Microbial Synthesis of Non-Natural Anthraquinone Glucosides Displaying Superior Antiproliferative Properties

Total Page:16

File Type:pdf, Size:1020Kb

Microbial Synthesis of Non-Natural Anthraquinone Glucosides Displaying Superior Antiproliferative Properties molecules Article Microbial Synthesis of Non-Natural Anthraquinone Glucosides Displaying Superior Antiproliferative Properties Trang Thi Huyen Nguyen 1,†, Ramesh Prasad Pandey 1,2,† ID , Prakash Parajuli 1 ID , Jang Mi Han 1, Hye Jin Jung 1,2, Yong Il Park 3 and Jae Kyung Sohng 1,2,* ID 1 Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea; [email protected] (T.T.H.N.); [email protected] (R.P.P.); [email protected] (P.P.); [email protected] (J.M.H.); [email protected] (H.J.J.) 2 Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea 3 Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Korea; [email protected] * Correspondence: [email protected]; Tel: +82-(41)-530-2246; Fax: +82-(41)-530-8229 † These authors contributed equally to this work. Received: 17 July 2018; Accepted: 21 August 2018; Published: 28 August 2018 Abstract: Anthraquinones, naturally occurring bioactive compounds, have been reported to exhibit various biological activities, including anti-inflammatory, antiviral, antimicrobial, and anticancer effects. In this study, we biotransformed three selected anthraquinones into their novel O-glucoside derivatives, expressing a versatile glycosyltransferase (YjiC) from Bacillus licheniformis DSM 13 in Escherichia coli. Anthraflavic acid, alizarin, and 2-amino-3-hydroxyanthraquinone were exogenously fed to recombinant E. coli as substrate for biotransformation. The products anthraflavic acid-O-glucoside, alizarin 2-O-b-D-glucoside, and 2-amino-3-O-glucosyl anthraquinone produced in the culture broths were characterized by various chromatographic and spectroscopic analyses. The comparative anti-proliferative assay against various cancer cells (gastric cancer-AGS, uterine cervical cancer-HeLa, and liver cancer-HepG2) were remarkable, since the synthesized glucoside compounds showed more than 60% of cell growth inhibition at concentrations ranging from ~50 µM to 100 µM. Importantly, one of the synthesized glucoside derivatives, alizarin 2-O-glucoside inhibited more than 90% of cell growth in all the cancer cell lines tested. Keywords: anti-cancer agents; anthraquinones; glycosyltransferase 1. Introduction Anthraquinones are naturally occurring phenolic compounds based on the 9,10-anthraquinone skeleton. They are widely available from plants, microbes, fungi, and lichens [1]. Anthraquinones have various biological benefits [2,3]. Anthraquinones of the Rubiaceae family exhibit interesting in vivo biological activities such as antimicrobial [4], antifungal [5], hypotensive and analgesic [6], anti-malarial [7], anti-oxidant [8], antileukemic, and mutagenic functions [9]. Several anthraquinones are widely used in the treatment of cancer. They display cytotoxic activities through interaction with DNA, preferentially at guanine/cytosine-rich sites [10]. Emodin was studied as an agent that could reduce the impact of type 2 diabetes [11] and could inhibit human cytomegalovirus development [12]. Aloe emodin has strong stimulant-laxative action [13] and is found in the gel, soap or leaves of Aloe vera and the rhizome of rhubarb (Rheum rhaponticum). Chrysazin (known as Dantron) is mainly used in Molecules 2018, 23, 2171; doi:10.3390/molecules23092171 www.mdpi.com/journal/molecules Molecules 2018, 23, x FOR PEER REVIEW 2 of 14 Moleculesfound in2018 the, 23 ,gel, 2171 soap or leaves of Aloe vera and the rhizome of rhubarb (Rheum rhaponticum2 of). 13 Chrysazin (known as Dantron) is mainly used in palliative care to counteract the constipating effects of opioids [14]. Quinizarin is an inexpensive dye used to color gasoline and heating oil [15]. palliativeIt is also careused to as counteract an intermediate the constipating for the synt effectshesis of of opioids indanthrene- [14]. Quinizarin and alizarin-derived is an inexpensive dyes. dyeAlizarin used tohas color been gasoline used andas heatinga prominent oil [15]. red It is alsodye, used principally as an intermediate for dyeing for thetextile synthesis fabrics. of indanthrene-Anthraquinone and glycosides alizarin-derived upon hydrolysis dyes. Alizarin yield has the been aglycone, used as awhich prominent is usually red dye, a di-, principally tri- or fortetrahydroxyanthraquinone dyeing textile fabrics. Anthraquinone or a derivative glycosides of these upon compounds. hydrolysis yieldWhile the free aglycone, anthraquinone which is usuallyaglycones a di-,exhibit tri- ortherapeutic tetrahydroxyanthraquinone activity, glycosides that or a enhance derivative solubility of these are compounds. accepted as Whilekey active free anthraquinonecomponents with aglycones various exhibitpharmacolo therapeuticgical actions activity, such glycosides as antileukemic, that enhance antiseptic, solubility anti-cancer, are accepted and asantitumor key active activity components [16,17]. with various pharmacological actions such as antileukemic, antiseptic, anti-cancer,Recently, and the antitumor synthesis activity of anthraquinone [16,17]. derivatives has attracted significant interest. Various synthesisRecently, methods the synthesis have been of anthraquinone reported, the derivatives most common has attracted of which significant is the interest.intramolecular Various synthesiscondensation methods of aryl have and been O reported,-arylbenzoic the most acids, common using offuming which issulfuric the intramolecular acid, benzoyl condensation chloride, ofconcentrated aryl and O -arylbenzoicsulfuric acid, acids, benzoyl using chloride, fuming zinc sulfuric chloride, acid, benzoyland POCl chloride,3/P2O3C concentratedl4 as catalyst, sulfuricwhich acid,produces benzoyl anthraquinone chloride, zinc derivatives chloride, and [18]. POCl Anthra3/P2Oquinone3Cl4 as catalyst,and its which associated produces derivatives anthraquinone were derivativespreviously synthesized [18]. Anthraquinone by a chemical and pathway, its associated although derivatives this method were was previously expensive synthesized and involved by a chemicalseveral hurdles pathway, [19]. although This report this method is based was on expensive the utilization and involved of indigenous several hurdles E. coli [sugar19]. This (uridine report isdiphosphate based on the(UDP)-glucose) utilization of as indigenous a sugar donorE. coli whichsugar will (uridine be utilized diphosphate by the glycosyltransferase (UDP)-glucose) as to a sugarconjugate donor to whichdifferent will anthraquione be utilized by derivatives. the glycosyltransferase This process to is conjugate inexpensive todifferent and environmentally anthraquione derivatives.friendly. We designed This process a scheme is inexpensive to consider and wild environmentally type E. coli BL21 friendly. (DE3) strain. We designedWe then expressed a scheme toglycosyltransferases consider wild type fromE. coli BacillusBL21 (DE3)licheniformis strain. WeDSM13 then expressed(YjiC) and glycosyltransferases biotransformed three from Bacillusanthraquionones licheniformis intoDSM13 their (YjiC)respective and biotransformed glucosides (Figure three anthraquionones1). The anticancer into activities their respective of all glucosidesderivatives (Figurewere 1).assessed The anticancer and the activities results of were all derivatives significant were compared assessed andwith the those results of werethe significantcorresponding compared aglycones. with those of the corresponding aglycones. FigureFigure 1.1. SchemeScheme showing pathway and utilizing Escherichia coli indigenousindigenous UDP-glucose UDP-glucose by by BacillusBacillus glycosyltransferaseglycosyltransferase forfor modificationmodification of selected anthraquinones into respective glucosides. 2. Results 2.1. Biotransformation of Anthraquinones The approach was to biosynthesize anthraquinone glucoside utilizing E. coli indigenous UDP-glucose as a sugar donor to the expressing glycosyltransefrase (Figure1). Cultures were prepared for biotransformation reactions with recombinant strain expressing pET28a-YjiC, as explained in the Molecules 2018, 23, x FOR PEER REVIEW 3 of 14 2. Results 2.1. Biotransformation of Anthraquinones The approach was to biosynthesize anthraquinone glucoside utilizing E. coli indigenous UDP- glucose as a sugar donor to the expressing glycosyltransefrase (Figure 1). Cultures were prepared forMolecules biotransformation2018, 23, 2171 reactions with recombinant strain expressing pET28a-YjiC, as explained3 of in 13 the Materials and Methods section. Three anthraquinones: 2-amino-3-hydroxyanthraquinone, anthraflavicMaterials and acid, Methods and alizarin section. were Three chosen anthraquinones: for biotransformation. 2-amino-3-hydroxyanthraquinone, anthraflavic acid,Anthraquinones and alizarin were were chosen supplied for biotransformation. exogenously to each flask of E. coli BL21 (DE3) harboring pET28a-YjiCAnthraquinones culture after were 20 suppliedh of IPTG exogenously induction at toa final each concentration flask of E. coli of 0.2BL21 mM. (DE3) Cultures harboring were allowedpET28a-YjiC to undergo culture afterbiotransformation 20 h of IPTG inductionfor up to at60 a finalh and concentration were then harvested of 0.2 mM. using Cultures a double were volumeallowed of to undergoethyl acetate biotransformation and analyzed for by up analytical to 60 h and HPLC-PDA, were then harvestedas described using in athe double Materials volume and of Methodsethyl acetate
Recommended publications
  • Aloe Ferox 117 Table 9: Phytochemical Constituents of Different Extracts of Aloe CIM- Sheetal Leaves 119
    International Journal of Scientific & Engineering Research ISSN 2229-5518 1 Morphological, in vitro, Biochemical and Genetic Diversity Studies in Aloe species THESIS SUBMITTED TO OSMANIA UNIVERSITY FOR THE AWARD OF DOCTOR OF PHILOSOPHY IN GENETICS IJSER By B. CHANDRA SEKHAR SINGH DEPARTMENT OF GENETICS OSMANIA UNIVERSITY HYDERABAD - 500007, INDIA JULY, 2015 IJSER © 2018 http://www.ijser.org International Journal of Scientific & Engineering Research ISSN 2229-5518 2 DECLARATION The investigation incorporated in the thesis entitled “Morphological, in vitro, Biochemical and Genetic Diversity Studies in Aloe species’’ was carried out by me at the Department of Genetics, Osmania University, Hyderabad, India under the supervision of Prof. Anupalli Roja Rani, Osmania University, Hyderabad, India. I hereby declare that the work is original and no part of the thesis has been submitted for the award of any other degree or diploma prior to this date. IJSER Date: (Bhaludra Chandra Sekhar Singh) IJSER © 2018 http://www.ijser.org International Journal of Scientific & Engineering Research ISSN 2229-5518 3 DEDICATION I dedicateIJSER this work to my beloved and beautiful wife B. Ananda Sekhar IJSER © 2018 http://www.ijser.org International Journal of Scientific & Engineering Research ISSN 2229-5518 4 Acknowledgements This dissertation is an outcome of direct and indirect contribution of many people, which supplemented my own humble efforts. I like this opportunity to mention specifically some of them and extend my gratefulness to other well wisher, known and unknown. I feel extremely privileged to express my veneration for my superviosor Dr. Anupalli Roja Rani, Professor and Head, Department of Genetics, Osmania University, Hyderabad. Her whole- hearted co-operation, inspiration and encouragement rendered throughout made this in carrying out the research and writing of this thesis possible.
    [Show full text]
  • Various Species, Mainly Aloe Ferox Miller and Its Hybrids)
    European Medicines Agency Evaluation of Medicines for Human Use London, 5 July 2007 Doc. Ref: EMEA/HMPC/76313/2006 COMMITTEE ON HERBAL MEDICINAL PRODUCTS (HMPC) ASSESSMENT REPORT ON ALOE BARABADENSIS MILLER AND ALOE (VARIOUS SPECIES, MAINLY ALOE FEROX MILLER AND ITS HYBRIDS) Aloe barbadensis Miller (barbados aloes) Herbal substance Aloe [various species, mainly Aloe ferox Miller and its hybrids] (cape aloes) the concentrated and dried juice of the leaves, Herbal Preparation standardised; standardised herbal preparations thereof Pharmaceutical forms Herbal substance for oral preparation Rapporteur Dr C. Werner Assessor Dr. B. Merz Superseded 7 Westferry Circus, Canary Wharf, London, E14 4HB, UK Tel. (44-20) 74 18 84 00 Fax (44-20) 75 23 70 51 E-mail: [email protected] http://www.emea.europa.eu ©EMEA 2007 Reproduction and/or distribution of this document is authorised for non commercial purposes only provided the EMEA is acknowledged TABLE OF CONTENTS I. Introduction 3 II. Clinical Pharmacology 3 II.1 Pharmacokinetics 3 II.1.1 Phytochemical characterisation 3 II.1.2 Absorption, metabolism and excretion 4 II.1.3 Progress of action 5 II.2 Pharmacodynamics 5 II.2.1 Mode of action 5 • Laxative effect 5 • Other effects 7 II.2.2 Interactions 8 III. Clinical Efficacy 9 III.1 Dosage 9 III.2 Clinical studies 9 Conclusion 10 III.3 Clinical studies in special populations 10 III.3.1 Use in children 10 III.3.2. Use during pregnancy and lactation 10 III.3.3. Conclusion 13 III.4 Traditional use 13 IV. Safety 14 IV.1 Genotoxic and carcinogenic risk 14 IV.1.1 Preclinical Data 14 IV.1.2 Clinical Data 18 IV.1.3 Conclusion 20 IV.2 Toxicity 20 IV.3 Contraindications 21 IV.4 Special warnings and precautions for use 21 IV.5 Undesirable effects 22 IV.6 Interactions 22 IV.7 Overdose 23 V.
    [Show full text]
  • Photodynamic Therapy for Cancer Role of Natural Products
    Photodiagnosis and Photodynamic Therapy 26 (2019) 395–404 Contents lists available at ScienceDirect Photodiagnosis and Photodynamic Therapy journal homepage: www.elsevier.com/locate/pdpdt Review Photodynamic therapy for cancer: Role of natural products T Behzad Mansooria,b,d, Ali Mohammadia,d, Mohammad Amin Doustvandia, ⁎ Fatemeh Mohammadnejada, Farzin Kamaric, Morten F. Gjerstorffd, Behzad Baradarana, , ⁎⁎ Michael R. Hambline,f,g, a Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran b Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran c Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran d Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000, Odense, Denmark e Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA f Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA g Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA ARTICLE INFO ABSTRACT Keywords: Photodynamic therapy (PDT) is a promising modality for the treatment of cancer. PDT involves administering a Photodynamic therapy photosensitizing dye, i.e. photosensitizer, that selectively accumulates in tumors, and shining a light source on Photosensitizers the lesion with a wavelength matching the absorption spectrum of the photosensitizer, that exerts a cytotoxic Herbal medicine effect after excitation. The reactive oxygen species produced during PDT are responsible for the oxidation of Natural products biomolecules, which in turn cause cell death and the necrosis of malignant tissue. PDT is a multi-factorial process that generally involves apoptotic death of the tumor cells, degeneration of the tumor vasculature, stimulation of anti-tumor immune response, and induction of inflammatory reactions in the illuminated lesion.
    [Show full text]
  • Mucilages, Tannins, Anthraquinones
    Herbal Pharmacology Mucilages, Tannins, Anthraquinones Class Abstract Mucilages Mills&Bone 1st ed. P.26 Eshun, Kojo, and Qian He. "Aloe vera: a valuable ingredient for the food, pharmaceutical and cosmetic industries—a review." Critical reviews in food science and nutrition 44.2 (2004): 91- 96. Goycoolea, Francisco M., and Adriana Cárdenas. "Pectins from Opuntia spp.: a short review." Journal of the Professional Association for Cactus Development 5 (2003): 17-29. Hasanudin, Khairunnisa, Puziah Hashim, and Shuhaimi Mustafa. "Corn silk (Stigma Maydis) in healthcare: A phytochemical and pharmacological review." Molecules 17.8 (2012): 9697-9715. KEY POINTS: demulcent, soothe tissue, trap/slow sugars and cholesterol entry, poorly absorbed but may have reflex action in other mucous membranes, prebiotic Extraction: water. Heat and ethanol (above 50%) may damage Areas of action: mostly topical Pharmacokinetics: form gels with water in GI tract, excreted through GI tract Representative species: Aloe, Acacia, Althaea, Zea, Ulmus, Symphytum, Linum Tannins: Mills & Bone, 1st ed. p.34 Min, B. R., and S. P. Hart. "Tannins for suppression of internal parasites." Journal of Animal Science 81.14 suppl 2 (2003): E102-E109. Zucker, William V. "Tannins: does structure determine function? An ecological perspective." American Naturalist (1983): 335-365. Akiyama, Hisanori, et al. "Antibacterial action of several tannins against Staphylococcus aureus." Journal of Antimicrobial Chemotherapy 48.4 (2001): 487-491. Clausen, Thomas P., et al. "Condensed tannins in plant defense: a perspective on classical theories." Plant polyphenols. Springer US, 1992. 639-651. KEY POINTS: astringent, styptic, bind protein, tone tissue, eventually denature tissue, can have antimicrobial action once modified in GI tract Extraction: water.
    [Show full text]
  • Natural Hydroxyanthraquinoid Pigments As Potent Food Grade Colorants: an Overview
    Review Nat. Prod. Bioprospect. 2012, 2, 174–193 DOI 10.1007/s13659-012-0086-0 Natural hydroxyanthraquinoid pigments as potent food grade colorants: an overview a,b, a,b a,b b,c b,c Yanis CARO, * Linda ANAMALE, Mireille FOUILLAUD, Philippe LAURENT, Thomas PETIT, and a,b Laurent DUFOSSE aDépartement Agroalimentaire, ESIROI, Université de La Réunion, Sainte-Clotilde, Ile de la Réunion, France b LCSNSA, Faculté des Sciences et des Technologies, Université de La Réunion, Sainte-Clotilde, Ile de la Réunion, France c Département Génie Biologique, IUT, Université de La Réunion, Saint-Pierre, Ile de la Réunion, France Received 24 October 2012; Accepted 12 November 2012 © The Author(s) 2012. This article is published with open access at Springerlink.com Abstract: Natural pigments and colorants are widely used in the world in many industries such as textile dying, food processing or cosmetic manufacturing. Among the natural products of interest are various compounds belonging to carotenoids, anthocyanins, chlorophylls, melanins, betalains… The review emphasizes pigments with anthraquinoid skeleton and gives an overview on hydroxyanthraquinoids described in Nature, the first one ever published. Trends in consumption, production and regulation of natural food grade colorants are given, in the current global market. The second part focuses on the description of the chemical structures of the main anthraquinoid colouring compounds, their properties and their biosynthetic pathways. Main natural sources of such pigments are summarized, followed by discussion about toxicity and carcinogenicity observed in some cases. As a conclusion, current industrial applications of natural hydroxyanthraquinoids are described with two examples, carminic acid from an insect and Arpink red™ from a filamentous fungus.
    [Show full text]
  • Anthraquinones Mireille Fouillaud, Yanis Caro, Mekala Venkatachalam, Isabelle Grondin, Laurent Dufossé
    Anthraquinones Mireille Fouillaud, Yanis Caro, Mekala Venkatachalam, Isabelle Grondin, Laurent Dufossé To cite this version: Mireille Fouillaud, Yanis Caro, Mekala Venkatachalam, Isabelle Grondin, Laurent Dufossé. An- thraquinones. Leo M. L. Nollet; Janet Alejandra Gutiérrez-Uribe. Phenolic Compounds in Food Characterization and Analysis , CRC Press, pp.130-170, 2018, 978-1-4987-2296-4. hal-01657104 HAL Id: hal-01657104 https://hal.univ-reunion.fr/hal-01657104 Submitted on 6 Dec 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Anthraquinones Mireille Fouillaud, Yanis Caro, Mekala Venkatachalam, Isabelle Grondin, and Laurent Dufossé CONTENTS 9.1 Introduction 9.2 Anthraquinones’ Main Structures 9.2.1 Emodin- and Alizarin-Type Pigments 9.3 Anthraquinones Naturally Occurring in Foods 9.3.1 Anthraquinones in Edible Plants 9.3.1.1 Rheum sp. (Polygonaceae) 9.3.1.2 Aloe spp. (Liliaceae or Xanthorrhoeaceae) 9.3.1.3 Morinda sp. (Rubiaceae) 9.3.1.4 Cassia sp. (Fabaceae) 9.3.1.5 Other Edible Vegetables 9.3.2 Microbial Consortia Producing Anthraquinones,
    [Show full text]
  • Molecular Docking Studies of Aloe Vera for Their Potential Antibacterial
    The Pharma Innovation Journal 2019; 8(9): 481-487 ISSN (E): 2277- 7695 ISSN (P): 2349-8242 NAAS Rating: 5.03 Molecular docking studies of aloe vera for their TPI 2019; 8(9): 481-487 © 2019 TPI potential antibacterial activity using Argus lab 4.0.1 www.thepharmajournal.com Received: 08-07-2019 Accepted: 12-08-2019 Dr. Ranjith D Dr. Ranjith D Assistant Professor, Department Abstract of Veterinary Pharmacology and Antibiotic resistance is an earnest and progressive phenomenon in coeval medicine and has emerged as Toxicology, College of Veterinary one of the supreme public health concerns in current scenario. The use of alternative medicines practiced and Animal Sciences, Pookode, for years and remained as constituent part of many cultural and technological developments around Wayanad, Kerala, India globe. The aim of the present study was to evaluate the antibacterial activity of Aloe vera (L) via molecular docking studies using 17 phytoconstituents already reported in multifarious scientific reports i.e. acemannan, aloe emodin, aloesin, aloin A, aloin B or isobarbaloin, anthracene, anthranol or anthranol benzoate, auxin or 3 indoleacetate, campesterol, chrysophanic acid, dermatan 4 sulphate, dermatan 6 sulphate, emodin or archin, hyaluronic acid, lupeol, salicylic acid and sitosterol beta against the rate limiting enzyme involved in cell wall synthesis of bacteria i.e. glucosamine 6 phosphate synthase respectively. The docking procedure was carried out using ArgusLab 4.0.1 and post docking analysis was carried out by using PyMOL molecular viewer. Among the ligands screened sitosterol beta, campesterol and anthracene showed highest binding energy i.e. -12.419, -11.764 and -11.038 with better inhibition properties respectively.
    [Show full text]
  • Enhanced Production of Anthraquinones and Phenolic Compounds and Biological Activities in the Cell Suspension Cultures of Polygonum Multiflorum
    International Journal of Molecular Sciences Article Enhanced Production of Anthraquinones and Phenolic Compounds and Biological Activities in the Cell Suspension Cultures of Polygonum multiflorum Muthu Thiruvengadam, Kaliyaperumal Rekha, Govindasamy Rajakumar, Taek-Jun Lee, Seung-Hyun Kim and Ill-Min Chung * Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul 143 701, Korea; [email protected] (M.T.); [email protected] (K.R.); [email protected] (G.R.); [email protected] (T.-J.L.); [email protected] (S.-H.K.) * Correspondence: [email protected] Academic Editor: Charles Brennan Received: 30 June 2016; Accepted: 8 November 2016; Published: 16 November 2016 Abstract: Anthraquinones (AQs) and phenolic compounds are important phytochemicals that are biosynthesized in cell suspension cultures of Polygonum multiflorum. We wanted to optimize the effects of plant growth regulators (PGRs), media, sucrose, L-glutamine, jasmonic acid (JA), and salicylic acid (SA) for the production of phytochemicals and biomass accumulation in a cell suspension culture of P. multiflorum. The medium containing Murashige and Skoog (MS) salts and 4% sucrose supplemented with 1 mg/L 2,4-dichlorophenoxyacetic acid, 0.5 mg/L thidiazuron, and 100 µM L-glutamine at 28 days of cell suspension culture was suitable for biomass accumulation and AQ production. Maximum biomass accumulation (12.5 and 12.35 g fresh mass (FM); 3 and 2.93 g dry mass (DM)) and AQ production (emodin 295.20 and 282 mg/g DM; physcion 421.55 and 410.25 mg/g DM) were observed using 100 µM JA and SA, respectively. JA- and SA-elicited cell cultures showed several-fold higher biomass accumulation and AQ production than the control cell cultures.
    [Show full text]
  • Anthraquinone Inhibition of Methane Production In
    ~™ mil minium illinium (19) J European Patent Office Office europeen des brevets (1 1 ) EP 0 665 775 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publicationation and mention (51) Int. CI.6: B09B 1/00, A23K1/16 of the grant of the patent: 03.09.1997 Bulletin 1997/36 (86) International application number: PCT/US93/09806 (21) Application number: 93924315.0 (87) International publication number: (22) Date of filing : 20.1 0.1 993 WO 94/08738 (28.04.1994 Gazette 1994/10) (54) ANTHRAQUINONE INHIBITION OF METHANE PRODUCTION IN METHANOGENIC BACTERIA ANTHRAQUINON-INHIBIERUNG DER METHANHERSTELLUNG DURCH METHANOGENE BAKTERIEN INHIBITION PAR L'ANTHRAQUINONE DE LA PRODUCTION DE METHANE CHEZ DES BACTERIES METHANOGENES (84) Designated Contracting States: (74) Representative: Woodcraft, David Charles DE ES FR GB BROOKES & MARTIN High Holborn House (30) Priority: 22.10.1992 US 964971 52/54 High Holborn London, WC1V6SE(GB) (43) Date of publication of application: 09.08.1995 Bulletin 1995/32 (56) References cited: EP-A- 0 430 164 (73) Proprietor: BIO-TECHNICAL RESOURCES LP Manitowoc, Wl 54220 (US) • APPLIED AND ENVIRONMENTAL MICROBIOLOGY vol. 55, no. 2 , February 1989 , (72) Inventor: ODOM, James, Martin US pages 433 - 439 NIGELS B. BATTERS BY ET Avondale, PA 19311 (US) AL. 'SURVEY OF THE ANAEROBIC BIODEGRADATION POTENTIAL OF ORGANIC CHEMICALS IN DIGESTING SLUDGE' CO LO LO Note: Within nine months from the publication of the mention of the grant of the European patent, give CO£0 any person may notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in o^ a written reasoned statement.
    [Show full text]
  • Anthraquinones (Alexandrian > Indian)
    Fruits belonging to other Families 1- Capsicum 7- Cubebs 2- Vanilla pods 8- Star Anise 3- Colocynth 9- Poppy capsule 10- Juniper berries 4- Senna pods 11- Pimento 5- Cassia pods 12- Cereals 6-Cocculus Capsicum (Chillies) 1- Capsicum minimum, Solanaceae. It contains a pungent principle: Capsaicin Oxidizing agents destroy the pungency of capsaicin It also contains fixed oil, red carotenoids and vit. C. used as: condiment, counter-irritant and for flatulent dyspepsia Capsaicin H N O MeO OH Counter-irritants Counter-irritants or external (topical) analgesics are: [Agents that are applied locally to produce an inflammatory reaction (cold, warmth, or itching) with the object of affecting another site usually adjacent to or underlying the irritated surface !] What is the precise mechanism of Capsaicin ? The precise mechanism of action of capsaicin is not fully understood !! What is the possible mechanism of capsaicin ? By depleting Substance P and preventing its accumulation. Substance P is a neurotransmitter that transmits pain impulses from the peripheral neurons to the central nervous system. Pain relief is experienced after Substance P is totally depleted. Other effects of capsaicin • Enhance energy metabolism in mammals , inducing thermogenesis (Thermogenesis is the heat produced from the burning of calories). • Reduce the levels of serum cholesterol. • Promote hair growth !!!. Counter-irritants [precautions] Precautions: 1- Keep out of eyes and mucous membranes. 2- Don’t apply to wounds or broken skin. 3- Don’t use for infants and children. 4- Don’t apply for large areas of the body. Vanilla pods 1- Carefully cured, full grown unripe fruits of Vanilla planifolia (Orchidaceae).
    [Show full text]
  • A Xanthone and a Phenylanthraquinone from the Roots of Bulbine
    Phytochemistry Letters 9 (2014) 67–73 Contents lists available at ScienceDirect Phytochemistry Letters jo urnal homepage: www.elsevier.com/locate/phytol A xanthone and a phenylanthraquinone from the roots of Bulbine frutescens, and the revision of six seco-anthraquinones into xanthones a,b c a a Negera Abdissa , Matthias Heydenreich , Jacob O. Midiwo , Albert Ndakala , d e e b Zsuzsanna Majer , Beate Neumann , Hans-Georg Stammler , Norbert Sewald , a, Abiy Yenesew * a Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya b Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, P.O. Box 100131, 33501 Bielefeld, Germany c Institut fu¨r Chemie, Universita¨t Potsdam, P.O. Box 60 15 53, D-14415 Potsdam, Germany d Laboratory for Chiroptical Structure Analysis, Institute of Chemistry, Eo¨tvo¨s University, P.O. Box 32, H-1518 Budapest 112, Hungary e Department of Chemistry, Inorganic and Structural Chemistry, Bielefeld University, P.O. Box 100131, 33501 Bielefeld, Germany A R T I C L E I N F O A B S T R A C T Article history: Phytochemical investigation of the dichloromethane/methanol (1:1) extract of the roots of Bulbine Received 20 November 2013 frutescens led to the isolation of a new xanthone, 8-hydroxy-6-methylxanthone-1-carboxylic acid (1) and Received in revised form 31 March 2014 0 a new phenylanthraquinone, 6 ,8-O-dimethylknipholone (2) along with six known compounds. The Accepted 7 April 2014 structures were elucidated on the basis of NMR and MS spectral data analyses. The structure of Available online 19 April 2014 compound 1 was confirmed through X-ray crystallography which was then used as a reference to propose the revision of the structures of six seco-anthraquinones into xanthones.
    [Show full text]
  • Effect of Different Cooking Regimes on Rhubarb Polyphenols
    Food Chemistry 119 (2010) 758–764 Contents lists available at ScienceDirect Food Chemistry journal homepage: www.elsevier.com/locate/foodchem Effect of different cooking regimes on rhubarb polyphenols Gordon J. McDougall a,*, Pat Dobson a, Nikki Jordan-Mahy b a Plant Products and Food Quality Programme, Scottish Crop Research Institute (SCRI), Invergowrie, Dundee, Scotland DD2 5DA, UK b Biomedical Research Centre, Sheffield Hallam University (SHU), Howard Street, Sheffield S1 1WB, UK article info abstract Article history: Polyphenolic components, such as anthraquinones and stilbenes, from species of the genus Rheum have Received 16 March 2009 been shown to have a range of bioactivities relevant to human health. This paper outlines the polyphe- Received in revised form 8 May 2009 nolic composition of edible petioles of garden rhubarb (Rheum rhapontigen) and describes the effects of Accepted 14 July 2009 common cooking methods on total polyphenolic content, anthocyanin content and total antioxidant capacity. Most cooking regimes (fast stewing, slow stewing and baking) except blanching increased total poly- Keywords: phenol content and overall antioxidant capacity, compared to the raw material. The patterns of anthocy- Anthocyanins anin content and total polyphenol content between the different cooking regimes suggested a balance Anthraquinones Antioxidants between two processes; cooking facilitated the release of polyphenol compounds from the rhubarb but Bioactivity also caused breakdown of the released compounds. Cooking Baking and slow stewing offered the best maintenance of colour through preservation of anthocyanin Polyphenols and the highest antioxidant capacity. Baking for 20 min provided well-cooked rhubarb with the highest Stability antioxidant capacity and the highest anthocyanin content, which is important for the aesthetic quality of Stilbenes the dish.
    [Show full text]