Phase-Locking and Arnold Coding in Prototypical Network Topologies

Total Page:16

File Type:pdf, Size:1020Kb

Phase-Locking and Arnold Coding in Prototypical Network Topologies DISCRETE AND CONTINUOUS Website: http://aimSciences.org DYNAMICAL SYSTEMS SERIES B Volume 9, Number 1, January 2008 pp. 145–162 PHASE-LOCKING AND ARNOLD CODING IN PROTOTYPICAL NETWORK TOPOLOGIES Stefan Martignoli and Ruedi Stoop Institute for Neuroinformatics UZH / ETHZ Winterthurerstrasse 190 8057 Z¨urich, Switzerland Abstract. Phase- and frequency-locking phenomena among coupled biologi- cal oscillators are a topic of current interest, in particular to neuroscience. In the case of mono-directionally pulse-coupled oscillators, phase-locking is well understood, where the phenomenon is globally described by Arnold tongues. Here, we develop the tools that allow corresponding investigations to be made for more general pulse-coupled networks. For two bi-directionally coupled oscil- lators, we prove the existence of three-dimensional Arnold tongues that mediate from the mono- to the bi-directional coupling topology. Under this transforma- tion, the coupling strength at which the onset of chaos is observed is invariant. The developed framework also allows us to compare information transfer in feedforward versus recurrent networks. We find that distinct laws govern the propagation of phase-locked spike-time information, indicating a qualitative difference between classical artificial vs. biological computation. 1. Introduction. Stable limit-cycle oscillations arise as the solutions of a vari- ety of autonomous nonlinear differential equations. Primarily, they are generated when systems pass either through saddle-node or through Hopf bifurcations. Corre- spondingly, stable limit-cycles are widely observed in physics, chemistry and biology. As an example, the most salient neuron models, such as the Hodgkin-Huxley, the Fitzhugh-Nagumo, the Morris-Lecar, or the spatially detailed compartmental cable models of neurons yield stable limit-cycle solutions in biophysically relevant param- eter regimes. Whereas for low-dimensional model systems the limit cycle property can be verified from the equations, in the case of the high-dimensional cable model or for biological neurons, the limit-cycle property is exhibited by the phenomenon of phase- and frequency locking. In biology, the limit-cycles interact by means of sharp voltage pulses, the spikes. For mono-directionally periodically pulse-perturbed limit-cycle oscillators, it is sim- ple to derive one-dimensional maps that describe this interaction. These maps are mathematically well understood: The emerging phenomena of phase- and frequency- locking are globally organized along Arnold tongues. For more general networks, a corresponding theory is still missing. Here, we develop the tools that are applicable, in principle, to arbitrary network topologies. Using this approach, we first generalize mono-directional phase-locking to bi-directional coupling, where a smooth change 2000 Mathematics Subject Classification. Primary: 37E10; Secondary: 37E45. Key words and phrases. Arnold tongues, phase-locked oscillators, recurrent topology. This research was supported by the SNF-grant 65293. 145 146 STEFAN MARTIGNOLI AND RUEDI STOOP of the involved interaction strengths, characterizes the transition from the feedfor- ward to the recurrent topology. Our first finding will be that during this transition, the Arnold tongues undergo a continuous transformation as well. The developed description also allows to investigate and compare general feedforward versus re- current networks. Here our main finding is that the properties of how spike-time information is processed in these networks, differ in a salient way, which may explain the observed increased efficacy of biological neural networks, which predominantly are of recurrent type. We start with a review of phase-locking phenomena and their relation to the circle-map universality class. Our present study is motivated by recent neurobi- ological experiments, where experimentally measured response functions provide insights into the dynamics of coupled neurons, and point out a potential role of phase-locking as a mechanism of information encoding. In Section 2, we develop a novel discrete phase-response map that can be used to describe arbitrary networks of pulse-coupled limit-cycle oscillators. Using this tool, we investigate in Sections 3-4 bi-directional pair coupling, where we prove the existence of three-dimensional Arnold tongues that connect the feedforward and recurrent topologies of coupled pairs of neurons in a continuous way. Using coupled neurons as elements, we will construct and analyze more general networks in Sections 5. In particular, the ef- ficacy of information processing in feedforward and in recurrent networks will be compared. 1.1. Circle-map universality. Locking was first described in 1665 by Christiaan Huygens [1], who discovered that two pendulum clocks, attached on opposite sides of a wall, tend to synchronize their frequencies in anti-phase. In order to describe the physics behind this phenomenon, he developed a theory, which today still provides the most salient insights into the phenomenon. More recently, in a different context, Arnold [2] provided a refined mathematical description of locking. He studied the return map of a periodically forced oscillator by means of the equation K x = f (x )= x +Ω sin(2πx ) mod1, (1) n+1 Ω,K n n − 2π n the so-called sine-, or Arnold circle-map, where Ω = TS/T0 is the frequency ratio of the two oscillators, and K denotes the mono-directional perturbation strength. The connection between limit-cycle oscillators and the sine-map can be derived from the so-called kicked rotator model [3]. For this system, the equations of motion can be analytically reduced to the one-dimensional discrete sine-map, in the limit of very strong damping. One essential insight added by Arnold is that the sine-map is characteristic for the universality class of circle-maps of the form fΩ,K : [0, 1] [0, 1], → x = f (x )= x +Ω g(K, x ) mod1, (2) n+1 Ω,K n n − n where the phase response function (PRF) g(K, xn), defined by g(K, x) := T (K, x)/T0, g(K, 0) = g(K, 1)=1, g(0, x)=1, (3) measures the effect T (K, x) of a perturbation of strength K, arriving at phase x of an oscillator of intrinsic period T0. This discrete map formulation can be seen as the Poincar´esection of a phase model of the motion along the stable limit-cycle [4]. In the latter picture, a perturbed limit-cycle oscillator is represented by a differential PHASE-LOCKING IN PROTOTYPICAL NETWORK TOPOLOGIES 147 equation of the form N φ˙ = ω + K P (φj )R(φ), (4) j=1 X where φ(t) is the phase, ω the intrinsic constant angular velocity, R(φ) the sensitiv- ity function and K the coupling strength. P (φj ) is called the influence function and can be interpreted as a stimulating waveform, originating from a source of pertur- bation labelled by j. For weak coupling, the sensitivity function is equivalent to an ’infinitesimal’ PRF 1 g(K = ǫ, φ). We will use the discrete-time model introduced by Arnold. − As an example, the PRF of a sinusoidal limit-cycle perturbed by spikes is given by K g(K, x)=1 sin(2πx), (5) ± 2π · where the plus sign refers to in-phase, and the minus sign to anti-phase 1/1- synchronization. For specific physical or biological oscillators, the PRF can be determined by simple experiments [5, 6, 7]. Eq. (5) may serve as a guiding line for many experimental pulse-perturbed limit-cycles in the following sense. An experi- mentally obtained return map fΩ,K belongs to the circle-map universality class if the following requirements are met [8]: a) fΩ,K (x) is a diffeomorphism for K <KC , where KC is called the critical in- teraction strength −1 b) At K = KC , fΩ,K(x) has a cubic inflection point and fΩ,K(x) is no longer dif- ferentiable c) For K>KC, fΩ,K(x) is non-invertible. The salient properties of the circle-map universality class (Eq. (2)) in the Ω,K - parameter space are the following [9, 8] { } Arnold tongues Tp/q of stable phase-locking emerge at every rational winding • number ω = p/q from the Ω-axis. The intervals of locking expand with in- creasing interaction strength K. At a critical interaction strength KC [2], the tongues start to overlap. For subcritical interaction strength, the widths of the Arnold tongues are • described by sequences of rational Farey-tree numbers Q [0, 1] (global scaling law) [10]. ∈ As a function of Ω, at K = KC , the winding numbers ω form a devil’s stair- • case [2], where the union of locked intervals has full measure [11]. Local scaling laws govern the transition from quasiperiodicity to chaos [12]. • 1.2. Phase-locking in neurobiology. Experimentally measured PRFs g(K, x) can be used to study phase-locking in neurobiology. Provided that a modeled or real neuron has a sufficiently stable limit-cycle behavior (which is generally the case), experimental results of spiking neurons perturbed by strong spikes can be modeled by circle-maps (Eq. (2)). In the last decade, PRFs have been measured for a variety of biological and model neurons [13, 14, 6, 7, 15, 16, 17, 18, 19]. Stoop et al. [14] measured the PRFs of both inhibitory and excitatory stimulated pyramidal neurons in rat neocortex and determined experimentally the corresponding Arnold tongues (see Fig. 1). 148 STEFAN MARTIGNOLI AND RUEDI STOOP In particular, it was proven that only strong inhibitory stimulations could lead to chaotic response, on a small, though nonzero set of the Ω,K -parameter space [14]. More recently, Netoff et al. [16] induced 1/1-locking{ in hybrid} circuits, in which neurons from the hippocampal formation of rats were coupled to virtual neurons, by taking advantage of previously measured PRFs. Similar dynamic-clamp techniques were used by Pervouchine et al. [17] in three-cell networks of the entorhinal cortex, resulting in the claim that the measured PRFs offer a possible explanation for the generation of β-frequency oscillations.
Recommended publications
  • Communications with Chaotic Optoelectronic Systems Cryptography and Multiplexing
    COMMUNICATIONS WITH CHAOTIC OPTOELECTRONIC SYSTEMS CRYPTOGRAPHY AND MULTIPLEXING A Thesis Presented to The Academic Faculty by Damien Rontani In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Electrical and Computer Engineering Georgia Institute of Technology December 2011 Copyright c 2011 by Damien Rontani COMMUNICATIONS WITH CHAOTIC OPTOELECTRONIC SYSTEMS CRYPTOGRAPHY AND MULTIPLEXING Approved by: Professor Steven W. McLaughlin, Professor Erik Verriest Committee Chair School of Electrical and Computer School of Electrical and Computer Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Professor David S. Citrin, Advisor Adjunct Professor Alexandre Locquet School of Electrical and Computer School of Electrical and Computer Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Professor Marc Sciamanna, Co-advisor Professor Kurt Wiesenfeld Department of Optical School of Physics Communications Georgia Institute of Technology Ecole Sup´erieure d'Electricit´e Professor William T. Rhodes Date Approved: 30 August 2011 School of Electrical and Computer Engineering Georgia Institute of Technology To those who have made me who I am today, iii ACKNOWLEDGEMENTS The present PhD research has been prepared in the framework of collaboration between the Georgia Institute of Technology (Georgia Tech, USA) and the Ecole Sup´erieured'Electricit´e(Sup´elec,France), at the UMI 2958 a joint Laboratory be- tween Georgia Tech and the Centre National de la Recherche Scientifique (CNRS, France). I would like to acknowledge the Fondation Sup´elec,the Conseil R´egionalde Lorraine, Georgia Tech, and the National Science Foundation (NSF) for their financial and technical support. I would like to sincerely thank my \research family" starting with my two advisors who made this joint-PhD project possible; Prof.
    [Show full text]
  • Recurrence Plots for the Analysis of Complex Systems Norbert Marwan∗, M
    Physics Reports 438 (2007) 237–329 www.elsevier.com/locate/physrep Recurrence plots for the analysis of complex systems Norbert Marwan∗, M. Carmen Romano, Marco Thiel, Jürgen Kurths Nonlinear Dynamics Group, Institute of Physics, University of Potsdam, Potsdam 14415, Germany Accepted 3 November 2006 Available online 12 January 2007 editor: I. Procaccia Abstract Recurrence is a fundamental property of dynamical systems, which can be exploited to characterise the system’s behaviour in phase space. A powerful tool for their visualisation and analysis called recurrence plot was introduced in the late 1980’s. This report is a comprehensive overview covering recurrence based methods and their applications with an emphasis on recent developments. After a brief outline of the theory of recurrences, the basic idea of the recurrence plot with its variations is presented. This includes the quantification of recurrence plots, like the recurrence quantification analysis, which is highly effective to detect, e. g., transitions in the dynamics of systems from time series. A main point is how to link recurrences to dynamical invariants and unstable periodic orbits. This and further evidence suggest that recurrences contain all relevant information about a system’s behaviour. As the respective phase spaces of two systems change due to coupling, recurrence plots allow studying and quantifying their interaction. This fact also provides us with a sensitive tool for the study of synchronisation of complex systems. In the last part of the report several applications of recurrence plots in economy, physiology, neuroscience, earth sciences, astrophysics and engineering are shown. The aim of this work is to provide the readers with the know how for the application of recurrence plot based methods in their own field of research.
    [Show full text]
  • A Translation Of
    2011 A Translation of NJV 72^ dsgecr 1 2011 NJV 72^ dsgecr 2 2011 American Mathematical Society Providence, Rhode Island USA ISSN 0077-1554 TRANSACTIONS OF THE MOSCOW MATHEMATICAL SOCIETY Translation edited by Frances H. Goldman with the assistance of AMS staff A translation of TRUDY MOSKOVSKOGO MATEMATIQESKOGO OBWESTVA Editorial Board A. G. Sergeev (Editor in Chief) V. M. Buchstaber E.` B. Vinberg Yu. S. Ilyashenko A. A. Shkalikov A. V. Domrin (Corresponding Secretary) Advisory Board R. A. Minlos S. P. Novikov N. Kh. Rozov Library of Congress Card Number 65-4713 SUBSCRIPTION INFORMATION. Transactions of the Moscow Mathematical Society for 2011 will consist of one issue. Beginning in 2004, Transactions of the Moscow Mathematical Society is accessible from www.ams.org/journals/. The subscription prices for 2011 are US$532.00 list; US$425.00 institutional member. Upon request, subscribers to paper delivery of this journal are also entitled to receive electronic delivery. For paper delivery, subscribers outside the United States and India must pay a postage surcharge of US$6.00; subscribers in India must pay a postage surcharge of US$13.00. Expedited delivery to destinations in North America US$8.00; elsewhere US$17.00. Subscription renewals are subject to late fees. See www.ams.org/journal-faq for more journal subscription information. BACK NUMBER INFORMATION. For back issues see www.ams.org/bookstore. Subscriptions and orders should be addressed to American Mathematical Society, P.O. Box 845904, Boston, MA 02284-5904, USA. All orders must be accompanied by payment. Other cor- respondence should be addressed to 201 Charles St., Providence, RI 02904-2294, USA.
    [Show full text]
  • Arxiv:1708.06571V1 [Nlin.AO] 22 Aug 2017 the Generating Unit, Which Is the Pressure Reservoir Be- Coupling: Neath the Pipe at a Basically Constant Rate
    SAW16, dated September 28, 2018 Synchronization of organ pipes 1, 2 1 Jakub Sawicki, ∗ Markus Abel, and Eckehard Schöll 1Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany 2Department of Physics and Astronomy, Potsdam University, Karl-Liebknecht-Straße 24, 14476 Potsdam Germany We investigate synchronization of coupled organ pipes. Synchronization and reflection in the organ lead to undesired weakening of the sound in special cases. Recent experiments have shown that sound interaction is highly complex and nonlinear, however, we show that two delay-coupled Van-der-Pol oscillators appear to be a good model for the occurring dynamical phenomena. Here the coupling is realized as distance-dependent, or time-delayed, equivalently. Analytically, we investigate the synchronization frequency and bifurcation scenarios which occur at the boundaries of the Arnold tongues. We successfully compare our results to experimental data. PACS numbers: 05.45.Xt, 05.45.-a Introduction - The physics of organ pipes is an in- we investigate the bifurcation scenarios in the context of terdisciplinary topic where many fields of science meet. two delay-coupled Van-der-Pol oscillators as a represen- It is highly interesting as it includes elements of non- tation of the system of two coupled organ pipes, such linear dynamical system theory [4, 6, 11], aeroacoustic as in the experimental setup of Bergweiler et al. [5]. modeling [13] and synchronization theory [17]. The fo- In extension of previous work, we study the dependence cus of these different research areas is the “queen of in- of Arnold tongues under variation of the time delay τ struments” which captivates through the grandeur of her and the coupling strength κ, to explore how undesired sight and majesty of her sound.
    [Show full text]
  • Modulational Instability in Optical Fibers with Randomly-Kicked Normal
    Modulational instability in optical fibers with randomly-kicked normal dispersion G Dujardin, A Armaroli, Simona Nodari, A Mussot, A Kudlinski, S Trillo, M Conforti, Stephan de Bièvre To cite this version: G Dujardin, A Armaroli, Simona Nodari, A Mussot, A Kudlinski, et al.. Modulational instability in optical fibers with randomly-kicked normal dispersion. Physical Review A, American Physical Society, 2021, 103 (5), pp.053521. 10.1103/PhysRevA.103.053521. hal-03157350v2 HAL Id: hal-03157350 https://hal.archives-ouvertes.fr/hal-03157350v2 Submitted on 10 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. PHYSICAL REVIEW A 103, 053521 (2021) Modulational instability in optical fibers with randomly kicked normal dispersion G. Dujardin ,1 A. Armaroli ,2 S. Rota Nodari ,3 A. Mussot,2 A. Kudlinski,2 S. Trillo,4 M. Conforti ,2,* and S. De Bièvre 1,† 1Univ. Lille, CNRS UMR 8524 - Laboratoire Paul Painlevé, Inria, F-59000 Lille, France 2Univ. Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France 3Institut de Mathématiques de Bourgogne (IMB), CNRS, UMR 5584, Université Bourgogne Franche Comté, F-21000 Dijon, France 4Department of Engineering, University of Ferrara, I-44122 Ferrara, Italy (Received 3 March 2021; accepted 7 May 2021; published 24 May 2021) We study modulational instability (MI) in optical fibers with random group-velocity dispersion (GVD) generated by sharply localized perturbations of a normal GVD fiber that are either randomly or periodically placed along the fiber and that have random strength.
    [Show full text]
  • Bifurcations, Mode Locking, and Chaos in a Dissipative System
    The Bogdanov Map: Bifurcations, Mode Locking, and Chaos in a Dissipative System David K. Arrowsmith, School of Mathematical Sciences Queen Mary and Westfield College University of London Mile End Road London E1 4NS, UK Julyan H. E. Cartwright, Departament de F´ısica Universitat de les Illes Balears 07071 Palma de Mallorca, Spain Alexis N. Lansbury, Department of Physics Brunel, The University of West London Uxbridge, Middlesex UB8 3PH, UK &ColinM.Place.∗ Int. J. Bifurcation and Chaos, 3,803–842,1993 We investigate the bifurcations and basins of attraction in the Bog- danov map, a planar quadratic map which is conjugate to the Henon´ area-preserving map in its conservative limit. It undergoesaHopf bifurcation as dissipation is added, and exhibits the panoply of mode locking, Arnold tongues, and chaos as an invariant circle grows out, finally to be destroyed in the homoclinic tangency of the manifolds of aremotesaddlepoint.TheBogdanovmapistheEulermapofatwo- dimensional system of ordinary differential equations firstconsidered by Bogdanov and Arnold in their study of the versal unfolding of the double-zero-eigenvalue singularity, and equivalently of avectorfield invariant under rotation of the plane by an angle 2π.Itisauseful system in which to observe the effect of dissipative perturbations on Hamiltonian structure. In addition, we argue that the Bogdanov map provides a good approximation to the dynamics of the Poincaremaps´ of periodically forced oscillators. ∗Formerly: Department of Mathematics, Westfield College, University of London, UK. 1 1. Introduction Tisnowwellknownthatthestudyofsystemsofordinarydifferential equations, which commonly arise in dynamical systems investigated in I many fields of science, can be aided by utilizing the surface-of-section technique of Poincaremaps.The´ Poincar´e or return map of a system of or- dinary differential equations reduces the dimension of the problem, replac- ing an n-dimensional set of ordinary differential equations with an (n 1)- dimensional set of difference equations.
    [Show full text]
  • Autoassociative Memory and Pattern Recognition in Micromechanical
    www.nature.com/scientificreports OPEN Autoassociative Memory and Pattern Recognition in Micromechanical Oscillator Received: 30 August 2016 Accepted: 28 February 2017 Network Published: xx xx xxxx Ankit Kumar1 & Pritiraj Mohanty2 Towards practical realization of brain-inspired computing in a scalable physical system, we investigate a network of coupled micromechanical oscillators. We numerically simulate this array of all-to-all coupled nonlinear oscillators in the presence of stochasticity and demonstrate its ability to synchronize and store information in the relative phase differences at synchronization. Sensitivity of behavior to coupling strength, frequency distribution, nonlinearity strength, and noise amplitude is investigated. Our results demonstrate that neurocomputing in a physically realistic network of micromechanical oscillators with silicon-based fabrication process can be robust against noise sources and fabrication process variations. This opens up tantalizing prospects for hardware realization of a low-power brain- inspired computing architecture that captures complexity on a scalable manufacturing platform. Inspired by studies that have indicated that subsystems of the brain involved in associative learning exhibit syn- chronization dynamics by which pattern recognition emerges from the frequency entrainment of the constituent oscillating neurons1, significant recent interest has developed around the prospect of constructing analogous systems using artificial, physical oscillators. Such systems of coupled physical oscillators are capable of autoasso- ciative memory operation and other forms of parallel, non-Boolean and neuromorphic computing, and suitably engineered, offer the advantages of far higher operating frequencies than their biological counterparts, and far lower power requirements than attempts to simulate neural networks on traditional hardware. The dynamics of a system of coupled oscillators can exhibit attractive limit cycles that represent synchronized states.
    [Show full text]
  • Thesis Is the final Work of My Ph.D
    UvA-DARE (Digital Academic Repository) Bifurcation of random maps Zmarrou, H. Publication date 2008 Document Version Final published version Link to publication Citation for published version (APA): Zmarrou, H. (2008). Bifurcation of random maps. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:06 Oct 2021 Bifurcation of random maps Hicham Zmarrou Bifurcation of random maps Academisch proefschrift ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magnificus prof. dr. D.C. van den Boom ten overstaan van een door het college voor promoties ingestelde commissie, in het openbaar te verdedigen in de Agnietenkapel op vrijdag 28 maart 2008, te 14:00 uur door Hicham Zmarrou geboren te Oued Amlil, Marokko Promotiecommissie: Promotor: Prof.
    [Show full text]
  • Rotation Numbers for Quasiperiodically Forced Circle Maps–Mode-Locking Vs
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 22, Number 2, April 2009, Pages 353–362 S 0894-0347(08)00627-9 Article electronically published on October 21, 2008 ROTATION NUMBERS FOR QUASIPERIODICALLY FORCED CIRCLE MAPS–MODE-LOCKING VS. STRICT MONOTONICITY KRISTIAN BJERKLOV¨ AND TOBIAS JAGER¨ 1. Introduction For an orientation-preserving circle homeomorphism g : T1 → T1 it is well- known that the rotation number behaves strictly monotonically whenever g has no periodic points. On the other hand, the only situation where mode-locking occurs (that is, the rotation number is stable with respect to perturbations) is when there exists a closed interval which is mapped into its own interior by some iterate of g, as in the case of a stable periodic orbit. If the rotation number only stays constant on one side, this corresponds to the existence of parabolic periodic points. In this paper, we show that exactly the same picture holds for quasiperiodically forced (qpf) orientation-preserving circle homeomorphisms, where p, q-invariant strips (as introduced in [2] and [3]) serve as natural analogues of periodic orbits. We consider continuous maps f : T2 → T2 of the form (1.1) f(θ, x)=(θ + ω, fθ(x)) , where ω ∈ [0, 1] \ Q. In addition, we require all fiber maps fθ to be orientation- preserving circle homeomorphisms. The class of all such maps will be denoted by F n ◦ n . Further, we will use the notation fθ (x)=π2 f (θ, x). Given any continuous lift F : T1 × R → T1 × R of f ∈F, the limit (1.2) ρ(F ) := lim (F n(x) − x)/n n→∞ θ exists and is independent of θ and x [1].
    [Show full text]
  • 78 DS09 Abstracts
    78 DS09 Abstracts IP0 IP3 Jrgen Moser Lecture: Catastrophes, Symmetry- Network Topology: Sensors and Systems Breaking, Synchrony-Breaking Networks arise in innumerable contexts from mobile com- The ideas that surrounded catastrophe theory (codimen- munications devices, to environmental sensors nets, to bi- sion, unfoldings, organizing centers, ...) have shaped much ological systems at all scales. This talk explores the re- progress in bifurcation theory during the past forty years lationships between what happens on the network nodes and, indeed, in many of its applications. I will try to trace (signals, sensing, dynamics) and the underlying spatial dis- some of these developments and to indicate why this same tribution of the nodes — an especially delicate interplay in way of thinking might lead to interesting discoveries in net- the context of coordinate-free, non-localized systems. The work dynamics. key tools are an adaptation of homology theory. Algebraic topology yields an enrichment of network topology that in- Martin Golubitsky tegrates cleanly with statistics and dynamics of networks, Ohio State University and which allows for solutions to problems of coverage, Mathematical Biosciences Institute communication, and control. [email protected] Robert W. Ghrist University of Pennsylvania IP1 [email protected] Collapse of the Atlantic Ocean Circulation The Atlantic Ocean Circulation is sensitive to the patterns IP4 of atmospheric forcing. Relatively small changes in atmo- Mechanisms of Instability in Nearly Integrable spheric conditions may lead to a spectacular collapse of Hamiltonian Systems Atlantic Ocean currents, with a large impact on European climate. In ocean-climate models, a collapse is associated There are many systems that appear in applications that with the existence of saddle-node bifurcations.
    [Show full text]
  • PIANIST LOST: Sunken Cathedrals
    PIANIST LOST: sunken cathedrals THE HIMALAYA SESSIONS volume 2 PIANIST L O S T: SUNKEN CATHEDRALS Peter Halstead THE ADRIAN BRINKERHOFF FOUNDATION new york A B 2017 Fo Also by Peter Halstead Pianist Lost: Excesses and Excuses (The Himalaya Sessions, vol. 1) Pianist Lost: Boatsongs (The Himalaya Sessions, vol. 3) Pianist Lost: False Love (The Himalaya Sessions, vol. 4) Pianist Lost: Reply Hazy (The Himalaya Sessions, vol. 5) Pianist Lost: The Gift to be Simple (The Himalaya Sessions, vol. 6) You can hear the below pieces by entering this web address into your browser: http://adrianbrinkerhofffoundation.org and clicking on the pertinent link. 1. Charles-Valentin Alkan: Barcarolle, Opus 65, No. 6, Trente Chants, Troisième Suite, G Minor, 1844, edition G. Schirmer, ed. Lewenthal 2. Félix Mendelssohn: Venetian Boat-Song No. 1, Opus 19, No. 6, G Minor, 1830 3. Félix Mendelssohn: Venetian Boat-Song No. 2, Opus 30, No. 6, F Sharp Minor, 1834 4. Félix Mendelssohn: Venetian Boat-Song No. 3, Opus 62, No. 5, A Minor, 1844 5. Félix Mendelssohn: Boat-Song (Posthumous), Opus 102, No. 7, A Major, 1845 6. Fryderyka Chopina: Barcarolle, Opus 60, F Sharp Major, 1845–1846, Edition Instytut Fryderyka Chopina XI, ed. Paderewski 7. Claude Debussy: La Cathédrale engloutie, from Préludes, Premier Livre, No. X, C Major, 1910 8. Claude Debussy: Des Pas sur la Neige, Préludes, Premier Livre, No. VI, D Minor, 1910 9. Gabriel Fauré - Peter Halstead: Barcarolle No. 1 in A Minor, Opus 26, 1880 10. Claude Debussy: Des Pas sur la Neige, Préludes, Premier Livre, No. VI, D Minor, 1910 This is mostly a true story, although names and chronologies have been altered to protect people who might be sensitive to having their lives and motives revealed through intimate diaries which have been obtained under strictures permissible in certain Asian countries.
    [Show full text]
  • Arnold: Swimming Against the Tide / Boris Khesin, Serge Tabachnikov, Editors
    ARNOLD: Real Analysis A Comprehensive Course in Analysis, Part 1 Barry Simon Boris A. Khesin Serge L. Tabachnikov Editors http://dx.doi.org/10.1090/mbk/086 ARNOLD: AMERICAN MATHEMATICAL SOCIETY Photograph courtesy of Svetlana Tretyakova Photograph courtesy of Svetlana Vladimir Igorevich Arnold June 12, 1937–June 3, 2010 ARNOLD: Boris A. Khesin Serge L. Tabachnikov Editors AMERICAN MATHEMATICAL SOCIETY Providence, Rhode Island Translation of Chapter 7 “About Vladimir Abramovich Rokhlin” and Chapter 21 “Several Thoughts About Arnold” provided by Valentina Altman. 2010 Mathematics Subject Classification. Primary 01A65; Secondary 01A70, 01A75. For additional information and updates on this book, visit www.ams.org/bookpages/mbk-86 Library of Congress Cataloging-in-Publication Data Arnold: swimming against the tide / Boris Khesin, Serge Tabachnikov, editors. pages cm. ISBN 978-1-4704-1699-7 (alk. paper) 1. Arnold, V. I. (Vladimir Igorevich), 1937–2010. 2. Mathematicians–Russia–Biography. 3. Mathematicians–Soviet Union–Biography. 4. Mathematical analysis. 5. Differential equations. I. Khesin, Boris A. II. Tabachnikov, Serge. QA8.6.A76 2014 510.92–dc23 2014021165 [B] Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Permissions to reuse portions of AMS publication content are now being handled by Copyright Clearance Center’s RightsLink service.
    [Show full text]