molecules Article Microbial Synthesis of Non-Natural Anthraquinone Glucosides Displaying Superior Antiproliferative Properties Trang Thi Huyen Nguyen 1,†, Ramesh Prasad Pandey 1,2,† ID , Prakash Parajuli 1 ID , Jang Mi Han 1, Hye Jin Jung 1,2, Yong Il Park 3 and Jae Kyung Sohng 1,2,* ID 1 Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea;
[email protected] (T.T.H.N.);
[email protected] (R.P.P.);
[email protected] (P.P.);
[email protected] (J.M.H.);
[email protected] (H.J.J.) 2 Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea 3 Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Korea;
[email protected] * Correspondence:
[email protected]; Tel: +82-(41)-530-2246; Fax: +82-(41)-530-8229 † These authors contributed equally to this work. Received: 17 July 2018; Accepted: 21 August 2018; Published: 28 August 2018 Abstract: Anthraquinones, naturally occurring bioactive compounds, have been reported to exhibit various biological activities, including anti-inflammatory, antiviral, antimicrobial, and anticancer effects. In this study, we biotransformed three selected anthraquinones into their novel O-glucoside derivatives, expressing a versatile glycosyltransferase (YjiC) from Bacillus licheniformis DSM 13 in Escherichia coli. Anthraflavic acid, alizarin, and 2-amino-3-hydroxyanthraquinone were exogenously fed to recombinant E. coli as substrate for biotransformation. The products anthraflavic acid-O-glucoside, alizarin 2-O-b-D-glucoside, and 2-amino-3-O-glucosyl anthraquinone produced in the culture broths were characterized by various chromatographic and spectroscopic analyses.