Thesis Is the final Work of My Ph.D

Total Page:16

File Type:pdf, Size:1020Kb

Thesis Is the final Work of My Ph.D UvA-DARE (Digital Academic Repository) Bifurcation of random maps Zmarrou, H. Publication date 2008 Document Version Final published version Link to publication Citation for published version (APA): Zmarrou, H. (2008). Bifurcation of random maps. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:06 Oct 2021 Bifurcation of random maps Hicham Zmarrou Bifurcation of random maps Academisch proefschrift ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magnificus prof. dr. D.C. van den Boom ten overstaan van een door het college voor promoties ingestelde commissie, in het openbaar te verdedigen in de Agnietenkapel op vrijdag 28 maart 2008, te 14:00 uur door Hicham Zmarrou geboren te Oued Amlil, Marokko Promotiecommissie: Promotor: Prof. dr. A. Doelman Copromotor: dr. A.J. Homburg Overige leden: Prof. dr. S.J. van Strien Prof. dr. H.W. Broer Prof. dr. H.L.J. van der Maas Prof. dr. T. Koornwinder Prof. dr. J.J.O.O. Wiegerinck dr. H. Crauel dr. C. Diks Faculteit der Natuurwetenschappen, Wiskunde en Informatica THOMAS STIELTJES INSTITUTE FOR MATHEMATICS Preface This thesis is the final work of my Ph.D. research at the Korteweg-de Vries Institute for Mathematics, Universiteit van Amsterdam. It serves as documentation of my work during this period, which was performed from spring 2003 until autumn 2007. The research was funded by the Centraal Onderzoeksfonds (COF), of the Universiteit van Amsterdam. This thesis consists of six chapters. In the first chapter, I give a general introduction to random dynamical systems and a survey of the new scientific results presented in this thesis. The next four chapters contain the contents of two papers that have been accepted by international journals. These chapters cover various aspects of stochastic dynamical systems, such as transfer operator theory, stability theory, and random circle diffeomorphism theory. These papers are written jointly with my supervisor Ale Jan Homburg to whom I am extremely grateful for all the time and effort he invested in supervising my work. His support and encouragement built my confidence when I found things difficult, and motivated me to work to the best of my abilities. He has always been happy to answer my questions, even the stupid ones. Most importantly, he is an inspirational mathematician, whose passion for the subject I will always remember. I am also grateful to Arjen Doelman and Robin de Vilder for introducing me to the subject of this thesis and allowed me to get an initial grip on the subject. There are many other persons who deserve, and have, my gratitude. Everyone at the Korteweg-de Vries Institute for Mathematics helped to make my time at the institute enjoyable. They provided stimulating discussions, especially Michel, Ramon, Abdel, Said, Maarten, Geertje, Sjoerd and Ren´e. Other people in the mathematical community who I want to thank for interesting discussions include Guus Balkema and Peter Spreij. Finally, I owe my warmest thanks to my wife Souˆad and our two children Ouissal and Ayman. They have filled my life with their cheerful happiness. My wife Souˆad encouraged me throughout the course of my work. The presence of this invaluable ”team” allowed me to keep my feet always firmly on the ground. Contents Preface V 1 Introduction 1 1.1 Background ................................. 1 1.1.1 Dynamical systems: heuristics .................. 1 1.1.2 Random dynamical systems .................... 2 1.1.3 Equilibria, stationary and random invariant measures ..... 8 1.1.4 Stability and instability: bifurcation theory ........... 9 1.2 Thesis overview ............................... 16 2 Fundamentals of random maps 19 2.1 Some notations and definitions ...................... 19 2.2 Stationary measures of random maps and stability ........... 21 2.2.1 Random maps iterations ...................... 21 2.2.2 Families of random maps ..................... 26 2.3 The skew product approach ........................ 28 2.3.1 Some definitions and a few general facts ............. 29 2.4 Representations of discrete Markov processes .............. 36 3 The dynamics of one-dimensional random maps 41 3.1 Stability of stationary measures ...................... 42 3.2 Bifurcations ................................. 44 4 Random attractors for random circle diffeomorphisms 47 4.1 Random fixed points and random periodicity .............. 47 4.1.1 The random family admits a strictly ergodic stationary measure 47 4.1.2 The random family has cyclic intervals .............. 52 4.2 Random saddle node bifurcation ..................... 53 4.3 Convergence to a random attractor .................... 54 4.4 Corollaries for the skew products ..................... 56 5 Regularity of the stationary densities and applications 59 5.1 Smoothness of the stationary densities .................. 59 5.2 Stable random diffeomorphisms ...................... 62 5.3 Auxiliary parameters ............................ 64 5.4 Conditionally (almost) stationary measures ............... 65 VIII Contents 5.5 Escape times ................................ 69 5.6 Decay of correlations ............................ 73 5.7 Regularity of solutions of integral equations ............... 77 6 Case studies 79 6.1 Random circle diffeomorphisms ...................... 79 6.1.1 The standard circle map ...................... 79 6.1.2 The skew product system ..................... 83 6.2 Random unimodal maps .......................... 85 Bibliography 89 Nederlandse samenvatting 95 English summary 97 1 Introduction ”Probability theory has always generated its problems by its contact with other areas. There are very few problems that are generated by its own internal structure. This is partly because, one stripped of everything else, a probability space is essentially the unit interval with the Lebesgue mea- sure.” S.R.S. Varadhan, AMS Bulletin January (2003) 1.1 Background In this section we provide general background to the theory of random dynamical systems and their bifurcations, the object of this thesis. Our discussion is broader then strictly needed for this thesis, in the sense that we mention e.g. iterated function systems and stochastic differential equations which are not the central topic of this thesis. The issues discussed at length in the following chapters in this thesis are summarized in Section 1.2. 1.1.1 Dynamical systems: heuristics Dynamical systems have been studied for many years, in a variety of different ways, and with many different motivations and applications. The essence of a dynamical system is to tell how some state changes with time under the action of mathemat- ical laws. These are important things to study as they give information about the working of the real world, physical instruments. For example, swinging pendulums, hydrology, changing populations and genetics, climate forecast, financial markets and neural networks in the brain can all be treated using dynamical systems models. Some dynamical systems can be described as unforced systems - that is, they propa- gate in isolation from external influences. However, very few systems in the real world are genuinely isolated, and so it is often appropriate to describe dynamical systems as perturbed systems. In this case we have the dynamics of a system (perturbation) driving, or influencing, the dynamics of another. Regularly forced systems have been extensively studied for a long time. A simple example is a pendulum which experi- ences at regular intervals an external ’push’ of the same magnitude each time. By contrast, forcing with irregularly (random) frequencies has received comparatively less attention and is in general much less understood. It is thus widely accepted that understanding the effect of random perturbations on 2 1 Introduction nonlinear dynamical systems is an important challenge. Random perturbations can be small and irrelevant, or they can be so large as to overwhelm the underlying dy- namics. The middle ground is the most interesting, the perturbations can be small, yet contribute non-trivially to the overall dynamics, so that one must consider the interaction of the deterministic dynamics with the stochastic perturbation. This is the approach we take in this thesis. To respond to this need stochastic differential equations (SDE) were introduced by Itˆo at the beginning of the 1940s. He gives an explicit construction of diffusion processes which were introduced in the 1930s by Kolmogorov via partial differential equations and measures in their path spaces. For more than half a century it was customary x ω to consider solutions Xt ( ) at time t > 0 of an SDE for some fixed initial condi- tion, x, and the distribution of corresponding random
Recommended publications
  • Communications with Chaotic Optoelectronic Systems Cryptography and Multiplexing
    COMMUNICATIONS WITH CHAOTIC OPTOELECTRONIC SYSTEMS CRYPTOGRAPHY AND MULTIPLEXING A Thesis Presented to The Academic Faculty by Damien Rontani In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Electrical and Computer Engineering Georgia Institute of Technology December 2011 Copyright c 2011 by Damien Rontani COMMUNICATIONS WITH CHAOTIC OPTOELECTRONIC SYSTEMS CRYPTOGRAPHY AND MULTIPLEXING Approved by: Professor Steven W. McLaughlin, Professor Erik Verriest Committee Chair School of Electrical and Computer School of Electrical and Computer Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Professor David S. Citrin, Advisor Adjunct Professor Alexandre Locquet School of Electrical and Computer School of Electrical and Computer Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Professor Marc Sciamanna, Co-advisor Professor Kurt Wiesenfeld Department of Optical School of Physics Communications Georgia Institute of Technology Ecole Sup´erieure d'Electricit´e Professor William T. Rhodes Date Approved: 30 August 2011 School of Electrical and Computer Engineering Georgia Institute of Technology To those who have made me who I am today, iii ACKNOWLEDGEMENTS The present PhD research has been prepared in the framework of collaboration between the Georgia Institute of Technology (Georgia Tech, USA) and the Ecole Sup´erieured'Electricit´e(Sup´elec,France), at the UMI 2958 a joint Laboratory be- tween Georgia Tech and the Centre National de la Recherche Scientifique (CNRS, France). I would like to acknowledge the Fondation Sup´elec,the Conseil R´egionalde Lorraine, Georgia Tech, and the National Science Foundation (NSF) for their financial and technical support. I would like to sincerely thank my \research family" starting with my two advisors who made this joint-PhD project possible; Prof.
    [Show full text]
  • Recurrence Plots for the Analysis of Complex Systems Norbert Marwan∗, M
    Physics Reports 438 (2007) 237–329 www.elsevier.com/locate/physrep Recurrence plots for the analysis of complex systems Norbert Marwan∗, M. Carmen Romano, Marco Thiel, Jürgen Kurths Nonlinear Dynamics Group, Institute of Physics, University of Potsdam, Potsdam 14415, Germany Accepted 3 November 2006 Available online 12 January 2007 editor: I. Procaccia Abstract Recurrence is a fundamental property of dynamical systems, which can be exploited to characterise the system’s behaviour in phase space. A powerful tool for their visualisation and analysis called recurrence plot was introduced in the late 1980’s. This report is a comprehensive overview covering recurrence based methods and their applications with an emphasis on recent developments. After a brief outline of the theory of recurrences, the basic idea of the recurrence plot with its variations is presented. This includes the quantification of recurrence plots, like the recurrence quantification analysis, which is highly effective to detect, e. g., transitions in the dynamics of systems from time series. A main point is how to link recurrences to dynamical invariants and unstable periodic orbits. This and further evidence suggest that recurrences contain all relevant information about a system’s behaviour. As the respective phase spaces of two systems change due to coupling, recurrence plots allow studying and quantifying their interaction. This fact also provides us with a sensitive tool for the study of synchronisation of complex systems. In the last part of the report several applications of recurrence plots in economy, physiology, neuroscience, earth sciences, astrophysics and engineering are shown. The aim of this work is to provide the readers with the know how for the application of recurrence plot based methods in their own field of research.
    [Show full text]
  • A Translation Of
    2011 A Translation of NJV 72^ dsgecr 1 2011 NJV 72^ dsgecr 2 2011 American Mathematical Society Providence, Rhode Island USA ISSN 0077-1554 TRANSACTIONS OF THE MOSCOW MATHEMATICAL SOCIETY Translation edited by Frances H. Goldman with the assistance of AMS staff A translation of TRUDY MOSKOVSKOGO MATEMATIQESKOGO OBWESTVA Editorial Board A. G. Sergeev (Editor in Chief) V. M. Buchstaber E.` B. Vinberg Yu. S. Ilyashenko A. A. Shkalikov A. V. Domrin (Corresponding Secretary) Advisory Board R. A. Minlos S. P. Novikov N. Kh. Rozov Library of Congress Card Number 65-4713 SUBSCRIPTION INFORMATION. Transactions of the Moscow Mathematical Society for 2011 will consist of one issue. Beginning in 2004, Transactions of the Moscow Mathematical Society is accessible from www.ams.org/journals/. The subscription prices for 2011 are US$532.00 list; US$425.00 institutional member. Upon request, subscribers to paper delivery of this journal are also entitled to receive electronic delivery. For paper delivery, subscribers outside the United States and India must pay a postage surcharge of US$6.00; subscribers in India must pay a postage surcharge of US$13.00. Expedited delivery to destinations in North America US$8.00; elsewhere US$17.00. Subscription renewals are subject to late fees. See www.ams.org/journal-faq for more journal subscription information. BACK NUMBER INFORMATION. For back issues see www.ams.org/bookstore. Subscriptions and orders should be addressed to American Mathematical Society, P.O. Box 845904, Boston, MA 02284-5904, USA. All orders must be accompanied by payment. Other cor- respondence should be addressed to 201 Charles St., Providence, RI 02904-2294, USA.
    [Show full text]
  • Arxiv:1708.06571V1 [Nlin.AO] 22 Aug 2017 the Generating Unit, Which Is the Pressure Reservoir Be- Coupling: Neath the Pipe at a Basically Constant Rate
    SAW16, dated September 28, 2018 Synchronization of organ pipes 1, 2 1 Jakub Sawicki, ∗ Markus Abel, and Eckehard Schöll 1Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany 2Department of Physics and Astronomy, Potsdam University, Karl-Liebknecht-Straße 24, 14476 Potsdam Germany We investigate synchronization of coupled organ pipes. Synchronization and reflection in the organ lead to undesired weakening of the sound in special cases. Recent experiments have shown that sound interaction is highly complex and nonlinear, however, we show that two delay-coupled Van-der-Pol oscillators appear to be a good model for the occurring dynamical phenomena. Here the coupling is realized as distance-dependent, or time-delayed, equivalently. Analytically, we investigate the synchronization frequency and bifurcation scenarios which occur at the boundaries of the Arnold tongues. We successfully compare our results to experimental data. PACS numbers: 05.45.Xt, 05.45.-a Introduction - The physics of organ pipes is an in- we investigate the bifurcation scenarios in the context of terdisciplinary topic where many fields of science meet. two delay-coupled Van-der-Pol oscillators as a represen- It is highly interesting as it includes elements of non- tation of the system of two coupled organ pipes, such linear dynamical system theory [4, 6, 11], aeroacoustic as in the experimental setup of Bergweiler et al. [5]. modeling [13] and synchronization theory [17]. The fo- In extension of previous work, we study the dependence cus of these different research areas is the “queen of in- of Arnold tongues under variation of the time delay τ struments” which captivates through the grandeur of her and the coupling strength κ, to explore how undesired sight and majesty of her sound.
    [Show full text]
  • Modulational Instability in Optical Fibers with Randomly-Kicked Normal
    Modulational instability in optical fibers with randomly-kicked normal dispersion G Dujardin, A Armaroli, Simona Nodari, A Mussot, A Kudlinski, S Trillo, M Conforti, Stephan de Bièvre To cite this version: G Dujardin, A Armaroli, Simona Nodari, A Mussot, A Kudlinski, et al.. Modulational instability in optical fibers with randomly-kicked normal dispersion. Physical Review A, American Physical Society, 2021, 103 (5), pp.053521. 10.1103/PhysRevA.103.053521. hal-03157350v2 HAL Id: hal-03157350 https://hal.archives-ouvertes.fr/hal-03157350v2 Submitted on 10 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. PHYSICAL REVIEW A 103, 053521 (2021) Modulational instability in optical fibers with randomly kicked normal dispersion G. Dujardin ,1 A. Armaroli ,2 S. Rota Nodari ,3 A. Mussot,2 A. Kudlinski,2 S. Trillo,4 M. Conforti ,2,* and S. De Bièvre 1,† 1Univ. Lille, CNRS UMR 8524 - Laboratoire Paul Painlevé, Inria, F-59000 Lille, France 2Univ. Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France 3Institut de Mathématiques de Bourgogne (IMB), CNRS, UMR 5584, Université Bourgogne Franche Comté, F-21000 Dijon, France 4Department of Engineering, University of Ferrara, I-44122 Ferrara, Italy (Received 3 March 2021; accepted 7 May 2021; published 24 May 2021) We study modulational instability (MI) in optical fibers with random group-velocity dispersion (GVD) generated by sharply localized perturbations of a normal GVD fiber that are either randomly or periodically placed along the fiber and that have random strength.
    [Show full text]
  • Bifurcations, Mode Locking, and Chaos in a Dissipative System
    The Bogdanov Map: Bifurcations, Mode Locking, and Chaos in a Dissipative System David K. Arrowsmith, School of Mathematical Sciences Queen Mary and Westfield College University of London Mile End Road London E1 4NS, UK Julyan H. E. Cartwright, Departament de F´ısica Universitat de les Illes Balears 07071 Palma de Mallorca, Spain Alexis N. Lansbury, Department of Physics Brunel, The University of West London Uxbridge, Middlesex UB8 3PH, UK &ColinM.Place.∗ Int. J. Bifurcation and Chaos, 3,803–842,1993 We investigate the bifurcations and basins of attraction in the Bog- danov map, a planar quadratic map which is conjugate to the Henon´ area-preserving map in its conservative limit. It undergoesaHopf bifurcation as dissipation is added, and exhibits the panoply of mode locking, Arnold tongues, and chaos as an invariant circle grows out, finally to be destroyed in the homoclinic tangency of the manifolds of aremotesaddlepoint.TheBogdanovmapistheEulermapofatwo- dimensional system of ordinary differential equations firstconsidered by Bogdanov and Arnold in their study of the versal unfolding of the double-zero-eigenvalue singularity, and equivalently of avectorfield invariant under rotation of the plane by an angle 2π.Itisauseful system in which to observe the effect of dissipative perturbations on Hamiltonian structure. In addition, we argue that the Bogdanov map provides a good approximation to the dynamics of the Poincaremaps´ of periodically forced oscillators. ∗Formerly: Department of Mathematics, Westfield College, University of London, UK. 1 1. Introduction Tisnowwellknownthatthestudyofsystemsofordinarydifferential equations, which commonly arise in dynamical systems investigated in I many fields of science, can be aided by utilizing the surface-of-section technique of Poincaremaps.The´ Poincar´e or return map of a system of or- dinary differential equations reduces the dimension of the problem, replac- ing an n-dimensional set of ordinary differential equations with an (n 1)- dimensional set of difference equations.
    [Show full text]
  • Autoassociative Memory and Pattern Recognition in Micromechanical
    www.nature.com/scientificreports OPEN Autoassociative Memory and Pattern Recognition in Micromechanical Oscillator Received: 30 August 2016 Accepted: 28 February 2017 Network Published: xx xx xxxx Ankit Kumar1 & Pritiraj Mohanty2 Towards practical realization of brain-inspired computing in a scalable physical system, we investigate a network of coupled micromechanical oscillators. We numerically simulate this array of all-to-all coupled nonlinear oscillators in the presence of stochasticity and demonstrate its ability to synchronize and store information in the relative phase differences at synchronization. Sensitivity of behavior to coupling strength, frequency distribution, nonlinearity strength, and noise amplitude is investigated. Our results demonstrate that neurocomputing in a physically realistic network of micromechanical oscillators with silicon-based fabrication process can be robust against noise sources and fabrication process variations. This opens up tantalizing prospects for hardware realization of a low-power brain- inspired computing architecture that captures complexity on a scalable manufacturing platform. Inspired by studies that have indicated that subsystems of the brain involved in associative learning exhibit syn- chronization dynamics by which pattern recognition emerges from the frequency entrainment of the constituent oscillating neurons1, significant recent interest has developed around the prospect of constructing analogous systems using artificial, physical oscillators. Such systems of coupled physical oscillators are capable of autoasso- ciative memory operation and other forms of parallel, non-Boolean and neuromorphic computing, and suitably engineered, offer the advantages of far higher operating frequencies than their biological counterparts, and far lower power requirements than attempts to simulate neural networks on traditional hardware. The dynamics of a system of coupled oscillators can exhibit attractive limit cycles that represent synchronized states.
    [Show full text]
  • Rotation Numbers for Quasiperiodically Forced Circle Maps–Mode-Locking Vs
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 22, Number 2, April 2009, Pages 353–362 S 0894-0347(08)00627-9 Article electronically published on October 21, 2008 ROTATION NUMBERS FOR QUASIPERIODICALLY FORCED CIRCLE MAPS–MODE-LOCKING VS. STRICT MONOTONICITY KRISTIAN BJERKLOV¨ AND TOBIAS JAGER¨ 1. Introduction For an orientation-preserving circle homeomorphism g : T1 → T1 it is well- known that the rotation number behaves strictly monotonically whenever g has no periodic points. On the other hand, the only situation where mode-locking occurs (that is, the rotation number is stable with respect to perturbations) is when there exists a closed interval which is mapped into its own interior by some iterate of g, as in the case of a stable periodic orbit. If the rotation number only stays constant on one side, this corresponds to the existence of parabolic periodic points. In this paper, we show that exactly the same picture holds for quasiperiodically forced (qpf) orientation-preserving circle homeomorphisms, where p, q-invariant strips (as introduced in [2] and [3]) serve as natural analogues of periodic orbits. We consider continuous maps f : T2 → T2 of the form (1.1) f(θ, x)=(θ + ω, fθ(x)) , where ω ∈ [0, 1] \ Q. In addition, we require all fiber maps fθ to be orientation- preserving circle homeomorphisms. The class of all such maps will be denoted by F n ◦ n . Further, we will use the notation fθ (x)=π2 f (θ, x). Given any continuous lift F : T1 × R → T1 × R of f ∈F, the limit (1.2) ρ(F ) := lim (F n(x) − x)/n n→∞ θ exists and is independent of θ and x [1].
    [Show full text]
  • 78 DS09 Abstracts
    78 DS09 Abstracts IP0 IP3 Jrgen Moser Lecture: Catastrophes, Symmetry- Network Topology: Sensors and Systems Breaking, Synchrony-Breaking Networks arise in innumerable contexts from mobile com- The ideas that surrounded catastrophe theory (codimen- munications devices, to environmental sensors nets, to bi- sion, unfoldings, organizing centers, ...) have shaped much ological systems at all scales. This talk explores the re- progress in bifurcation theory during the past forty years lationships between what happens on the network nodes and, indeed, in many of its applications. I will try to trace (signals, sensing, dynamics) and the underlying spatial dis- some of these developments and to indicate why this same tribution of the nodes — an especially delicate interplay in way of thinking might lead to interesting discoveries in net- the context of coordinate-free, non-localized systems. The work dynamics. key tools are an adaptation of homology theory. Algebraic topology yields an enrichment of network topology that in- Martin Golubitsky tegrates cleanly with statistics and dynamics of networks, Ohio State University and which allows for solutions to problems of coverage, Mathematical Biosciences Institute communication, and control. [email protected] Robert W. Ghrist University of Pennsylvania IP1 [email protected] Collapse of the Atlantic Ocean Circulation The Atlantic Ocean Circulation is sensitive to the patterns IP4 of atmospheric forcing. Relatively small changes in atmo- Mechanisms of Instability in Nearly Integrable spheric conditions may lead to a spectacular collapse of Hamiltonian Systems Atlantic Ocean currents, with a large impact on European climate. In ocean-climate models, a collapse is associated There are many systems that appear in applications that with the existence of saddle-node bifurcations.
    [Show full text]
  • PIANIST LOST: Sunken Cathedrals
    PIANIST LOST: sunken cathedrals THE HIMALAYA SESSIONS volume 2 PIANIST L O S T: SUNKEN CATHEDRALS Peter Halstead THE ADRIAN BRINKERHOFF FOUNDATION new york A B 2017 Fo Also by Peter Halstead Pianist Lost: Excesses and Excuses (The Himalaya Sessions, vol. 1) Pianist Lost: Boatsongs (The Himalaya Sessions, vol. 3) Pianist Lost: False Love (The Himalaya Sessions, vol. 4) Pianist Lost: Reply Hazy (The Himalaya Sessions, vol. 5) Pianist Lost: The Gift to be Simple (The Himalaya Sessions, vol. 6) You can hear the below pieces by entering this web address into your browser: http://adrianbrinkerhofffoundation.org and clicking on the pertinent link. 1. Charles-Valentin Alkan: Barcarolle, Opus 65, No. 6, Trente Chants, Troisième Suite, G Minor, 1844, edition G. Schirmer, ed. Lewenthal 2. Félix Mendelssohn: Venetian Boat-Song No. 1, Opus 19, No. 6, G Minor, 1830 3. Félix Mendelssohn: Venetian Boat-Song No. 2, Opus 30, No. 6, F Sharp Minor, 1834 4. Félix Mendelssohn: Venetian Boat-Song No. 3, Opus 62, No. 5, A Minor, 1844 5. Félix Mendelssohn: Boat-Song (Posthumous), Opus 102, No. 7, A Major, 1845 6. Fryderyka Chopina: Barcarolle, Opus 60, F Sharp Major, 1845–1846, Edition Instytut Fryderyka Chopina XI, ed. Paderewski 7. Claude Debussy: La Cathédrale engloutie, from Préludes, Premier Livre, No. X, C Major, 1910 8. Claude Debussy: Des Pas sur la Neige, Préludes, Premier Livre, No. VI, D Minor, 1910 9. Gabriel Fauré - Peter Halstead: Barcarolle No. 1 in A Minor, Opus 26, 1880 10. Claude Debussy: Des Pas sur la Neige, Préludes, Premier Livre, No. VI, D Minor, 1910 This is mostly a true story, although names and chronologies have been altered to protect people who might be sensitive to having their lives and motives revealed through intimate diaries which have been obtained under strictures permissible in certain Asian countries.
    [Show full text]
  • Arnold: Swimming Against the Tide / Boris Khesin, Serge Tabachnikov, Editors
    ARNOLD: Real Analysis A Comprehensive Course in Analysis, Part 1 Barry Simon Boris A. Khesin Serge L. Tabachnikov Editors http://dx.doi.org/10.1090/mbk/086 ARNOLD: AMERICAN MATHEMATICAL SOCIETY Photograph courtesy of Svetlana Tretyakova Photograph courtesy of Svetlana Vladimir Igorevich Arnold June 12, 1937–June 3, 2010 ARNOLD: Boris A. Khesin Serge L. Tabachnikov Editors AMERICAN MATHEMATICAL SOCIETY Providence, Rhode Island Translation of Chapter 7 “About Vladimir Abramovich Rokhlin” and Chapter 21 “Several Thoughts About Arnold” provided by Valentina Altman. 2010 Mathematics Subject Classification. Primary 01A65; Secondary 01A70, 01A75. For additional information and updates on this book, visit www.ams.org/bookpages/mbk-86 Library of Congress Cataloging-in-Publication Data Arnold: swimming against the tide / Boris Khesin, Serge Tabachnikov, editors. pages cm. ISBN 978-1-4704-1699-7 (alk. paper) 1. Arnold, V. I. (Vladimir Igorevich), 1937–2010. 2. Mathematicians–Russia–Biography. 3. Mathematicians–Soviet Union–Biography. 4. Mathematical analysis. 5. Differential equations. I. Khesin, Boris A. II. Tabachnikov, Serge. QA8.6.A76 2014 510.92–dc23 2014021165 [B] Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Permissions to reuse portions of AMS publication content are now being handled by Copyright Clearance Center’s RightsLink service.
    [Show full text]
  • Clocking Convergence to Arnold Tongues – the Circle Map Revisited
    i i “LMD12_taik_Landauskas_Rag” — 2012/12/11 — 17:03 — page 54 — #1 i i Lietuvos matematikos rinkinys ISSN 0132-2818 Proc. of the Lithuanian Mathematical Society, Ser. A www.mii.lt/LMR/ Vol. 53, 2012, 54–59 Clocking convergence to Arnold tongues – the circle map revisited∗ Mantas Landauskas, Minvydas Ragulskis Research Group for Mathematical and Numerical Analysis of Dynamical Systems, Kaunas University of Technology Studentų 50, LT-51368 Kaunas E-mail: [email protected], [email protected] Abstract. Computational techniques based on ranks of Hankel matrices is used to study the convergence to Arnold tongues. It appears that the process of convergence to the phase- locked mode is far from being trivial. The stable, the unstable and the manifold of non- asymptotic convergence intertwine in the parameter plane of the circle map. Pseudoranks of Hankel matrices carry important physical information about transient processes taking place in discrete nonlinear iterative maps. These pictures in the parameter plane are also beautiful from the aesthetical point of view. Keywords: the circle map, Arnold tongue, rank of a sequence. Introduction Clocking convergence is an important tool for investigating various aspects of iterative (chaotic) maps. The rate of convergence to the critical attractor when an ensemble of initial conditions is uniformly spread over the entire phase space may provide the insight into the fractal nature and the scale invariance of the dynamical attractor [3, 7]. Numerical convergence of the discrete logistic map gauged with a finite computational accuracy is investigated in [2] where forward iterations are used to identify self-similar patterns in the region before the onset to chaos.
    [Show full text]