Air Leakage Control in Large Res. Buildings
Total Page:16
File Type:pdf, Size:1020Kb
Development Air Leakage of Testing Control and Measurement in Multi ‐ Unit Strategies Residential to Quantify Air Buildings Leakage CLIENT Silvio Plescia in Canada Mortgage and Housing Corporation MURBS 700 Montreal Road Ottawa ON K1A 0P7 SUBMITTED BY RDH Building Engineering Ltd. 224 West 8th Avenue Vancouver BC V5Y 1N5 PROJECT # 5314.00 DATE April 2, 2013 R:\5314 ‐ CMHC Air Leakage Control in MURBs\Report\CMHC Air Leakage Control in MURBs ‐ Research Report Final.docx Table of Contents EXECUTIVE SUMMARY ......................................................... 1 RÉSUMÉ ................................................................................ 3 1. Project Overview ........................................................... 5 1.1. Background ........................................................ 5 1.2. Scope .................................................................. 5 2. Airflow in Multi‐Unit Residential Buildings ................... 6 2.2. Driving Forces ..................................................... 7 2.2.1 Wind ..................................................................... 7 2.2.2 Stack Effect ......................................................... 10 2.2.3 Mechanical Systems ........................................... 13 2.3. Cumulative Effect of Driving Forces ................. 15 2.4. Control of Airflow in MURBs ............................ 16 2.4.1 Exterior Enclosure Air Barrier Systems ............... 16 2.4.2 Occupant Behaviour ........................................... 28 2.4.3 Compartmentalization ........................................ 30 2.4.4 Mechanical Systems ........................................... 31 3. Airtightness Reporting and Calculations ..................... 32 3.1. Reporting Techniques ...................................... 32 3.1.1 Airflow Rate ........................................................ 33 3.1.2 Normalized Airflow Rate ..................................... 33 3.1.3 Air Change Rate .................................................. 33 3.1.4 Equivalent Leakage Area ..................................... 33 3.1.5 Effective Leakage Area ........................................ 34 3.1.6 Specific Leakage Area (Normalized Equivalent/Effective Leakage Area) .................... 34 3.1.7 Leakage per Unit Length ..................................... 34 3.1.8 Conversions ........................................................ 34 4. Literature Review Summary........................................ 36 5. Test Procedures and Equipment ................................. 38 5.1. System Quantitative Tests................................ 38 5.1.2 CGSB 149.10 – M86 ............................................ 39 5.1.3 CGSB 149.15 – 96 ................................................ 39 5.1.4 ASTM E 779 ‐ 10 .................................................. 40 5.1.5 ASTM E 1827 ‐ 96 ................................................ 40 ...................................................................................................................... 5314.00 RDH Building Engineering Ltd. 5.1.6 ASTM E 2357 ‐ 05 ................................................ 41 6.2.2 ASHRAE Standard 189.1 – 2011 .......................... 59 5.1.7 ASTM E 741 ......................................................... 41 6.2.3 ASHRAE Handbook of Fundamentals 2009 ......... 59 5.1.8 ISO 9972 .............................................................. 41 6.2.4 Energy Star® ........................................................ 59 5.1.9 Pressure Neutralized Fan 6.3. International ..................................................... 59 Depressurization/Pressurization Technique ....... 42 6.3.1 International Energy Conservation Code (IECC) . 59 5.1.10 Multi‐Zone Test Procedure ................................. 43 6.3.2 International Green Construction Code (IGCC)... 60 5.1.11 ATTMA Technical Standard L1 ‐ 2010 ................. 44 6.3.3 International Building Code (IBC) ....................... 60 5.1.12 US Army Corps of Engineers ............................... 44 6.3.4 International Residential Code for One‐ and Two‐ 5.1.13 Other Procedures ................................................ 44 Family Dwellings (IRC) ......................................... 61 5.2. Summary of System Quantitative Testing 6.3.5 Passivhaus ........................................................... 61 Procedures ....................................................... 45 6.4. Summary of Airtightness Requirements .......... 61 5.3. Component Quantitative Tests ........................ 45 7. Existing MURB Data Summary and Analysis ............... 66 5.3.1 ASTM E 283 ‐ 04 .................................................. 45 7.1. MURBs .............................................................. 66 5.3.2 ASTM E 783 ‐02 ................................................... 46 7.2. Compartmentalization ..................................... 72 5.4. Qualitative Tests .............................................. 46 7.3. United States Army Corps of Engineers ........... 73 5.4.1 ASTM E 1186 – 03 ............................................... 46 7.4. Airtightness Retrofits ....................................... 74 5.4.2 Smoke Tracer ‐ Smoke Wand .............................. 49 8. Industry Preparedness and Perception ....................... 76 5.5. Costs ................................................................. 49 8.1. Survey Results .................................................. 76 5.6. Test Equipment ................................................ 50 8.2. State of Washington and City of Seattle 5.6.1 High Capacity Blower Systems ............................ 50 Experience ........................................................ 89 5.6.2 Fan‐door Systems................................................ 51 8.3. UK Experience .................................................. 90 5.6.3 Infrared Cameras ................................................ 52 8.4. Summary of Industry Preparedness and 5.6.4 Smoke Generators .............................................. 52 Perception ........................................................ 90 5.6.5 Smoke Wand ....................................................... 53 9. Conclusions ................................................................. 92 5.6.6 Tracer Gasses ...................................................... 53 10. Acknowledgements..................................................... 94 5.6.7 Flow measuring devices ...................................... 54 11. References .................................................................. 95 5.6.8 Pressure Measuring Devices ............................... 54 12. Bibliography ................................................................ 97 5.7. Testing During Construction ............................ 55 13. Glossary of Terms ....................................................... 99 6. Airtightness Regulatory Requirements and Targets ... 58 6.1. Canada ............................................................. 58 Appendices 6.1.1 National Building Code for Canada (NBCC) and Appendix A – MURB Airtightness Database National Energy Code for Buildings (NECB) ........ 58 Appendix B – Industry Survey 6.1.2 Leadership in Energy and Environmental Design (LEED) Canada 2009 ............................................ 58 Appendix C – Airtightness Database Data Collection Form 6.2. United States ................................................... 58 6.2.1 ASHRAE Standards 90.1 ...................................... 58 ...................................................................................................................... 5314.00 RDH Building Engineering Ltd. ...................................................................................................................... 5314.00 RDH Building Engineering Ltd. EXECUTIVE SUMMARY The uncontrolled flow or air in to, out of, and within multi‐unit residential buildings (MURBs) can create performance problems with respect to energy consumption, moisture, and indoor air quality. Currently, there is no mandatory airtightness requirement for MURBs in Canada. This study provides a review of the current state of the industry with respect to airtightness in MURBs including testing requirements and techniques, performance targets, current MURB airtightness, and industry airtightness testing capacity. Airflow in MURBs is driven by pressure differences that are primarily created as a result of wind, stack effect, and building mechanical ventilation systems. To help control the airflow as a result of these forces, air sealing is used both as part of the exterior building enclosure and as part of interior separators. The use of air sealing in interior separators such as floor slabs and walls is often referred to as compartmentalization. Literature regarding airtightness testing, specifications and building case‐studies with respect to MURBs was reviewed to gain an understanding of the current information available in industry. Based on this review it was found that airtightness testing of MURBs is not widespread in North America; however, the specialized airtightness testing equipment that is required to perform this type of testing is typically readily available. Additionally, while quantitative testing allows for the numerical comparison of airtightness performance, qualitative testing can be useful for identifying air leakage locations especially as part of forensic and quality control procedures. Numerous test procedures and specifications exist