78 DS09 Abstracts

Total Page:16

File Type:pdf, Size:1020Kb

78 DS09 Abstracts 78 DS09 Abstracts IP0 IP3 Jrgen Moser Lecture: Catastrophes, Symmetry- Network Topology: Sensors and Systems Breaking, Synchrony-Breaking Networks arise in innumerable contexts from mobile com- The ideas that surrounded catastrophe theory (codimen- munications devices, to environmental sensors nets, to bi- sion, unfoldings, organizing centers, ...) have shaped much ological systems at all scales. This talk explores the re- progress in bifurcation theory during the past forty years lationships between what happens on the network nodes and, indeed, in many of its applications. I will try to trace (signals, sensing, dynamics) and the underlying spatial dis- some of these developments and to indicate why this same tribution of the nodes — an especially delicate interplay in way of thinking might lead to interesting discoveries in net- the context of coordinate-free, non-localized systems. The work dynamics. key tools are an adaptation of homology theory. Algebraic topology yields an enrichment of network topology that in- Martin Golubitsky tegrates cleanly with statistics and dynamics of networks, Ohio State University and which allows for solutions to problems of coverage, Mathematical Biosciences Institute communication, and control. [email protected] Robert W. Ghrist University of Pennsylvania IP1 [email protected] Collapse of the Atlantic Ocean Circulation The Atlantic Ocean Circulation is sensitive to the patterns IP4 of atmospheric forcing. Relatively small changes in atmo- Mechanisms of Instability in Nearly Integrable spheric conditions may lead to a spectacular collapse of Hamiltonian Systems Atlantic Ocean currents, with a large impact on European climate. In ocean-climate models, a collapse is associated There are many systems that appear in applications that with the existence of saddle-node bifurcations. The chal- have negligible friction, like in celestial mechanics and lenge is to efficiently determine the position of these bifur- Astrodynamics, motion of charged particles in magnetic cations in the multi-parameter, large-dimensional dynam- fields, chemical reactions, etc. A general model for this ical systems derived from these models. In this presenta- kind of systems is to consider time periodic perturbations tion, I will give a brief overview of numerical techniques of integrable Hamiltonian systems with 2 or more degrees currently used and then focus on the issue of determining of freedom. One problem that has attracted attention for the probability that a collapse will occur before the year a long time is whether the effect of perturbations accu- 2100. mulate over time and lead to large effects (instability) or whether these effects average out (stability). The first re- Henk Dijkstra sult in proving instability for this model was presented by Institute for Marine and Atmospheric Research Utrecht Arnold in 1964, but the perturbation considered was not (IMAU) general enough (there do not appear ”large gaps” in the Utrecht, the Netherlands resonant tori). In this talk we present some mechanisms [email protected] that cause instabilities for general perturbations if the un- perturbed systems considered are a priori-unstable, that is, they can be written as a product of d rotators and n IP2 penduli, d ≥ 1, n ≥ 1. The main technique is to develop a Dynamics, Instability, and Bifurcation in the Me- toolkit to study, in a unified way, tori of different topologies chanics of Biological Growth and their invariant manifolds, their intersections as well as shadowing properties of these bi-asymptotic orbits. Part of Biological growth is at the heart of many developmental, this toolkit is to unify standard techniques (normally hy- physiological, and pathological processes. Growth relies perbolic manifolds, KAM theory, averaging theory) so that on the fine tuning of different genetic and biochemical pro- they can work together. A fundamental tool used here is cesses but, ultimately, expresses itself through a change of the scattering map of normally hyperbolic invariant man- geometry mediated by physical forces. These forces gen- ifolds. The conditions needed are explicit. This makes it erated by growth also influence growth itself, creating a possible to show that this phenomenon occurs in concrete complex feedback mechanism. The coupling between ge- examples, as the restricted three body problem in celestial ometry, stresses, and growth in elastic tissues can be mod- mechanics. eled within the framework of nonlinear anelasticity, a the- ory which includes both reversible and irreversible defor- Tere M. Seara mations. The consequences of growth can then be studied Univ. Politecnica de Catalunya on simple geometries or reduced models. I will explain the [email protected] basic foundational principles of nonlinear anelasticity and, motivated by the behavior of biological systems, I will de- scribe generic instabilities and bifurcations occurring in the IP5 growth dynamics. Analysis of Large-Scale Interconnected Dynamical Systems Alain Goriely University of Arizona The problem of analysis of large-scale networked systems Program in Applied Mathematics is one of the most interesting current challenges in Dy- [email protected] namical Systems. In this talk, I will present a perspec- tive on this problem that combines an operator-theoretic and graph theoretic approach, but also incorporates, in a strong way, the geometric point of view that is so fruitful in low dimensions. This approach leads to a new proposal DS09 Abstracts 79 for model reduction that is rooted in the dynamics of the Physics: Lorentz gases as deterministic models for stochas- system rather than in energy-minimization arguments. It tic behaviour; to (2) pattern forming excitable media: hy- also enables analysis of uncertain and stochastic systems permeander of spiral waves where the spiral tip appears to - where initial conditions and/or parameter values are not undergo a random walk in the plane. For (1), Nicol and known exactly - within the same framework. Most of the the speaker proved recently that the positions of almost tools apply equally to discontinuous systems. I will moti- all gas molecules behave asymptotically like sample paths vate the approach by a number of examples, ranging from of Brownian motion. For (2), a mechanism (and experi- biomolecular models to power grid systems, that exhibit ment) is proposed for mathematically verifiable Brownian- large scale (”emergent”) transitions between states. like motion for the spiral tip. Igor Mezic Ian Melbourne University of California, Santa Barbara University of Surrey [email protected] Department of Mathematics and Statistics [email protected] IP6 The Multiscale Dynamics of Lightning and a Mov- IP9 ing Boundary Problem Living on the Edge of Noise-Driven Order Streamers pave the way of lightning strokes and of many Transient or unstable behavior is often ignored in consid- other discharges in nature and technology. They are ering long time dynamics in the deterministic world. How- plasma fingers that penetrate non-ionized matter by a ever, stochastic effects can change the picture dramatically, strong field enhancement at their tips. Each streamer so that the transients can dominate the long range be- has an intricate inner structure, and a discharge can form havior. This talk will compare a few seemingly unrelated fractal-like trees with ten thousands of streamer branches. canonical models with noise-driven regular behaviors, such First I will review how far their very fast dynamics and as coherent oscillations, synchronization, mixed mode os- multiscale structure are resolved by recent experiments and cillations and even quiescence, that are transient in the simulations. Then I will focus on derivation, tests and so- absence of noise. Perspectives combining ideas from coher- lutions of a moving boundary approximation for streamer ence resonance, meta-stability, and multiples scales show fingers. The boundary approximation with kinetic under- that the order in these models can be attributed to tran- cooling regularization revives the question of the selection sients ”stabilized” by stochastic effects. These perspectives of Saffman-Taylor fingers and similar solutions. Quantita- suggest analysis on reduced models to better understand tive predictions of the field enhancement at the streamer and predict these phenomena. tips are important practical results. Rachel Kuske Ute Ebert University of British Columbia CWI Amsterdam [email protected] [email protected] IP10 IP7 The Fluid Trampoline: Droplets Bouncing on a Systems Biology: How Dynamical Systems Theory Soap Film Can Help to Understand the Basis of Life We present the results of a combined experimental and the- The 21st century has been noted to be the century of biol- oretical investigation of droplets falling onto a horizontal ogy and new technologies and methods are vastly accelerat- soap film. Both static and vertically vibrated soap films ing the pace of discovery in biology and medicine. Systems are considered. A quasi-static description of the soap film biology, the systems level understanding and investigation shape yields a force-displacement relation that allows us to of biological phenomena, is one of those key methods that model the film as a nonlinear spring, and yields an accu- act as a driving force for progress in biological research. In rate criterion for the transition between droplet bouncing this talk the role of dynamical systems theory for the de- and crossing. On the vibrating film, a variety of bounc- velopment
Recommended publications
  • Communications with Chaotic Optoelectronic Systems Cryptography and Multiplexing
    COMMUNICATIONS WITH CHAOTIC OPTOELECTRONIC SYSTEMS CRYPTOGRAPHY AND MULTIPLEXING A Thesis Presented to The Academic Faculty by Damien Rontani In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Electrical and Computer Engineering Georgia Institute of Technology December 2011 Copyright c 2011 by Damien Rontani COMMUNICATIONS WITH CHAOTIC OPTOELECTRONIC SYSTEMS CRYPTOGRAPHY AND MULTIPLEXING Approved by: Professor Steven W. McLaughlin, Professor Erik Verriest Committee Chair School of Electrical and Computer School of Electrical and Computer Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Professor David S. Citrin, Advisor Adjunct Professor Alexandre Locquet School of Electrical and Computer School of Electrical and Computer Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Professor Marc Sciamanna, Co-advisor Professor Kurt Wiesenfeld Department of Optical School of Physics Communications Georgia Institute of Technology Ecole Sup´erieure d'Electricit´e Professor William T. Rhodes Date Approved: 30 August 2011 School of Electrical and Computer Engineering Georgia Institute of Technology To those who have made me who I am today, iii ACKNOWLEDGEMENTS The present PhD research has been prepared in the framework of collaboration between the Georgia Institute of Technology (Georgia Tech, USA) and the Ecole Sup´erieured'Electricit´e(Sup´elec,France), at the UMI 2958 a joint Laboratory be- tween Georgia Tech and the Centre National de la Recherche Scientifique (CNRS, France). I would like to acknowledge the Fondation Sup´elec,the Conseil R´egionalde Lorraine, Georgia Tech, and the National Science Foundation (NSF) for their financial and technical support. I would like to sincerely thank my \research family" starting with my two advisors who made this joint-PhD project possible; Prof.
    [Show full text]
  • Recurrence Plots for the Analysis of Complex Systems Norbert Marwan∗, M
    Physics Reports 438 (2007) 237–329 www.elsevier.com/locate/physrep Recurrence plots for the analysis of complex systems Norbert Marwan∗, M. Carmen Romano, Marco Thiel, Jürgen Kurths Nonlinear Dynamics Group, Institute of Physics, University of Potsdam, Potsdam 14415, Germany Accepted 3 November 2006 Available online 12 January 2007 editor: I. Procaccia Abstract Recurrence is a fundamental property of dynamical systems, which can be exploited to characterise the system’s behaviour in phase space. A powerful tool for their visualisation and analysis called recurrence plot was introduced in the late 1980’s. This report is a comprehensive overview covering recurrence based methods and their applications with an emphasis on recent developments. After a brief outline of the theory of recurrences, the basic idea of the recurrence plot with its variations is presented. This includes the quantification of recurrence plots, like the recurrence quantification analysis, which is highly effective to detect, e. g., transitions in the dynamics of systems from time series. A main point is how to link recurrences to dynamical invariants and unstable periodic orbits. This and further evidence suggest that recurrences contain all relevant information about a system’s behaviour. As the respective phase spaces of two systems change due to coupling, recurrence plots allow studying and quantifying their interaction. This fact also provides us with a sensitive tool for the study of synchronisation of complex systems. In the last part of the report several applications of recurrence plots in economy, physiology, neuroscience, earth sciences, astrophysics and engineering are shown. The aim of this work is to provide the readers with the know how for the application of recurrence plot based methods in their own field of research.
    [Show full text]
  • A Translation Of
    2011 A Translation of NJV 72^ dsgecr 1 2011 NJV 72^ dsgecr 2 2011 American Mathematical Society Providence, Rhode Island USA ISSN 0077-1554 TRANSACTIONS OF THE MOSCOW MATHEMATICAL SOCIETY Translation edited by Frances H. Goldman with the assistance of AMS staff A translation of TRUDY MOSKOVSKOGO MATEMATIQESKOGO OBWESTVA Editorial Board A. G. Sergeev (Editor in Chief) V. M. Buchstaber E.` B. Vinberg Yu. S. Ilyashenko A. A. Shkalikov A. V. Domrin (Corresponding Secretary) Advisory Board R. A. Minlos S. P. Novikov N. Kh. Rozov Library of Congress Card Number 65-4713 SUBSCRIPTION INFORMATION. Transactions of the Moscow Mathematical Society for 2011 will consist of one issue. Beginning in 2004, Transactions of the Moscow Mathematical Society is accessible from www.ams.org/journals/. The subscription prices for 2011 are US$532.00 list; US$425.00 institutional member. Upon request, subscribers to paper delivery of this journal are also entitled to receive electronic delivery. For paper delivery, subscribers outside the United States and India must pay a postage surcharge of US$6.00; subscribers in India must pay a postage surcharge of US$13.00. Expedited delivery to destinations in North America US$8.00; elsewhere US$17.00. Subscription renewals are subject to late fees. See www.ams.org/journal-faq for more journal subscription information. BACK NUMBER INFORMATION. For back issues see www.ams.org/bookstore. Subscriptions and orders should be addressed to American Mathematical Society, P.O. Box 845904, Boston, MA 02284-5904, USA. All orders must be accompanied by payment. Other cor- respondence should be addressed to 201 Charles St., Providence, RI 02904-2294, USA.
    [Show full text]
  • Arxiv:1708.06571V1 [Nlin.AO] 22 Aug 2017 the Generating Unit, Which Is the Pressure Reservoir Be- Coupling: Neath the Pipe at a Basically Constant Rate
    SAW16, dated September 28, 2018 Synchronization of organ pipes 1, 2 1 Jakub Sawicki, ∗ Markus Abel, and Eckehard Schöll 1Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany 2Department of Physics and Astronomy, Potsdam University, Karl-Liebknecht-Straße 24, 14476 Potsdam Germany We investigate synchronization of coupled organ pipes. Synchronization and reflection in the organ lead to undesired weakening of the sound in special cases. Recent experiments have shown that sound interaction is highly complex and nonlinear, however, we show that two delay-coupled Van-der-Pol oscillators appear to be a good model for the occurring dynamical phenomena. Here the coupling is realized as distance-dependent, or time-delayed, equivalently. Analytically, we investigate the synchronization frequency and bifurcation scenarios which occur at the boundaries of the Arnold tongues. We successfully compare our results to experimental data. PACS numbers: 05.45.Xt, 05.45.-a Introduction - The physics of organ pipes is an in- we investigate the bifurcation scenarios in the context of terdisciplinary topic where many fields of science meet. two delay-coupled Van-der-Pol oscillators as a represen- It is highly interesting as it includes elements of non- tation of the system of two coupled organ pipes, such linear dynamical system theory [4, 6, 11], aeroacoustic as in the experimental setup of Bergweiler et al. [5]. modeling [13] and synchronization theory [17]. The fo- In extension of previous work, we study the dependence cus of these different research areas is the “queen of in- of Arnold tongues under variation of the time delay τ struments” which captivates through the grandeur of her and the coupling strength κ, to explore how undesired sight and majesty of her sound.
    [Show full text]
  • Modulational Instability in Optical Fibers with Randomly-Kicked Normal
    Modulational instability in optical fibers with randomly-kicked normal dispersion G Dujardin, A Armaroli, Simona Nodari, A Mussot, A Kudlinski, S Trillo, M Conforti, Stephan de Bièvre To cite this version: G Dujardin, A Armaroli, Simona Nodari, A Mussot, A Kudlinski, et al.. Modulational instability in optical fibers with randomly-kicked normal dispersion. Physical Review A, American Physical Society, 2021, 103 (5), pp.053521. 10.1103/PhysRevA.103.053521. hal-03157350v2 HAL Id: hal-03157350 https://hal.archives-ouvertes.fr/hal-03157350v2 Submitted on 10 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. PHYSICAL REVIEW A 103, 053521 (2021) Modulational instability in optical fibers with randomly kicked normal dispersion G. Dujardin ,1 A. Armaroli ,2 S. Rota Nodari ,3 A. Mussot,2 A. Kudlinski,2 S. Trillo,4 M. Conforti ,2,* and S. De Bièvre 1,† 1Univ. Lille, CNRS UMR 8524 - Laboratoire Paul Painlevé, Inria, F-59000 Lille, France 2Univ. Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France 3Institut de Mathématiques de Bourgogne (IMB), CNRS, UMR 5584, Université Bourgogne Franche Comté, F-21000 Dijon, France 4Department of Engineering, University of Ferrara, I-44122 Ferrara, Italy (Received 3 March 2021; accepted 7 May 2021; published 24 May 2021) We study modulational instability (MI) in optical fibers with random group-velocity dispersion (GVD) generated by sharply localized perturbations of a normal GVD fiber that are either randomly or periodically placed along the fiber and that have random strength.
    [Show full text]
  • Bifurcations, Mode Locking, and Chaos in a Dissipative System
    The Bogdanov Map: Bifurcations, Mode Locking, and Chaos in a Dissipative System David K. Arrowsmith, School of Mathematical Sciences Queen Mary and Westfield College University of London Mile End Road London E1 4NS, UK Julyan H. E. Cartwright, Departament de F´ısica Universitat de les Illes Balears 07071 Palma de Mallorca, Spain Alexis N. Lansbury, Department of Physics Brunel, The University of West London Uxbridge, Middlesex UB8 3PH, UK &ColinM.Place.∗ Int. J. Bifurcation and Chaos, 3,803–842,1993 We investigate the bifurcations and basins of attraction in the Bog- danov map, a planar quadratic map which is conjugate to the Henon´ area-preserving map in its conservative limit. It undergoesaHopf bifurcation as dissipation is added, and exhibits the panoply of mode locking, Arnold tongues, and chaos as an invariant circle grows out, finally to be destroyed in the homoclinic tangency of the manifolds of aremotesaddlepoint.TheBogdanovmapistheEulermapofatwo- dimensional system of ordinary differential equations firstconsidered by Bogdanov and Arnold in their study of the versal unfolding of the double-zero-eigenvalue singularity, and equivalently of avectorfield invariant under rotation of the plane by an angle 2π.Itisauseful system in which to observe the effect of dissipative perturbations on Hamiltonian structure. In addition, we argue that the Bogdanov map provides a good approximation to the dynamics of the Poincaremaps´ of periodically forced oscillators. ∗Formerly: Department of Mathematics, Westfield College, University of London, UK. 1 1. Introduction Tisnowwellknownthatthestudyofsystemsofordinarydifferential equations, which commonly arise in dynamical systems investigated in I many fields of science, can be aided by utilizing the surface-of-section technique of Poincaremaps.The´ Poincar´e or return map of a system of or- dinary differential equations reduces the dimension of the problem, replac- ing an n-dimensional set of ordinary differential equations with an (n 1)- dimensional set of difference equations.
    [Show full text]
  • Autoassociative Memory and Pattern Recognition in Micromechanical
    www.nature.com/scientificreports OPEN Autoassociative Memory and Pattern Recognition in Micromechanical Oscillator Received: 30 August 2016 Accepted: 28 February 2017 Network Published: xx xx xxxx Ankit Kumar1 & Pritiraj Mohanty2 Towards practical realization of brain-inspired computing in a scalable physical system, we investigate a network of coupled micromechanical oscillators. We numerically simulate this array of all-to-all coupled nonlinear oscillators in the presence of stochasticity and demonstrate its ability to synchronize and store information in the relative phase differences at synchronization. Sensitivity of behavior to coupling strength, frequency distribution, nonlinearity strength, and noise amplitude is investigated. Our results demonstrate that neurocomputing in a physically realistic network of micromechanical oscillators with silicon-based fabrication process can be robust against noise sources and fabrication process variations. This opens up tantalizing prospects for hardware realization of a low-power brain- inspired computing architecture that captures complexity on a scalable manufacturing platform. Inspired by studies that have indicated that subsystems of the brain involved in associative learning exhibit syn- chronization dynamics by which pattern recognition emerges from the frequency entrainment of the constituent oscillating neurons1, significant recent interest has developed around the prospect of constructing analogous systems using artificial, physical oscillators. Such systems of coupled physical oscillators are capable of autoasso- ciative memory operation and other forms of parallel, non-Boolean and neuromorphic computing, and suitably engineered, offer the advantages of far higher operating frequencies than their biological counterparts, and far lower power requirements than attempts to simulate neural networks on traditional hardware. The dynamics of a system of coupled oscillators can exhibit attractive limit cycles that represent synchronized states.
    [Show full text]
  • Thesis Is the final Work of My Ph.D
    UvA-DARE (Digital Academic Repository) Bifurcation of random maps Zmarrou, H. Publication date 2008 Document Version Final published version Link to publication Citation for published version (APA): Zmarrou, H. (2008). Bifurcation of random maps. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:06 Oct 2021 Bifurcation of random maps Hicham Zmarrou Bifurcation of random maps Academisch proefschrift ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magnificus prof. dr. D.C. van den Boom ten overstaan van een door het college voor promoties ingestelde commissie, in het openbaar te verdedigen in de Agnietenkapel op vrijdag 28 maart 2008, te 14:00 uur door Hicham Zmarrou geboren te Oued Amlil, Marokko Promotiecommissie: Promotor: Prof.
    [Show full text]
  • Rotation Numbers for Quasiperiodically Forced Circle Maps–Mode-Locking Vs
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 22, Number 2, April 2009, Pages 353–362 S 0894-0347(08)00627-9 Article electronically published on October 21, 2008 ROTATION NUMBERS FOR QUASIPERIODICALLY FORCED CIRCLE MAPS–MODE-LOCKING VS. STRICT MONOTONICITY KRISTIAN BJERKLOV¨ AND TOBIAS JAGER¨ 1. Introduction For an orientation-preserving circle homeomorphism g : T1 → T1 it is well- known that the rotation number behaves strictly monotonically whenever g has no periodic points. On the other hand, the only situation where mode-locking occurs (that is, the rotation number is stable with respect to perturbations) is when there exists a closed interval which is mapped into its own interior by some iterate of g, as in the case of a stable periodic orbit. If the rotation number only stays constant on one side, this corresponds to the existence of parabolic periodic points. In this paper, we show that exactly the same picture holds for quasiperiodically forced (qpf) orientation-preserving circle homeomorphisms, where p, q-invariant strips (as introduced in [2] and [3]) serve as natural analogues of periodic orbits. We consider continuous maps f : T2 → T2 of the form (1.1) f(θ, x)=(θ + ω, fθ(x)) , where ω ∈ [0, 1] \ Q. In addition, we require all fiber maps fθ to be orientation- preserving circle homeomorphisms. The class of all such maps will be denoted by F n ◦ n . Further, we will use the notation fθ (x)=π2 f (θ, x). Given any continuous lift F : T1 × R → T1 × R of f ∈F, the limit (1.2) ρ(F ) := lim (F n(x) − x)/n n→∞ θ exists and is independent of θ and x [1].
    [Show full text]
  • BULLETIN NEWSLETTER Contents
    Bulletin Newsletter Fall 2007 Number 62 BULLETIN NEWSLETTER Contents ✬ ✩Reports from the Society Submissions President’s Report . 2 Submissions and ideas for publica- Past President’s Report . 4 tion are appreciated. They should Board of Directors . 7 be sent to the editor: Minutes from 2007 AGM . .11 Email:[email protected] Committee Membership . 14 Tele: 204-474-7486 ICIAM Report . 16 Fax: 204-474-7602 Report on CAIMS SCMAI 2007 . 18 Mail: Abba Gumel Membership Committee Update . .15 CAIMS SCMAI Secretary Dept. of Mathematics Society Updates University of Manitoba Winnipeg, MB R3T 2N2 2007 Nerenberg Lecture . 20 CAIMS SCMAI Awards . 22 Advertising Rates 2008 Election – Call for Nominations . 23 Inserts and non-advertising submissions (including letters to the editor) should be CAMQ . 23 negotiated with the Secretary. Information CAIMS SCMAI 2008 . 24 about deadlines, payment and acceptable SIAM Reciprocity Agreement . 25 formats should be directed to the Secre- In Memory of Gene Golub . .26 tary. Publication Information News from the Math Institutes The Canadian Applied and Industrial CRM . 29 Mathematics Society / Societ´ e´ Canadi- enne de Mathematiques´ Appliquees´ et In- Fields Institute . 30 dustrielles (CAIMS SCMAI) is a mem- PIMS . .32 ber society of the International Council MITACS . 34 for Industrial and Applied Mathematics (ICIAM). The newsletter is published at least once a year. Upcoming Conferences ................................35 Editors: Abba Gumel and Dhavide Aruliah Design and Production: James Treacy Position Announcements Photographs: Ken Jackson, Jack Macki . .36–40 and Hongbin Guo Back Cover ✫ ✪ICIAM 2011 Announcement 1 Reports from the Society BULLETIN NEWSLETTER Past President’s Report by Bill Langford, CAIMS SCMAI President, 2005–7 The very successful 2007 Annual Meeting in the beautiful setting of the Banff Conference Centre marked the end of my two-year term as President of CAIMS SCMAI.
    [Show full text]
  • PIANIST LOST: Sunken Cathedrals
    PIANIST LOST: sunken cathedrals THE HIMALAYA SESSIONS volume 2 PIANIST L O S T: SUNKEN CATHEDRALS Peter Halstead THE ADRIAN BRINKERHOFF FOUNDATION new york A B 2017 Fo Also by Peter Halstead Pianist Lost: Excesses and Excuses (The Himalaya Sessions, vol. 1) Pianist Lost: Boatsongs (The Himalaya Sessions, vol. 3) Pianist Lost: False Love (The Himalaya Sessions, vol. 4) Pianist Lost: Reply Hazy (The Himalaya Sessions, vol. 5) Pianist Lost: The Gift to be Simple (The Himalaya Sessions, vol. 6) You can hear the below pieces by entering this web address into your browser: http://adrianbrinkerhofffoundation.org and clicking on the pertinent link. 1. Charles-Valentin Alkan: Barcarolle, Opus 65, No. 6, Trente Chants, Troisième Suite, G Minor, 1844, edition G. Schirmer, ed. Lewenthal 2. Félix Mendelssohn: Venetian Boat-Song No. 1, Opus 19, No. 6, G Minor, 1830 3. Félix Mendelssohn: Venetian Boat-Song No. 2, Opus 30, No. 6, F Sharp Minor, 1834 4. Félix Mendelssohn: Venetian Boat-Song No. 3, Opus 62, No. 5, A Minor, 1844 5. Félix Mendelssohn: Boat-Song (Posthumous), Opus 102, No. 7, A Major, 1845 6. Fryderyka Chopina: Barcarolle, Opus 60, F Sharp Major, 1845–1846, Edition Instytut Fryderyka Chopina XI, ed. Paderewski 7. Claude Debussy: La Cathédrale engloutie, from Préludes, Premier Livre, No. X, C Major, 1910 8. Claude Debussy: Des Pas sur la Neige, Préludes, Premier Livre, No. VI, D Minor, 1910 9. Gabriel Fauré - Peter Halstead: Barcarolle No. 1 in A Minor, Opus 26, 1880 10. Claude Debussy: Des Pas sur la Neige, Préludes, Premier Livre, No. VI, D Minor, 1910 This is mostly a true story, although names and chronologies have been altered to protect people who might be sensitive to having their lives and motives revealed through intimate diaries which have been obtained under strictures permissible in certain Asian countries.
    [Show full text]
  • Mathematical Society April 2003 Volume 50, Number 4
    ISS N 0002 -9920 of the American Mathematical Society April 2003 Volume 50, Number 4 An Introduction to Analysis on Metric Spaces page 438 Artful Mathematics: The Heritage of M. C. Escher page 446 Filling in Escher's blank space (see page 457) The Open Computer Algebra System ,.;' MuPAD Pro - [DtffEq.mnb] fo:B. MuPAD Pro is a full-featured computer algebra system in an integrated and 0 30 Vtewer - [VCamKiem2.vca] < Edit View Tools Animation Window Help open environment for symbolic and numeric computing . The MuPAD language has a Pascal-like syntax and allows imperative, functional, and object­ oriented programming . Its domains and categories are like object-oriented MuP .AJ) recognized an inhomogenous linear differential equation classes that allow overriding and corresponding homogenous system is expresse~ using a new ide overloading methods and operators, The differential equation y'"'(x) - 5y"(x) + 4 y(x) = 2 cos(x) o inheritance, and generic algorithms. A • solve( ode ( y''''(x)- S*y''(x) + 4*y comfortable notebook interface includes a graphics tool for visualization, an integrated source-level debugger, a profiler, and hypertext help. It is also possible to solve systems of differential equations. Consi Some of the new features in version 2.5 include: f(x) - j(x) + g'(x) + 2 g(x) =l+eA g'(x) + 2 g(x) + h'(x) + h(x) =2 +ex X • High quality 3-D graphics • HTML export Ready • Increased computational capability • Available with Scilab for very fast numerical computations ~MacKichan SOFTWAR E, INC . Tools for Scientific Creativity Since
    [Show full text]