness on HVAC Energy Use Steven J. Emmerich Building and Fire Research Laboratory Timothy P. McDowell TESS, Inc. Wagdy Anis Shepley Bulfinch Richardson and Abbott Prepared for: U.S. Department of Energy Office of Building Technologies June 2005 U.S. Department of Commerce Carlos M. Gutierrez, Secretary Technology Administration Phillip J. Bond, Under Secretary of Commerce for Technology National Institute of Standards and Technology Hratch Semerjian, Acting Director ABSTRACT This report presents a simulation study of the energy impact of improving envelope airtightness in U.S. commercial buildings. Despite common assumptions, measurements have shown that typical U.S. commercial buildings are not particularly airtight. Past simulation studies have shown that commercial building envelope leakage can result in significant heating and cooling loads. To evaluate the potential energy savings of an effective air barrier requirement, annual energy simulations were prepared for three nonresidential buildings (a two-story office building, a one-story retail building, and a four-story apartment building) in 5 U.S. cities. A coupled multizone airflow and building energy simulation tool was used to predict the energy use for the buildings at a target tightness level relative to a baseline level based on measurements in existing buildings. Based on assumed blended national average heating and cooling energy prices, predicted potential annual heating and cooling energy cost savings ranged from 3 % to 36 % with the smallest savings occurring in the cooling-dominated climates of Phoenix and Miami.
    [Show full text]
  • Airbase 6142... [1248Kb]
    House Airtightness Variation with Age M.R. Bassett Building Physicist, Building Research Association of New Zealand Total number of pages( excluding cover page)= 5 Full address/phone/fax Building Research Association of New Zealand Private Bag 50908, Porirua, New Zealand Ph (04)235-7600 Fax (04)235-6070 SUMMARY - This paper focuses on changes to the air tightness of houses in the first year after construction. Monthly blower door results for 7 houses are presented and the seasonal and longer term effects compared with equivalent measurements in a variety of overseas climates. The picture that emerges is of small airtightness changes in stable coastal climates and larger seasonal swings where the summer to winter temperature differences are more extreme. There are some exceptions in the New Zealand data, however, that could be attributed to water leaks in the roofs of two houses .. 1. AIR INFILTRATION AND HOUSE VENTILATION if they exist, or used in comparisons of buildings of different types, age or location around the world. The airtightness of housing has been studied because background air leakage can contribute to ventilation, and hence to building energy efficiency and indoor air quality. There have been considerable changes in building materials and construction methods over the years, and the background ventilation provided by air infiltration has been shown by Bassett (1992) to have generally declined. This has provided the motivation to design and build ventilation systems that more accurately cater for energy efficiency and indoor air quality. There are no targets for house airtightness in NZ building codes, and yet when windows are kept closed for security or soundisolationreasons, air infiltration will be the sole provider of ventilation.
    [Show full text]
  • What Impacts Does Increasing Airtightness Have on Mould, Condensation and Measures of Indoor Air Quality?
    “What impacts does increasing airtightness have on mould, condensation and measures of indoor air quality?” Rapid Review Report V 2.0 Authors Leela Kempton, Daniel Daly, Mark Dewsbury Sustainable Buildings Research Centre, University of Wollongong [email protected] [email protected] Title What impacts does increasing airtightness have on mould, condensation and measures of indoor air quality? ISBN Date September 2020 Keywords Airtightness, Ventilation, Indoor air quality, mould, moisture, condensation Publisher CRC LCL Preferred citation Kempton, L, Daly, D, Dewsbury, M (2020), Rapid Review: What impacts does increasing airtightness have on mould, condensation and measures of indoor air quality? CRC Low Carbon Living, Sydney. Rapid Review - Airtightness 2 Acknowledgements This research is funded by the CRC for Low Carbon Living Ltd supported by the Cooperative Research Centres program, an Australian Government initiative Disclaimer Any opinions expressed in this document are those of the authors. They do not purport to reflect the opinions or views of the CRCLCL or its partners, agents or employees. The CRCLCL gives no warranty or assurance and makes no representation as to the accuracy or reliability of any information or advice contained in this document, or that it is suitable for any intended use. The CRCLCL, its partners, agents and employees, disclaim any and all liability for any errors or omissions or in respect of anything or the consequences of anything done or omitted to be done in reliance upon the whole or any part of this document. Peer review statement The CRCLCL recognises the value of knowledge exchange and the importance of objective peer review.
    [Show full text]
  • Blower Door Testing Results Speak for Themselves, and We™Re Blown Away!
    Blower Door Testing Results Speak for Themselves, and We’re Blown Away! A Call for Innovation Once a city owned parking lot, the apartment complex spreads across six floors, with an average of five windows for each of the building’s 105 apartments. Sound familiar? We’re referring to the Eagles Landing DensElement® Barrier System case study in Burlington, Vermont. The one with just under 600 windows—That’s the one! Well, we decided to check in with the building envelope consultant, Zero by Degrees at the time, now known as BVH Integrated Services, upon the completion of the project to get the scoop on the performance of the DensElement® Barrier System. Mike LaCrosse, project manager, at BVH Integrated Services, provided his feedback. He said, “I was impressed with the DensElement® Barrier System, and admittedly, my experience with the system is limited, but it seems to be a respectable product, especially in comparison against a self-adhered membrane installation.” LaCrosse added, “Due to the nature of the PROSOCO material, the entire system is what I would call a highly “inspectable” system. Meaning you can visually inspect the system and identify air leakage pathways with relative ease, even without testing it, although we prefer qualitative testing regardless. The same can be true of self-adhered membrane systems, but leakage path ways are often a bit more nuanced. With the PROSOCO, there is either a hole that leaks, or there isn’t.” Between visual inspections and qualitative testing of the DensElement® Barrier System throughout construction, LaCrosse felt confident in the building’s air tightness performance.
    [Show full text]
  • New Buildings and Major Renovations Version 3.2 December 2019 Includes Updated Section: Energy and Atmosphere
    New Buildings and Major Renovations Version 3.2 December 2019 Includes Updated Section: Energy and Atmosphere Center for Sustainable Building Research College of Design · University of Minnesota All rights reserved. © Regents of the University of Minnesota, Twin Cities Campus, College of Design. All rights reserved. 2019 1 © Regents of the University of Minnesota, Twin Cities Campus, College of Design. All rights reserved. 2019 2 Print Version Contents Print Version Contents ............................................................................................................................................................................... 3 B3 Guideline Version History ..................................................................................................................................................................... 5 Guidelines Organization ............................................................................................................................................................................. 5 Applicability ............................................................................................................................................................................................... 6 Process ....................................................................................................................................................................................................... 8 Performance Management Guidelines ...................................................................................................................................................
    [Show full text]
  • Effects of Air Leakage of Residential Buildings in Mixed and Cold Climates
    Effects of Air Leakage of Residential Buildings in Mixed and Cold Climates Florian Antretter Achilles Karagiozis, PhD Anton TenWolde Andreas Holm, PhD Member ASHRAE Member ASHRAE Member ASHRAE ABSTRACT This paper deals with the effects of air leakage in residential buildings and provides an overview of the influence of air leakage on the measured performance of the interior temperature and relative humidity in two very different US climate zones (IECC zone 4, Knoxville) and (IECC zone 6, Madison). The air leakage of residential buildings depends on a number of factors like building age, volume or the climate zone, as it is a common assumption that in colder climate zones more importance is attached to airtight buildings than in warmer climates. To quantify these differences and to show the dependence of air leakage on various influences an investigation in occupied build- ings has been carried out. The air tightness of a number of homes in the mixed climate of eastern Tennessee and in the cold climate of south-central Wisconsin was measured on a seasonal basis. The interior conditions were monitored for each of the homes to investigate the link to the respective air leakage of the buildings. The results show that an estimation of the air leakage of residential buildings can be made with knowledge of some simple boundary conditions. Seasonal changes do not have a significant influence on the air leakgage. This information is critical for developing reasonable boundary conditions for hygrothermal models. INTRODUCTION or removal by the HVAC systems and the moisture flux caused Heat, air and moisture transport is a complex phenome- by operation of the ventilation equipment.
    [Show full text]
  • Blower Door Brochure
    BUILDING PERFORMANCE TESTING TOOLS ® Minneapolis Blower Door™ • Measure airtightness level of building envelopes • Diagnose air leakage problems • Estimate natural infiltration rates • Estimate efficiency losses from building air leakage • Code compliance For 30 years, the Minneapolis Blower Door™ has been the system of choice for utility programs, energy raters, HVAC contractors, builders, insulation contractors and weatherization professionals. © 2013 The Energy Conservatory ™ Anatomy of the Minneapolis Blower Door 1 1 Lightweight, durable door frame and panel 2 • Snap-together aluminum frame with compact case. • Sets up in seconds and fits an 8-foot door without special parts. 2 • Precision cam lever mechanism securely clamps the nylon panel into the door opening. 2 DG-700 pressure and flow gauge 3 • Most accurate Digital Pressure Gauge on the market to meet all airtightness testing standards for residential and commercial buildings. • Two precision sensors provide simultaneous display of 3 building pressure and fan flow. Stable auto-zero to eliminate sensitivity to orientation and temperature. • Specialized @50 and @25 test modes make it simple to conduct one-point airtightness tests. • Four separate time-averaging modes accurately measure fluctuating pressures (1, 5, 10 second & long-term). • “Baseline” feature lets you measure and record a 4 baseline pressure reading and then display the 5 baseline-adjusted reading. • USB, serial or WiFi Link for computer connection. 3 Fan-cooled, solid-state digital speed controller • State of the art precision control of fan speed. • Compatible with Cruise Control feature and automated testing. 4 Powerful and reliable calibrated fan 5 Automated Testing • Powerful 3/4 hp motor. Automated testing with your computer automatically • Comes with rings A and B to measure down to 300 CFM.
    [Show full text]
  • Condensation Risk Due to Variations in Airtightness and Thermal Insulation of an Office Building in Warm and Wet Climate
    Condensation Risk Due to Variations in Airtightness and Thermal Insulation of an Office Building in Warm and Wet Climate Authors: Wanghee Cho, Shizuo Iwamoto, Shinsuke Kato Date Submitted: 2019-01-31 Keywords: warm and wet climate, office building, airtightness, thermal insulation, microbial growth, condensation risk (CR) Abstract: Condensation in a building encourages microbial growth, which can have an adverse effect on the health of occupants. Furthermore, it induces the deterioration of the building. To prevent problems caused by condensation, from the design step of a building, predictions of the spatial, temporal and causation for condensation occurrences are necessary. By using TRNSYS simulation coupled with TRNFLOW, condensation assessment of an entire office building in Tokyo, Japan, was conducted throughout the year, including when the air-conditioning system was not operated, by considering the absorption-desorption properties of the building materials and papers in the office and the airflow within the entire building. It was found that most of the condensation occurred during winter and was observed mainly in the non-air-conditioned core parts, especially the topmost floor. Additional analyses, which identified the effect of variations in the thermal insulation of the external walls, roof and windows and the airtightness of the windows on condensation, showed that the lower airtightness of windows resulted in decreased condensation risks, and condensation within the building was suppressed completely when the thermal insulation
    [Show full text]
  • Large Building Airtightness: Where We're at and Where We're Going
    Impact of Large Building Airtightness Requirements Buildings XIII Conference December 6th, 2016 Lorne Ricketts | MASc, P.Eng. 1 Outline Intro to Requirements Measured Performance Industry Impact What it Is, and What it Isn’t Airtightness vs Air Leakage 2 Why We Care Infiltration and Exfiltration Affect: Building Energy Consumption – Heat Loss and Gains ($) Indoor Air Quality - Pollutants Building Durability - Condensation Occupant Comfort - Thermal & Acoustics 3 Many Air Barrier Systems Available Loose Sheet Applied Sealed Gypsum Sheathing Liquid Applied Mass Walls Membrane – Taped Joints – Sealant Filler at Joints Sealants/Membranes (concrete) & StrappingBUT, IT’S THE DETAILS THAT MATTER Self-Adhered vapor Self-Adhered vapor Sprayfoam Curtainwall, window-wall impermeable membrane permeable membrane & glazing systems 4 BRAND House Wrap BRAND Materials Components Accessories Whole Building Airtightness 5 Standards & Qualifications Washington State & Seattle, ABAA Target, GSA, IBC/IECC Option < 2.0 L/(s·m²) [0.40 cfm/ft²] @ 75 Pa US Army Corps of Engineers & IGCC < 1.26 L/(s·m²) [0.25 cfm/ft²] at 75 Pa Passive House 0.6 ACH50 (~0.60 L/(s·m²) [0.12 cfm/ft²] at 75 Pa) LEED, 6-sided apartment test (~1.25 L/(s·m²) [0.25 cfm/ft²] at 50 Pa) UK (AATMA) Large Buildings ~0.70 to 1.75 L/(s·m²) at 75 Pa [~0.14 to 0.34 cfm/ft² at 75 Pa] 6 Measured Performance 7 Where We’re At – The Numbers Airtightness testing data was compiled in a database from the following sources: Published literature Industry members Unpublished data provided
    [Show full text]
  • Air Leakage Control in Large Res. Buildings
    Development Air Leakage of Testing Control and Measurement in Multi ‐ Unit Strategies Residential to Quantify Air Buildings Leakage CLIENT Silvio Plescia in Canada Mortgage and Housing Corporation MURBS 700 Montreal Road Ottawa ON K1A 0P7 SUBMITTED BY RDH Building Engineering Ltd. 224 West 8th Avenue Vancouver BC V5Y 1N5 PROJECT # 5314.00 DATE April 2, 2013 R:\5314 ‐ CMHC Air Leakage Control in MURBs\Report\CMHC Air Leakage Control in MURBs ‐ Research Report Final.docx Table of Contents EXECUTIVE SUMMARY ......................................................... 1 RÉSUMÉ ................................................................................ 3 1. Project Overview ........................................................... 5 1.1. Background ........................................................ 5 1.2. Scope .................................................................. 5 2. Airflow in Multi‐Unit Residential Buildings ................... 6 2.2. Driving Forces ..................................................... 7 2.2.1 Wind ..................................................................... 7 2.2.2 Stack Effect ......................................................... 10 2.2.3 Mechanical Systems ........................................... 13 2.3. Cumulative Effect of Driving Forces ................. 15 2.4. Control of Airflow in MURBs ............................ 16 2.4.1 Exterior Enclosure Air Barrier Systems ............... 16 2.4.2 Occupant Behaviour ........................................... 28 2.4.3 Compartmentalization
    [Show full text]
  • Airtightness of a Building Envelope
    Marina Paramonova AIRTIGHTNESS OF A BUILDING ENVELOPE Bachelor’s thesis Degree Programme in Building Services Engineering 2019 Author (authors) Degree Time Marina Paramonova Bachelor of Building December 2019 Service Engineering Title 45 pages Airtightness of a building envelope 10 pages of appendices Supervisor Anna Forsström Abstract The main investigation object of this paper if the airtightness of a building envelope and its influence of energy efficiency, indoor air quality and thermal conditions inside the building. First of all, the legislation regulations for the airtightness of buildings and the measuring methods were discovered. Secondly, the airtightness measurement took place at the end of the construction process in the daycare center in a city in Finland. When the building was commissioned, the indoor climate parameters were monitored to discover the influence of the airtightness of the building envelope and air leakages on indoor air quality and thermal comfort of occupants. Finally, the results were analyzed. It was found out that the building envelope has high airtightness. It was discovered that there is no significant influence on thermal conditions inside the building. The temperature and relative humidity did not fluctuate much. However, it was discovered that the low air leakage rate leads to a reduction of fresh air income inside the building, which leads to the increase of indoor air pollutants and the decrease in indoor air quality. That means that the ventilation system should be adjusted if the predicted number of occupants increases. The study showed that the improvement of airtightness leads to a reduction of the energy demand of the building.
    [Show full text]
  • Ensuring Good Indoor Air Quality in Buildings Ensuring Good Indoor Air Quality in Buildings 3
    www.bregroup.com Ensuring good indoor air quality in buildings Vina Kukadia and Stuart Upton March 2019 BRE Trust Bucknalls Lane Watford BRE Trust Herts The BRE Trust uses profits made by BRE Group to fund WD25 9XX new research and education programmes, that will help T: +44 (0)333 321 8811 it meet its goal of ‘Building a better world together’. E: [email protected] The BRE Trust is a registered charity in England & Wales: www.bregroup.com No. 1092193, and Scotland: No. SC039320. PEN © BRE 03 19 March 2019 2 Ensuring good indoor air quality in buildings Ensuring good indoor air quality in buildings 3 Buildings in urban areas are exposed to pollutants from outdoor Introduction sources, such as road traffic, boiler flues and other combustion plants, industrial processes and construction activities – so good According to the latest UN data, 54.5% of the world’s ventilation is essential. In the past ventilation has depended on population was living in urban settlements in 2016, with air permeability through cracks and gaps in the building fabric, 23%, or 1.7 billion, living in cities with at least a million combined with air bricks, windows and mechanical ventilation. inhabitants. That percentage is estimated to rise to 60% This does not necessarily improve indoor air quality and can result by 2030. In the same period the number of cities with 10 in excessive energy consumption. The modern approach is to ‘build million inhabitants is expected to rise from 31 to 41. With tight, ventilate right’. This means making buildings airtight and the growth in urbanisation comes the risk of increased air installing ventilation systems that reduce the ingress of outdoor Table of contents pollutants, while preventing the build up of indoor pollutants.
    [Show full text]