Functional Analysis of Insl5 and Insl6 Genes and Verification of Interactions Between Pelota and Its Putative Interacting Proteins

Total Page:16

File Type:pdf, Size:1020Kb

Functional Analysis of Insl5 and Insl6 Genes and Verification of Interactions Between Pelota and Its Putative Interacting Proteins Functional Analysis of Insl5 and Insl6 Genes and Verification of Interactions between Pelota and its Putative Interacting Proteins Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultäten der Georg-August-Universität zu Göttingen vorgelegt von Ozanna Burnicka-Turek aus Bydgoszcz, Polen Göttingen, 2009 D7 Referent: Prof. Dr. W. Engel Korreferentin: Prof. Dr. S. Hoyer-Fender Tag der mündlichen Prüfung: To my husband, family and friends for their support, encouragement and love. The more you know, the harder it is to take decisive action. Once you become informed, you start seeing complexities and shades of gray. You realize that nothing is as clear and simple as it first appears. Ultimately, knowledge is paralyzing. Bill Watterson (1958 - ), Calvin & Hobbes (THERE'S TREASURE EVERYWHERE) CONTENTS TABLE OF CONTENTS page CONTENTS...............................................................................................................................I ABBREVIATIONS ............................................................................................................. VIII 1. INTRODUCTION................................................................................................................ 1 1.1. Expression and function of insulin-like genes .................................................................... 1 1.2. The pelota gene .................................................................................................................. 4 1.3. Objectives of this study....................................................................................................... 7 2. MATERIALS AND METHODS......................................................................................... 8 2.1. Materials ............................................................................................................................ 8 2.1.1. Chemicals and reagents.................................................................................................... 8 2.1.2. Buffers and solutions...................................................................................................... 11 2.1.2.1. Agarose gel electrophoresis ........................................................................................ 11 2.1.2.2. SDS-PAGE.................................................................................................................. 12 2.1.2.3. Frequently used buffers and solutions......................................................................... 13 2.1.3. Laboratory materials ...................................................................................................... 17 2.1.4. Sterilization of solutions and equipment........................................................................ 17 2.1.5. Media, antibiotics and agar-plates.................................................................................. 18 2.1.5.1. Media for bacteria ....................................................................................................... 18 2.1.5.2. Media for cell culture .................................................................................................. 18 2.1.5.3. Antibiotics ................................................................................................................... 19 2.1.5.4. IPTG/X-Gal plate ........................................................................................................ 19 2.1.6. Bacterial strains.............................................................................................................. 19 2.1.7. Cell lines......................................................................................................................... 19 2.1.8. Plasmids ......................................................................................................................... 20 2.1.9. Synthetic oligonucleotide primers.................................................................................. 20 2.1.10. Genomic and cDNA probes ......................................................................................... 23 2.1.11. Mouse strains................................................................................................................ 24 2.1.12. Antibodies .................................................................................................................... 24 2.1.13. Enzymes ....................................................................................................................... 25 2.1.14. Radioactive substances................................................................................................. 25 2.1.15. Kits ............................................................................................................................... 25 2.1.16. Instruments................................................................................................................... 26 I CONTENTS 2.2. Methods............................................................................................................................ 27 2.2.1. Isolation of nucleic acids................................................................................................ 27 2.2.1.1. Isolation of plasmid DNA ........................................................................................... 27 2.2.1.1.1. Small - scale isolation of plasmid DNA (Mini preparation) .................................... 27 2.2.1.1.2. Preparation of bacterial glycerol stocks ................................................................... 28 2.2.1.1.3. Large - scale preparation of plasmid DNA (Midi preparation)................................ 28 2.2.1.1.4. Endotoxin free preparation of plasmid DNA .......................................................... 29 2.2.1.2. Isolation of genomic DNA .......................................................................................... 30 2.2.1.2.1. Isolation of genomic DNA from mouse tails ........................................................... 30 2.2.1.2.2. Isolation of genomic DNA from tissue samples ...................................................... 30 2.2.1.2.3. Isolation of genomic DNA from ES cells ............................................................... 30 2.2.1.3. Isolation of total RNA................................................................................................. 31 2.2.1.3.1. Isolation of total RNA from tissue samples and cultured cells................................ 31 2.2.2. Determination of nucleic acid concentration ................................................................. 31 2.2.3. Gel electrophoresis......................................................................................................... 32 2.2.3.1. Agarose gel electrophoresis of DNA .......................................................................... 32 2.2.3.2. Agarose gel electrophoresis of RNA........................................................................... 32 2.2.4. Cloning techniques......................................................................................................... 33 2.2.4.1. Enzymatic modifications of DNA............................................................................... 33 2.2.4.1.1. Restriction enzyme digestion of DNA ..................................................................... 33 2.2.4.1.2. Filling-up reaction.................................................................................................... 34 2.2.4.1.3. Dephosphorylation of 5’ ends of DNA .................................................................... 34 2.2.4.2. Purification of DNA.................................................................................................... 34 2.2.4.2.1. Purification of DNA by phenol-chloroform extraction and ethanol precipitation ... 34 2.2.4.2.2. Purification of DNA fragments from agarose gel .................................................... 35 2.2.4.2.2.1. QIAquick gel extraction method........................................................................... 35 2.2.4.3. Ligation of DNA fragments ........................................................................................ 35 2.2.4.4. TA-Cloning ................................................................................................................. 36 2.2.5. Preparation of competent E.coli bacteria ....................................................................... 36 2.2.6. Transformation of competent bacteria ........................................................................... 36 2.2.7. Polymerase Chain Reaction (PCR) ................................................................................ 37 2.2.7.1. PCR amplification of DNA fragments........................................................................ 37 2.2.7.2. Genotyping of knock-out mice using PCR ................................................................. 38 2.2.7.3. Reverse transcription PCR (RT-PCR)......................................................................... 39 II CONTENTS 2.2.7.3.1. Reverse transcription or cDNA synthesis ................................................................ 39 2.2.7.3.2. One-Step RT-PCR.................................................................................................... 40 2.2.8. Non-radioactive dye terminator cycle sequencing......................................................... 41 2.2.9. Nucleic acids blotting techniques..................................................................................
Recommended publications
  • Human Recombinant H2 Relaxin Induces AKT and Gsk3β Phosphorylation and HTR-8/Svneo Cell Proliferation
    Kobe J. Med. Sci., Vol. 61, No. 1, pp. E1-E8, 2015 Human Recombinant H2 Relaxin Induces AKT and GSK3β Phosphorylation and HTR-8/SVneo Cell Proliferation YONI ASTUTI 1.2, KOJI NAKABAYASHI 1, MASASHI DEGUCHI 1, YASUHIKO EBINA 1, and HIDETO YAMADA 1 1 Department of Obstetric Gynaecology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan 2 Faculty of Medicine and Health Science, University Muhammadiyah Yogyakarta, Bantul 55183, Indonesia Received 9 December 2014/ Accepted 19 January 2015 Keywords: rH2 relaxin, pAKT/AKT, pGSK3β /GSK3β, proliferation ABSTRACT Relaxin is essential for trophoblast development during pregnancy. Evidence shows that relaxin increases trophoblast cell migration capacity. Here, we show the effect of relaxin on protein kinase B (AKT) activation and glycogen synthase kinase 3-beta (GSK3β) inactivation as well as on the proliferation of HTR-8/SVneo cells, a model of human extravillous trophoblast (EVT). HTR-8/SVneo cells were treated with different doses of human recombinant (rH2) relaxin in serum- deprived conditions and treated for increasing time with 1 ng/mL of rH2 relaxin. Western blot analysis was performed to detect pAKT, AKT, pGSK3β, GSK3β, and actin expression. Proliferation of HTR- 8/SVneo cells was analyzed by MTS assay. rH2 relaxin treatment increased the ratio of pAKT/AKT, pGSK3β/GSK3β, and proliferation in HTR- 8/SVneo cells. Furthermore, AKT and GSK3β activation by rH2 relaxin was inhibited by a phosphoinositide 3-kinase (PI3K) inhibitor. This study suggests that rH2 relaxin induces AKT and GSK3β phosphorylation as well as proliferation in HTR-8/SVneo cells.
    [Show full text]
  • Searching for Novel Peptide Hormones in the Human Genome Olivier Mirabeau
    Searching for novel peptide hormones in the human genome Olivier Mirabeau To cite this version: Olivier Mirabeau. Searching for novel peptide hormones in the human genome. Life Sciences [q-bio]. Université Montpellier II - Sciences et Techniques du Languedoc, 2008. English. tel-00340710 HAL Id: tel-00340710 https://tel.archives-ouvertes.fr/tel-00340710 Submitted on 21 Nov 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE MONTPELLIER II SCIENCES ET TECHNIQUES DU LANGUEDOC THESE pour obtenir le grade de DOCTEUR DE L'UNIVERSITE MONTPELLIER II Discipline : Biologie Informatique Ecole Doctorale : Sciences chimiques et biologiques pour la santé Formation doctorale : Biologie-Santé Recherche de nouvelles hormones peptidiques codées par le génome humain par Olivier Mirabeau présentée et soutenue publiquement le 30 janvier 2008 JURY M. Hubert Vaudry Rapporteur M. Jean-Philippe Vert Rapporteur Mme Nadia Rosenthal Examinatrice M. Jean Martinez Président M. Olivier Gascuel Directeur M. Cornelius Gross Examinateur Résumé Résumé Cette thèse porte sur la découverte de gènes humains non caractérisés codant pour des précurseurs à hormones peptidiques. Les hormones peptidiques (PH) ont un rôle important dans la plupart des processus physiologiques du corps humain.
    [Show full text]
  • Supplementary File 2A Revised
    Supplementary file 2A. Differentially expressed genes in aldosteronomas compared to all other samples, ranked according to statistical significance. Missing values were not allowed in aldosteronomas, but to a maximum of five in the other samples. Acc UGCluster Name Symbol log Fold Change P - Value Adj. P-Value B R99527 Hs.8162 Hypothetical protein MGC39372 MGC39372 2,17 6,3E-09 5,1E-05 10,2 AA398335 Hs.10414 Kelch domain containing 8A KLHDC8A 2,26 1,2E-08 5,1E-05 9,56 AA441933 Hs.519075 Leiomodin 1 (smooth muscle) LMOD1 2,33 1,3E-08 5,1E-05 9,54 AA630120 Hs.78781 Vascular endothelial growth factor B VEGFB 1,24 1,1E-07 2,9E-04 7,59 R07846 Data not found 3,71 1,2E-07 2,9E-04 7,49 W92795 Hs.434386 Hypothetical protein LOC201229 LOC201229 1,55 2,0E-07 4,0E-04 7,03 AA454564 Hs.323396 Family with sequence similarity 54, member B FAM54B 1,25 3,0E-07 5,2E-04 6,65 AA775249 Hs.513633 G protein-coupled receptor 56 GPR56 -1,63 4,3E-07 6,4E-04 6,33 AA012822 Hs.713814 Oxysterol bining protein OSBP 1,35 5,3E-07 7,1E-04 6,14 R45592 Hs.655271 Regulating synaptic membrane exocytosis 2 RIMS2 2,51 5,9E-07 7,1E-04 6,04 AA282936 Hs.240 M-phase phosphoprotein 1 MPHOSPH -1,40 8,1E-07 8,9E-04 5,74 N34945 Hs.234898 Acetyl-Coenzyme A carboxylase beta ACACB 0,87 9,7E-07 9,8E-04 5,58 R07322 Hs.464137 Acyl-Coenzyme A oxidase 1, palmitoyl ACOX1 0,82 1,3E-06 1,2E-03 5,35 R77144 Hs.488835 Transmembrane protein 120A TMEM120A 1,55 1,7E-06 1,4E-03 5,07 H68542 Hs.420009 Transcribed locus 1,07 1,7E-06 1,4E-03 5,06 AA410184 Hs.696454 PBX/knotted 1 homeobox 2 PKNOX2 1,78 2,0E-06
    [Show full text]
  • (SLC3A2) Sustains Amino Acid and Nucleotide Availability for Cell Cycle
    www.nature.com/scientificreports OPEN CD98hc (SLC3A2) sustains amino acid and nucleotide availability for cell cycle progression Received: 16 April 2019 Sara Cano-Crespo1, Josep Chillarón2, Alexandra Junza3,4, Gonzalo Fernández-Miranda1, Accepted: 13 September 2019 Judit García5,6, Christine Polte7, Laura R. de la Ballina 8,9, Zoya Ignatova7, Óscar Yanes 3,4, Published: xx xx xxxx Antonio Zorzano 1,4,10, Camille Stephan-Otto Attolini 1 & Manuel Palacín1,6,10 CD98 heavy chain (CD98hc) forms heteromeric amino acid (AA) transporters by interacting with diferent light chains. Cancer cells overexpress CD98hc-transporters in order to meet their increased nutritional and antioxidant demands, since they provide branched-chain AA (BCAA) and aromatic AA (AAA) availability while protecting cells from oxidative stress. Here we show that BCAA and AAA shortage phenocopies the inhibition of mTORC1 signalling, protein synthesis and cell proliferation caused by CD98hc ablation. Furthermore, our data indicate that CD98hc sustains glucose uptake and glycolysis, and, as a consequence, the pentose phosphate pathway (PPP). Thus, loss of CD98hc triggers a dramatic reduction in the nucleotide pool, which leads to replicative stress in these cells, as evidenced by the enhanced DNA Damage Response (DDR), S-phase delay and diminished rate of mitosis, all recovered by nucleoside supplementation. In addition, proper BCAA and AAA availability sustains the expression of the enzyme ribonucleotide reductase. In this regard, BCAA and AAA shortage results in decreased content of deoxynucleotides that triggers replicative stress, also recovered by nucleoside supplementation. On the basis of our fndings, we conclude that CD98hc plays a central role in AA and glucose cellular nutrition, redox homeostasis and nucleotide availability, all key for cell proliferation.
    [Show full text]
  • BMC Evolutionary Biology Biomed Central
    BMC Evolutionary Biology BioMed Central Research article Open Access Evolution of the relaxin-like peptide family Tracey N Wilkinson1, Terence P Speed2, Geoffrey W Tregear1 and Ross AD Bathgate*1 Address: 1Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Australia and 2Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia Email: Tracey N Wilkinson - [email protected]; Terence P Speed - [email protected]; Geoffrey W Tregear - [email protected]; Ross AD Bathgate* - [email protected] * Corresponding author Published: 12 February 2005 Received: 14 October 2004 Accepted: 12 February 2005 BMC Evolutionary Biology 2005, 5:14 doi:10.1186/1471-2148-5-14 This article is available from: http://www.biomedcentral.com/1471-2148/5/14 © 2005 Wilkinson et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: The relaxin-like peptide family belongs in the insulin superfamily and consists of 7 peptides of high structural but low sequence similarity; relaxin-1, 2 and 3, and the insulin-like (INSL) peptides, INSL3, INSL4, INSL5 and INSL6. The functions of relaxin-3, INSL4, INSL5, INSL6 remain uncharacterised. The evolution of this family has been contentious; high sequence variability is seen between closely related species, while distantly related species show high similarity; an invertebrate relaxin sequence has been reported, while a relaxin gene has not been found in the avian and ruminant lineages.
    [Show full text]
  • INSL5) Has Been Identified
    Microbial regulation of Insulin- like peptide 5 and its implication on metabolism and bariatric surgery Ying Shiuan Lee Department of Molecular and Clinical Medicine Institute of Medicine Sahlgrenska Academy at University of Gothenburg Cover illustration: Imagination Microbial regulation of Insulin-like peptide 5 and its implication on metabolism and bariatric surgery © Ying Shiuan Lee 2016 [email protected] ISBN 978-91-628-9838-0 Printed in Gothenburg, Sweden 2016 INEKO AB To my family ABSTRACT The microbial community in our gastrointestinal tract, the gut microbiota, has great impact on our physiology. Particularly, the role for gut microbiota in host health and disease has been associated with modulation of gut hormones which are key players in the regulation of energy homeostasis. Recently, a new gut hormone, insulin-like peptide (INSL5) has been identified. In this thesis, we have studied the microbial regulation of INSL5 and its role on metabolism. Bariatric surgery is the most effective treatment for obesity and obesity-related diseases such as type 2 diabetes. There is increasing evidence that supports a role for gut hormones and gut microbiota in mediating the beneficial effects of bariatric surgery. Thus, in this thesis, we also investigated whether INSL5 and the gut microbiota directly contributes to the metabolic improvements following the bariatric procedure called vertical sleeve gastrectomy (VSG). In paper I, we found that Insl5 expression is higher in the colon of germ-free mice (mice that lack a microbiota), compared with their conventionally-raised control animals. We demonstrated that the elevated Insl5 expression in GF mice is a response to low energy levels, which could be restored by increasing the energy availability.
    [Show full text]
  • Lineage-Specific Programming Target Genes Defines Potential for Th1 Temporal Induction Pattern of STAT4
    Downloaded from http://www.jimmunol.org/ by guest on October 1, 2021 is online at: average * The Journal of Immunology published online 26 August 2009 from submission to initial decision 4 weeks from acceptance to publication J Immunol http://www.jimmunol.org/content/early/2009/08/26/jimmuno l.0901411 Temporal Induction Pattern of STAT4 Target Genes Defines Potential for Th1 Lineage-Specific Programming Seth R. Good, Vivian T. Thieu, Anubhav N. Mathur, Qing Yu, Gretta L. Stritesky, Norman Yeh, John T. O'Malley, Narayanan B. Perumal and Mark H. Kaplan Submit online. Every submission reviewed by practicing scientists ? is published twice each month by http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://www.jimmunol.org/content/suppl/2009/08/26/jimmunol.090141 1.DC1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* • Why • • Material Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of October 1, 2021. Published August 26, 2009, doi:10.4049/jimmunol.0901411 The Journal of Immunology Temporal Induction Pattern of STAT4 Target Genes Defines Potential for Th1 Lineage-Specific Programming1 Seth R. Good,2* Vivian T. Thieu,2† Anubhav N. Mathur,† Qing Yu,† Gretta L.
    [Show full text]
  • Expression of the Insulin Receptor-Related Receptor Is Induced by the Preovulatory Surge of Luteinizing Hormone in Thecal-Interstitial Cells of the Rat Ovary
    0013-7227/06/$15.00/0 Endocrinology 147(1):155–165 Printed in U.S.A. Copyright © 2006 by The Endocrine Society doi: 10.1210/en.2005-0386 Expression of the Insulin Receptor-Related Receptor Is Induced by the Preovulatory Surge of Luteinizing Hormone in Thecal-Interstitial Cells of the Rat Ovary Gregory A. Dissen, Cecilia Garcia-Rudaz, Veronica Tapia, Luis F. Parada, Sheau-Yu Teddy Hsu, and Sergio R. Ojeda Downloaded from https://academic.oup.com/endo/article/147/1/155/2500201 by guest on 26 September 2021 Division of Neuroscience (G.A.D., C.G.-R., V.T., S.R.O.), Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, Oregon 97006-3448; Center for Developmental Biology (L.F.P.), University of Texas Southwestern Medical Center, at Dallas, Dallas, Texas 75390-9133; and Division of Reproductive Biology (S.-Y.T.H.), Department of OB/GYN, Stanford University School of Medicine, Stanford, California 94305 The insulin receptor-related receptor (IRR) is a member of the change in IRR protein content. An extensive molecular search insulin receptor family that, on its own, recognizes neither using several approaches, including the screening of cDNA insulin nor any of the identified insulin-related peptides. In libraries and PCR amplification with degenerate primers, did both the nervous system and peripheral tissues, IRR mRNA is not yield an IRR ligand. Phylogenetic analysis of 20 insulin- detected in cells that also express trkA, the nerve growth related sequences and 15 relaxin family peptides from se- factor tyrosine kinase receptor. In the ovary, the trkA gene is lected vertebrates indicated that the mammalian genome is transiently activated in thecal-interstitial cells of large antral unlikely to contain an additional ligand expressed from a follicles at the time of the preovulatory surge of gonadotro- distinct gene that is closely related to the insulin family.
    [Show full text]
  • Abnormal Spermatogenesis and Reduced Fertility in Transition Nuclear Protein 1-Deficient Mice
    Abnormal spermatogenesis and reduced fertility in transition nuclear protein 1-deficient mice Y. Eugene Yu*†,Yun Zhang*, Emmanual Unni*‡, Cynthia R. Shirley*, Jian M. Deng§, Lonnie D. Russell¶, Michael M. Weil*, Richard R. Behringer§, and Marvin L. Meistrich*ʈ Departments of *Experimental Radiation Oncology, and §Molecular Genetics, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030-4095; and ¶Department of Physiology, Southern Illinois University, School of Medicine, Carbondale, IL 62901 Edited by Richard D. Palmiter, University of Washington School of Medicine, Seattle, WA, and approved February 22, 2000 (received for review May 3, 1999) Transition nuclear proteins (TPs), the major proteins found in (15), suggesting some functional relationship between the three chromatin of condensing spermatids, are believed to be important proteins exists. Tnp1, however, is on a separate chromosome and for histone displacement and chromatin condensation during is not clearly related to the other three proteins. mammalian spermatogenesis. We generated mice lacking the ma- In vitro, TP1 decreases the melting temperature of DNA (16) jor TP, TP1, by targeted deletion of the Tnp1 gene in mouse and relaxes the DNA in nucleosomal core particles (17), which embryonic stem cells. Surprisingly, testis weights and sperm pro- led to the proposal that TP1 reduces the interaction of DNA duction were normal in the mutant mice, and only subtle abnor- with the nucleosome core. In contrast, TP2 increases the malities were observed in sperm morphology. Electron microscopy melting temperature of DNA and compacts the DNA in revealed large rod-like structures in the chromatin of mutant step nucleosomal cores, suggesting that it is a DNA-condensing 13 spermatids, in contrast to the fine chromatin fibrils observed in protein (18).
    [Show full text]
  • Antibodies Products
    Chapter 2 : Gentaur Products List • Human Signal peptidase complex catalytic subunit • Human Sjoegren syndrome nuclear autoantigen 1 SSNA1 • Human Small proline rich protein 2A SPRR2A ELISA kit SEC11A SEC11A ELISA kit SpeciesHuman ELISA kit SpeciesHuman SpeciesHuman • Human Signal peptidase complex catalytic subunit • Human Sjoegren syndrome scleroderma autoantigen 1 • Human Small proline rich protein 2B SPRR2B ELISA kit SEC11C SEC11C ELISA kit SpeciesHuman SSSCA1 ELISA kit SpeciesHuman SpeciesHuman • Human Signal peptidase complex subunit 1 SPCS1 ELISA • Human Ski oncogene SKI ELISA kit SpeciesHuman • Human Small proline rich protein 2D SPRR2D ELISA kit kit SpeciesHuman • Human Ski like protein SKIL ELISA kit SpeciesHuman SpeciesHuman • Human Signal peptidase complex subunit 2 SPCS2 ELISA • Human Skin specific protein 32 C1orf68 ELISA kit • Human Small proline rich protein 2E SPRR2E ELISA kit kit SpeciesHuman SpeciesHuman SpeciesHuman • Human Signal peptidase complex subunit 3 SPCS3 ELISA • Human SLAIN motif containing protein 1 SLAIN1 ELISA kit • Human Small proline rich protein 2F SPRR2F ELISA kit kit SpeciesHuman SpeciesHuman SpeciesHuman • Human Signal peptide CUB and EGF like domain • Human SLAIN motif containing protein 2 SLAIN2 ELISA kit • Human Small proline rich protein 2G SPRR2G ELISA kit containing protein 2 SCUBE2 ELISA kit SpeciesHuman SpeciesHuman SpeciesHuman • Human Signal peptide CUB and EGF like domain • Human SLAM family member 5 CD84 ELISA kit • Human Small proline rich protein 3 SPRR3 ELISA kit containing protein
    [Show full text]
  • Supp Table 6.Pdf
    Supplementary Table 6. Processes associated to the 2037 SCL candidate target genes ID Symbol Entrez Gene Name Process NM_178114 AMIGO2 adhesion molecule with Ig-like domain 2 adhesion NM_033474 ARVCF armadillo repeat gene deletes in velocardiofacial syndrome adhesion NM_027060 BTBD9 BTB (POZ) domain containing 9 adhesion NM_001039149 CD226 CD226 molecule adhesion NM_010581 CD47 CD47 molecule adhesion NM_023370 CDH23 cadherin-like 23 adhesion NM_207298 CERCAM cerebral endothelial cell adhesion molecule adhesion NM_021719 CLDN15 claudin 15 adhesion NM_009902 CLDN3 claudin 3 adhesion NM_008779 CNTN3 contactin 3 (plasmacytoma associated) adhesion NM_015734 COL5A1 collagen, type V, alpha 1 adhesion NM_007803 CTTN cortactin adhesion NM_009142 CX3CL1 chemokine (C-X3-C motif) ligand 1 adhesion NM_031174 DSCAM Down syndrome cell adhesion molecule adhesion NM_145158 EMILIN2 elastin microfibril interfacer 2 adhesion NM_001081286 FAT1 FAT tumor suppressor homolog 1 (Drosophila) adhesion NM_001080814 FAT3 FAT tumor suppressor homolog 3 (Drosophila) adhesion NM_153795 FERMT3 fermitin family homolog 3 (Drosophila) adhesion NM_010494 ICAM2 intercellular adhesion molecule 2 adhesion NM_023892 ICAM4 (includes EG:3386) intercellular adhesion molecule 4 (Landsteiner-Wiener blood group)adhesion NM_001001979 MEGF10 multiple EGF-like-domains 10 adhesion NM_172522 MEGF11 multiple EGF-like-domains 11 adhesion NM_010739 MUC13 mucin 13, cell surface associated adhesion NM_013610 NINJ1 ninjurin 1 adhesion NM_016718 NINJ2 ninjurin 2 adhesion NM_172932 NLGN3 neuroligin
    [Show full text]
  • Landmarks in Insulin Research
    REVIEW ARTICLE published: 22 November 2011 doi: 10.3389/fendo.2011.00076 Landmarks in insulin research Colin W. Ward 1 and Michael C. Lawrence 1,2* 1 Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia 2 Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia Edited by: Ever since the discovery of insulin and its role in the regulation of glucose uptake and utiliza- Briony Forbes, The University of tion, there has been great interest in insulin, its structure and the way in which it interacts Adelaide, Australia with its receptor and effects signal transduction. As the 90th anniversary of the discov- Reviewed by: Jeff S. Davies, Swansea University, ery of insulin approaches, it is timely to provide an overview of the landmark discoveries UK relating to the structure and function of this remarkable molecule and its receptor. Briony Forbes, The University of Keywords: insulin, insulin receptor, tyrosine kinase receptor Adelaide, Australia Andrzej Marek Brzozowski, University of York, UK *Correspondence: Michael C. Lawrence, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC 3052, Australia. e-mail: [email protected] INSULIN characterization of insulin then followed over the subsequent DISCOVERY OF INSULIN: 1922 two-and-a-half decades. Milestones included the crystallization Frederick Banting made the first public presentation of the dis- of insulin (Abel, 1926), the determination of its molecular weight covery of insulin to the Association of American Physicians in (Sjögren and Svedberg, 1931), and the demonstration that it con- 1922 (Banting et al., 1922). The remarkable story of the Toronto sisted of a pair of disulfide-linked polypeptide chains, namely the group of Banting, Charles Best, James Collip, and John Macleod acidic chain A and the basic chain B (Sanger, 1949).
    [Show full text]