How Old Are the Oldest Homo Sapiens in Far East Asia?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
'Slash and Burn' Farmers Is Deforesting Mainland Southeast Asia
How Blaming ‘Slash and Burn’ Farmers is Deforesting Mainland Southeast Asia JEFFERSON M. FOX AsiaPacific ISSUES Analysis from the East-West Center SUMMARY For decades, international lenders, agencies, and foundations No. 47 December 2000 as well as national and local governments have spent millions of dollars trying The U.S. Congress established the East-West Center in 1960 to to “modernize” the traditional practices of farmers in many mountainous foster mutual understanding and cooperation among the govern- areas of Southeast Asia—an agenda driven by the belief that their age-old ments and peoples of the Asia Pacific region, including the United shifting cultivation practices (known pejoratively as “slash and burn”) are States. Funding for the Center comes from the U.S. government deforesting Asia. But a new look at how forests fare under shifting cultivation with additional support provided by private agencies, individuals, (as opposed to under permanent agriculture) clearly demonstrates that efforts corporations, and Asian and Pacific governments. to eliminate the ancient practice have actually contributed to deforestation, The AsiaPacific Issues series 1 contributes to the Center’s role as loss of biodiversity, and reduction in carbon storage. In fact, shifting cultiva- a neutral forum for discussion of issues of regional concern. The tion, rather than being the hobgoblin of tropical forest conservation, may be views expressed are those of the author and not necessarily those ecologically appropriate, culturally suitable, and under certain circumstances of the Center. the best means for preserving biodiversity in the region. The real threat to these tropical forests is posed by the steady advance of large-scale permanent and commercial agriculture. -
Defining the Genus Homo
Defining the Genus Homo Mark Collard and Bernard Wood Contents Introduction ..................................................................................... 2108 Changing Interpretations of Genus Homo ..................................................... 2109 Is Genus Homo a “Good” Genus? ............................................................. 2114 Updating Wood and Collard’s (1999) Review of Genus Homo .............................. 2126 Conclusion ...................................................................................... 2137 Cross-References ............................................................................... 2138 References ...................................................................................... 2138 Abstract The definition of the genus Homo is an important but under-researched topic. In this chapter we show that interpretations of Homo have changed greatly over the last 150 years as a result of the incorporation of new fossil species, the discovery of fossil evidence that changed our perceptions of its component species, and reassessments of the functional capabilities of species previously allocated to Homo. We also show that these changes have been made in an ad hoc fashion. Criteria for recognizing fossil specimens of Homo have been outlined on a M. Collard (*) Human Evolutionary Studies Program and Department of Archaeology, Simon Fraser University, Burnaby, BC, Canada Department of Archaeology, University of Aberdeen, Aberdeen, UK e-mail: [email protected] B. Wood Center for the Advanced -
Homo Habilis
COMMENT SUSTAINABILITY Citizens and POLICY End the bureaucracy THEATRE Shakespeare’s ENVIRONMENT James Lovelock businesses must track that is holding back science world was steeped in on surprisingly optimistic governments’ progress p.33 in India p.36 practical discovery p.39 form p.41 The foot of the apeman that palaeo ‘handy man’, anthropologists had been Homo habilis. recovering in southern Africa since the 1920s. This, the thinking went, was replaced by the taller, larger-brained Homo erectus from Asia, which spread to Europe and evolved into Nean derthals, which evolved into Homo sapiens. But what lay between the australopiths and H. erectus, the first known human? BETTING ON AFRICA Until the 1960s, H. erectus had been found only in Asia. But when primitive stone-chop LIBRARY PICTURE EVANS MUSEUM/MARY HISTORY NATURAL ping tools were uncovered at Olduvai Gorge in Tanzania, Leakey became convinced that this is where he would find the earliest stone- tool makers, who he assumed would belong to our genus. Maybe, like the australopiths, our human ancestors also originated in Africa. In 1931, Leakey began intensive prospect ing and excavation at Olduvai Gorge, 33 years before he announced the new human species. Now tourists travel to Olduvai on paved roads in air-conditioned buses; in the 1930s in the rainy season, the journey from Nairobi could take weeks. The ravines at Olduvai offered unparalleled access to ancient strata, but field work was no picnic in the park. Water was often scarce. Leakey and his team had to learn to share Olduvai with all of the wild animals that lived there, lions included. -
Forest Destruction in Tropical Asia
SPECIAL SECTION: ASIAN BIODIVERSITY CRISES Forest destruction in tropical Asia William F. Laurance Smithsonian Tropical Research Institute, Apartado 0843–03092, Balboa, Ancón, Panama, USA natural products and lands on which traditional Asian cul- I evaluate trends in forest loss, population size, eco- 8 nomic growth, and corruption within 12 nations that tures rely . contain the large bulk of Asian tropical forests, and Here I evaluate trends in deforestation in the tropical contrast these with trends occurring elsewhere in the Asian region, focusing on closed-canopy forests. I compare tropics. Half of the Asian nations have already experi- surviving forest cover and rates of forest loss among the enced severe (>70%) forest loss, and forest-rich countries, major forested countries in the region, and contrast these such as Indonesia and Malaysia, are experiencing rapid trends with those in other tropical nations in the Americas forest destruction. Both expanding human populations and Equatorial Africa. I also assess the potential influence and industrial drivers of deforestation, such as logging of some demographic and economic variables on Asian and exotic-tree plantations, are important drivers of tropical forests, and highlight some important threats to forest loss. Countries with rapid population growth these forests and their biota. and little surviving forest are also plagued by endemic corruption and low average living standards. Datasets Keywords: Asian tropical forests, biodiversity, defores- tation, logging, population growth. I evaluated changes in forest cover and potentially related demographic and economic variables for 12 countries FOR biologists, the forests of tropical Asia are, by nearly (Bangladesh, Cambodia, India, Indonesia, Laos, Malay- any measure, among the highest of all global conservation sia, Myanmar, the Philippines, Papua New Guinea, Sri priorities. -
Paranthropus Boisei: Fifty Years of Evidence and Analysis Bernard A
Marshall University Marshall Digital Scholar Biological Sciences Faculty Research Biological Sciences Fall 11-28-2007 Paranthropus boisei: Fifty Years of Evidence and Analysis Bernard A. Wood George Washington University Paul J. Constantino Biological Sciences, [email protected] Follow this and additional works at: http://mds.marshall.edu/bio_sciences_faculty Part of the Biological and Physical Anthropology Commons Recommended Citation Wood B and Constantino P. Paranthropus boisei: Fifty years of evidence and analysis. Yearbook of Physical Anthropology 50:106-132. This Article is brought to you for free and open access by the Biological Sciences at Marshall Digital Scholar. It has been accepted for inclusion in Biological Sciences Faculty Research by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. YEARBOOK OF PHYSICAL ANTHROPOLOGY 50:106–132 (2007) Paranthropus boisei: Fifty Years of Evidence and Analysis Bernard Wood* and Paul Constantino Center for the Advanced Study of Hominid Paleobiology, George Washington University, Washington, DC 20052 KEY WORDS Paranthropus; boisei; aethiopicus; human evolution; Africa ABSTRACT Paranthropus boisei is a hominin taxon ers can trace the evolution of metric and nonmetric var- with a distinctive cranial and dental morphology. Its iables across hundreds of thousands of years. This pa- hypodigm has been recovered from sites with good per is a detailed1 review of half a century’s worth of fos- stratigraphic and chronological control, and for some sil evidence and analysis of P. boi se i and traces how morphological regions, such as the mandible and the both its evolutionary history and our understanding of mandibular dentition, the samples are not only rela- its evolutionary history have evolved during the past tively well dated, but they are, by paleontological 50 years. -
What Makes a Modern Human We Probably All Carry Genes from Archaic Species Such As Neanderthals
COMMENT NATURAL HISTORY Edward EARTH SCIENCE How rocks and MUSIC Philip Glass on Einstein EMPLOYMENT The skills gained Lear’s forgotten work life evolved together on our and the unpredictability of in PhD training make it on ornithology p.36 planet p.39 opera composition p.40 worth the money p.41 ILLUSTRATION BY CHRISTIAN DARKIN CHRISTIAN BY ILLUSTRATION What makes a modern human We probably all carry genes from archaic species such as Neanderthals. Chris Stringer explains why the DNA we have in common is more important than any differences. n many ways, what makes a modern we were trying to set up strict criteria, based non-modern (or, in palaeontological human is obvious. Compared with our on cranial measurements, to test whether terms, archaic). What I did not foresee evolutionary forebears, Homo sapiens is controversial fossils from Omo Kibish in was that some researchers who were not Icharacterized by a lightly built skeleton and Ethiopia were within the range of human impressed with our test would reverse it, several novel skull features. But attempts to skeletal variation today — anatomically applying it back onto the skeletal range of distinguish the traits of modern humans modern humans. all modern humans to claim that our diag- from those of our ancestors can be fraught Our results suggested that one skull nosis wrongly excluded some skulls of with problems. was modern, whereas the other was recent populations from being modern2. Decades ago, a colleague and I got into This, they suggested, implied that some difficulties over an attempt to define (or, as PEOPLING THE PLANET people today were more ‘modern’ than oth- I prefer, diagnose) modern humans using Interactive map of migrations: ers. -
13.10 News 934-935
NEWS NATURE|Vol 437|13 October 2005 Forbidden cave: without permits, the discoverers of the hobbit are unable to continue digging at Liang Bua cave. C. TURNEY, UNIV. WOLLONGONG UNIV. TURNEY, C. More evidence for hobbit unearthed as diggers are refused access to cave Even as researchers uncover more details The study of the bones that have so far been about the ancient ‘hobbit’ people of Indonesia, recovered has already been hindered, the they fear that they may never return to Liang researchers complain. Last winter, after hold- Bua cave, where the crucial specimens were ing the remains for about four months, Jacob found in 2003. returned them to the discovery team with “My guess is that we will not work at Liang some bones broken or shattered. The bones Bua again, this year or any other year,” says may have been damaged when casts were team leader Michael Morwood, an archaeolo- attempted or during transport. Today’s article C. TURNEY, UNIV. WOLLONGONG UNIV. TURNEY, C. gist at the University of New England in was delayed by at least six months, the authors Armidale. say, because the bones were not available The latest findings from the cave reveal, for follow-up studies. The newly described among other details, that the metre-tall jaw, for instance, was broken in half between humans, known as Homo floresiensis, lived on the front teeth, and the break has obliterated the island of Flores as little as 12,000 years ago certain key structures. (see page 1012). But continued exploration at “It’s an outrage,” says team anthropologist Liang Bua is being blocked, the researchers say, Peter Brown, also based at the University of because the discovery of miniature humans New England. -
Linnaean Taxonomic Classification Nomenclature All Biologists Use a Single Naming System That Essentially Follows the Practice O
Linnaean Taxonomic Classification Nomenclature All biologists use a single naming system that essentially follows the practice of Linnaeus. Taxa are always given Latin names (or Latinized ones). This is a label and not a definition. (Homo sapiens – wise man) The name of a species always consists of two words – the genus (generic) name followed by the species (specific) name. Grammatically, the genus is a noun and the species is adjective or another noun in opposition. The genus name is always capitalized and italicized. The species name is italicized only. If you used the genus name already you may use the first letter followed by a period. Homo sapiens, H. sapiens In the rare cases where a subgenus name is used it is capitalized, italicized and put in parentheses after the genus. Australopithecus (Paranthropus) robustus If a subspecies name is used it comes at the end and is italicized only. E.G. Homo sapiens sapiens Categories above the genus level are capitalized but not italicized. They generally have endings that show the level of classification. ini for tribe (Infraorder), oidea for superfamily, idae for family. Above the superfamily the only rule is that the name must be Latin or Latinized. The Latin names are often anglicized by dropping the ending and it is not normally capitalized. Hominidae – hominid. Technically the full name of the taxon should include the name of its inventor and the date but this is only done if the discussion is concerning the taxonomy of the name. Homo sapiens Linnaeus, 1758 Ideally, a taxon should have only one name, but some have been given more than one and there is a disagreement over which one has priority or which one is better. -
The Fall and Rise Again of Plantations in Tropical Asia: History Repeated?
Land 2014, 3, 574-597; doi:10.3390/land3030574 OPEN ACCESS land ISSN 2073-445X www.mdpi.com/journal/land/ Review The Fall and Rise Again of Plantations in Tropical Asia: History Repeated? Derek Byerlee 3938 Georgetown Ct NW, Washington, DC 20007, USA; E-Mail: [email protected]; Tel.: +1-202-492-2544 Received: 21 January 2014; in revised form: 18 June 2014 / Accepted: 23 June 2014 / Published: 30 June 2014 Abstract: The type of agrarian structure employed to produce tropical commodities affects many dimensions of land use, such as ownership inequality, overlapping land rights and conflicts, and land use changes. I conduct a literature review of historical changes in agrarian structures of commodities grown on the upland frontier of mainland Southeast and South Asia, using a case study approach, of tea, rubber, oil palm and cassava. Although the production of all these commodities was initiated in the colonial period on large plantations, over the course of the 20th century, most transited to smallholder systems. Two groups of factors are posited to explain this evolution. First, economic fundamentals related to processing methods and pioneering costs and risks sometimes favored large-scale plantations. Second, policy biases and development paradigms often strongly favored plantations and discriminated against smallholders in the colonial states, especially provision of cheap land and labor. However, beginning after World War I and accelerating after independence, the factors that propped up plantations changed so that by the end of the 20th century, smallholders overwhelmingly dominated perennial crop exports, except possibly oil palm. Surprisingly, in the 21st century there has been a resurgence of investments in plantation agriculture in the frontier countries of Cambodia, Laos and Myanmar, driven by very similar factors to a century ago, especially access to cheap land combined with high commodity prices. -
© in This Web Service Cambridge University
Cambridge University Press 978-1-107-01829-7 - Human Adaptation in the Asian Palaeolithic: Hominin Dispersal and Behaviour during the Late Quaternary Ryan J. Rabett Index More information Index Abdur, 88 Arborophilia sp., 219 Abri Pataud, 76 Arctictis binturong, 218, 229, 230, 231, 263 Accipiter trivirgatus,cf.,219 Arctogalidia trivirgata, 229 Acclimatization, 2, 7, 268, 271 Arctonyx collaris, 241 Acculturation, 70, 279, 288 Arcy-sur-Cure, 75 Acheulean, 26, 27, 28, 29, 45, 47, 48, 51, 52, 58, 88 Arius sp., 219 Acheulo-Yabrudian, 48 Asian leaf turtle. See Cyclemys dentata Adaptation Asian soft-shell turtle. See Amyda cartilaginea high frequency processes, 286 Asian wild dog. See Cuon alipinus hominin adaptive trajectories, 7, 267, 268 Assamese macaque. See Macaca assamensis low frequency processes, 286–287 Athapaskan, 278 tropical foragers (Southeast Asia), 283 Atlantic thermohaline circulation (THC), 23–24 Variability selection hypothesis, 285–286 Attirampakkam, 106 Additive strategies Aurignacian, 69, 71, 72, 73, 76, 78, 102, 103, 268, 272 economic, 274, 280. See Strategy-switching Developed-, 280 (economic) Proto-, 70, 78 technological, 165, 206, 283, 289 Australo-Melanesian population, 109, 116 Agassi, Lake, 285 Australopithecines (robust), 286 Ahmarian, 80 Azilian, 74 Ailuropoda melanoleuca fovealis, 35 Airstrip Mound site, 136 Bacsonian, 188, 192, 194 Altai Mountains, 50, 51, 94, 103 Balobok rock-shelter, 159 Altamira, 73 Ban Don Mun, 54 Amyda cartilaginea, 218, 230 Ban Lum Khao, 164, 165 Amyda sp., 37 Ban Mae Tha, 54 Anderson, D.D., 111, 201 Ban Rai, 203 Anorrhinus galeritus, 219 Banteng. See Bos cf. javanicus Anthracoceros coronatus, 219 Banyan Valley Cave, 201 Anthracoceros malayanus, 219 Barranco Leon,´ 29 Anthropocene, 8, 9, 274, 286, 289 BAT 1, 173, 174 Aq Kupruk, 104, 105 BAT 2, 173 Arboreal-adapted taxa, 96, 110, 111, 113, 122, 151, 152, Bat hawk. -
“Regional Environmental Profile of Asia”
EUROPEAN COMMISSION “R EGIONAL ENVIRONMENTAL PROFILE OF ASIA ” Contract n° 2006/120662 Commission Framework Contract EuropeAid/116548/C/SV Lot No 5 : Studies for Asia Final Report November 2006 This report is financed by the European Commission and is presented by the ATOS ORIGIN BELGIUM – AGRER Consortium for the European Commission. It does not necessarily reflect the opinion of the European Commission. A project implemented by This project is funded by ATOS ORIGIN BELGIUM and AGRER The European Union Revised Final Draft Regional Environmental Profile for Asia 2 / 135 Revised Final Draft Regional Environmental Profile for Asia REGIONAL ENVIRONMENTAL PROFILE FOR ASIA TABLE OF CONTENTS PREFACE...................................................................................................................................................3 1. SUMMARY.........................................................................................................................................3 1.1 STATE OF THE ENVIRONMENT .........................................................................................................3 1.2 ENVIRONMENTAL POLICY , LEGISLATION AND INSTITUTIONS ..........................................................3 1.3 EU AND OTHER DONOR CO -OPERATION WITH THE REGION .............................................................3 1.4 CONCLUSIONS AND RECOMMENDATIONS ........................................................................................3 2. STATE OF THE ENVIRONMENT .................................................................................................3 -
The Reflection of an Ape an Aquatic Approach to Human Evolution
The Reflection of an Ape An Aquatic Approach to Human Evolution A thesis submitted to the Miami University Honors Program in partial fulfillment of the requirements for University Honors with Distinction by Erica Kempf December 2006 Oxord, Ohio Acknowledgements There are a number of people I would like to thank for their help in the production of this story. Linda Marchant was my advisor and provided invaluable data, advice, support, and motivation during this venture. Lynn and Greg Kempf offered helpful feedback throughout, but especially during the early stages of writing. Mary Cayton and Scott Suarez kindly agreed to read the last draft of my project, and gave me final grammatical suggestions to further polish my final copy. I am also grateful to the people whose enthusiasm and moral support throughout the long process of writing this story kept me going: Amanda Zorn, Kait Jones, Ali Wolkin, Ashley Piening, Lindsay Good, Rachel Mount and Jamie Eckert. Special thanks also go to Randy Fiedler for the initial idea to begin this work and for his help in getting started. Table of Contents Introduction viii Map x Kinship Chart xi 1 Meer 1 2 Natte 13 3 Bain 18 4 Welle 22 5 Etang 28 6 Praia 34 7 Lago 39 8 Samman 43 9 Rio 47 10 Alga 51 11 Gens 56 Works Consulted 59 Introduction The study of how humans have come to be what we are has fascinated us for as long as we have written such things down, and for countless generations before that through oral histories. Every human culture has some type of creation myth, a tale of how people came to be on Earth, ranging from molded mud to thrown rocks to drops of deity’s blood and nearly everything in between.