Atmospheric Entry Performance of the Hercules Single-Stage Reusable Vehicle at Earth
Total Page:16
File Type:pdf, Size:1020Kb
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 12-2019 Atmospheric Entry Performance of the Hercules Single-Stage Reusable Vehicle at Earth Braxton Lott Brakefield University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Recommended Citation Brakefield, Braxton Lott, "Atmospheric Entry Performance of the Hercules Single-Stage Reusable Vehicle at Earth. " Master's Thesis, University of Tennessee, 2019. https://trace.tennessee.edu/utk_gradthes/5521 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Braxton Lott Brakefield entitled A" tmospheric Entry Performance of the Hercules Single-Stage Reusable Vehicle at Earth." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Aerospace Engineering. James Evans Lyne, Major Professor We have read this thesis and recommend its acceptance: Zhili Zhang, John Schmisseur Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Atmospheric Entry Performance of the Hercules Single-Stage Reusable Vehicle at Earth A Thesis Presented for the Master of Science Degree The University of Tennessee, Knoxville Braxton Brakefield December 2019 ACKNOWLEDGEMENTS A huge thanks to D.R. Komar for providing the opportunity to work on this project and all his help in carrying this out. Thanks to Paul Tartabini for greatly improving my POST user skills, and for checking my cases any time something went wrong. Thanks to the entire EF department for funding my graduate studies, but especially Dr. Hargrove, Dr. Biegalski, and Prof. Schleter for their mentorship. And finally, a massive thanks to Dr. Lyne, for his enthusiasm about space, great teaching ability, and excellent guidance throughout this whole process. ii ABSTRACT The Hercules Single-Stage Reusable Vehicle (HSRV) is an innovative rocket that has been designed for use at Mars. However, with the renewed focus on returning to the moon first, it has been proposed to use the Hercules design for missions in the Earth-Moon system. To test its reentry performance, 9 types of entries were simulated, with multiple sensitivity cases for each. Overall, the current design of the vehicle is able to return to Earth safely for a wide range of different entry conditions, but some improvements could be made to optimize the vehicle for Earth operations. iii TABLE OF CONTENTS Chapter One Introduction ...................................................................................... 1 Vehicle Design .................................................................................................. 1 Size ................................................................................................................ 2 Propulsion ...................................................................................................... 2 Aerodynamics ................................................................................................ 3 Thermal Protection System (TPS) ................................................................. 3 Chapter Two Methods ........................................................................................... 4 Simulations ........................................................................................................ 4 Aerodynamics and Heating ............................................................................ 4 MATLAB Script .............................................................................................. 5 Types of Entries ................................................................................................ 5 Chapter Three Results and Discussion ................................................................. 8 Descent from LEO Case ................................................................................... 8 Direct Entry Cases .......................................................................................... 10 Fast-Transfer Mars Return........................................................................... 10 Minimum-Energy Mars Return ..................................................................... 12 Lunar Return ................................................................................................ 13 Aerocapture and Aerotransfer Cases .............................................................. 14 Fast-Transfer Mars Return to LEO .............................................................. 15 Fast-Transfer Mars Return to LDHEO ......................................................... 16 Minimum-Energy Mars Return to LEO ......................................................... 17 Minimum-Energy Mars Return to LDHEO .................................................... 18 Aerotransfer from LDHEO to LEO ............................................................... 19 Chapter Four Conclusion .................................................................................... 21 List of References ............................................................................................... 23 Appendix ............................................................................................................. 26 Vita ...................................................................................................................... 47 iv LIST OF TABLES Table 1: Mass breakdown for the Mars variant of the HSRV……………………. 27 v LIST OF FIGURES Figure 1: Current design of the Hercules Single-Stage Reusable Vehicle. ......... 28 Figure 2: ATLS engines being used during the final descent stage of a Mars landing. ........................................................................................................ 28 Figure 3: Selected plots of the coefficients of lift and drag calculated for the Hercules Vehicle at Mach number of 1, 3, 10, and 50. ................................ 29 Figure 4: Plots of the trajectory of the nominal descent from LEO subtype. ....... 30 Figure 5: Angle of attack, bank angle, and flight path angle for the nominal descent from LEO subtype. ....................................................................................... 30 Figure 6: Effect of ballistic coefficient on the trajectory of the descent from LEO subtype. ....................................................................................................... 31 Figure 7: Effect of max G load on the trajectory of the descent from LEO subtype. ..................................................................................................................... 31 Figure 8: Effect of both the ballistic coefficient and max G load on the experienced conditions of the descent from LEO subtype. .............................................. 31 Figure 9: Plots of the trajectory of the nominal fast-transfer Mars return subtype. ..................................................................................................................... 32 Figure 10: Angle of attack, bank angle, and flight path angle for the nominal fast- transfer Mars return subtype. ....................................................................... 32 Figure 11: Effect of ballistic coefficient on the trajectory of the fast-transfer Mars return subtype. ............................................................................................. 33 Figure 12: Effect of max G load on the trajectory of the fast-transfer Mars return subtype. ....................................................................................................... 33 Figure 13: Effect of both the ballistic coefficient and max G load on the experienced conditions of the fast-transfer Mars return subtype. ..................................... 33 Figure 14: Plots of the trajectory of the nominal minimum-energy Mars return subtype. ....................................................................................................... 34 Figure 15: Angle of attack, bank angle, and flight path angle for the nominal minimum-energy Mars return subtype. ........................................................ 34 Figure 16: Effect of ballistic coefficient on the trajectory of the minimum-energy Mars return subtype. .................................................................................... 35 Figure 17: Effect of max G load on the trajectory of the minimum-energy Mars return subtype. ............................................................................................. 35 Figure 18: Effect of both the ballistic coefficient and max G load on the experienced conditions of the minimum-energy Mars return subtype. ............................. 35 Figure 19: Plots of the trajectory of the nominal Lunar return subtype. ............... 36 Figure 20: Angle of attack, bank angle, and flight path angle for the nominal Lunar return subtype. ............................................................................................. 36 Figure 21: Effect of ballistic coefficient on the trajectory of