Cartwheel Galaxy – a Js9 Activity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Flat Rotation Curves and Low Velocity Dispersions in KMOS Star-Forming Galaxies at Z ∼ 1? E
A&A 594, A77 (2016) Astronomy DOI: 10.1051/0004-6361/201628315 & c ESO 2016 Astrophysics Flat rotation curves and low velocity dispersions in KMOS star-forming galaxies at z ∼ 1? E. M. Di Teodoro1; 2, F. Fraternali1; 3, and S. H. Miller4 1 Department of Physics and Astronomy, University of Bologna, 6/2 Viale Berti Pichat, 40127 Bologna, Italy 2 Research School of Astronomy and Astrophysics – The Australian National University, Canberra, ACT, 2611, Australia e-mail: [email protected] 3 Kapteyn Astronomical Institute, Postbus 800, 9700 AV Groningen, The Netherlands 4 University of California – Irvine, Irvine, CA 92697, USA Received 15 February 2016 / Accepted 18 July 2016 ABSTRACT The study of the evolution of star-forming galaxies requires the determination of accurate kinematics and scaling relations out to high redshift. In this paper we select a sample of 18 galaxies at z ∼ 1; observed in the Hα emission line with KMOS, to derive accurate kinematics using a novel 3D analysis technique. We use the new code 3DBarolo, which models the galaxy emission directly in 3D observational space, without the need to extract kinematic maps. This major advantage of this technique is that it is not affected by beam smearing and thus it enables the determination of rotation velocity and intrinsic velocity dispersion, even at low spatial resolution. We find that (1) the rotation curves of these z ∼ 1 galaxies rise very steeply within few kiloparsecs and remain flat out to the outermost radius and (2) the Hα velocity dispersions are low, ranging from 15 to 40 km s−1, which leads to V/σ = 3–10. -
Galactic-Scale Macro-Engineering: Looking for Signs of Other Intelligent Species, As an Exercise in Hope for Our Own
Galactic-scale macro-engineering: Looking for signs of other intelligent species, as an exercise in hope for our own * Joseph Voros Senior Lecturer in Strategic Foresight Faculty of Business & Law, Swinburne University of Technology, Melbourne, Australia Abstract If we consider Big History as simply ‘our’ example of the process of cosmic evolution playing out, then we can seek to broaden our view of our possible fate as a species by asking questions about what paths or trajectories other species’ own versions of Big History might take or have taken. This paper explores the broad outlines of possible scenarios for the evolution of long-lived intelligent engineering species—scenarios which might have been part of another species’ own Big History story, or which may yet lie ahead in our own distant future. A sufficiently long-lived engineering-oriented species may decide to undertake a program of macro-engineering projects that might eventually lead to a re-engineered galaxy so altered that its artificiality may be detectable from Earth. We consider activities that lead ultimately to a galactic structure consisting of a central inner core surrounded by a more distant ring of stars separated by a relatively sparser ‘gap’, where star systems and stellar materials may have been removed, ‘lifted’ or turned into Dyson Spheres. When one looks to the sky, one finds that such galaxies do indeed exist—including the beautiful ringed galaxy known as ‘Hoag’s Object’ (PGC 54559) in the constellation Serpens. This leads us to pose the question: Is Hoag’s Object an example of galaxy-scale macro-engineering? And this suggests a program of possible observational activities and theoretical explorations, several of which are presented here, that could be carried out in order to begin to investigate this beguiling question. -
Broad-Band Photometry and Long-Slit Spectroscopy of the Peculiar Ring Galaxy FM 287-14
A&A 559, A8 (2013) Astronomy DOI: 10.1051/0004-6361/201219721 & c ESO 2013 Astrophysics Broad-band photometry and long-slit spectroscopy of the peculiar ring galaxy FM 287-14 M. Faúndez-Abans1, P. C. da Rocha-Poppe2,3, V. A. Fernandes-Martin2,3, M. de Oliveira-Abans1,5, I. F. Fernandes2,3,E.Wenderoth4, and A. Rodríguez-Ardila1 1 MCTI/Laboratório Nacional de Astrofísica, Rua Estados Unidos 154, CEP 37504-364 Itajubá, MG, Brazil e-mail: [max;mabans;aardila]@lna.br 2 UEFS, Departamento de Física, Av. Transnordenstina, S/N, Novo Horizonte, CEP 44036-900 Feira de Santana, BA, Brazil 3 UEFS, Observatório Astronômico Antares, Rua da Barra, 925, Jardim Cruzeiro, CEP 44015-430 Feira de Santana, BA, Brazil e-mail: [paulopoppe;vmartin][email protected]; [email protected] 4 Gemini Observatory, Southern Operations Center, c/o AURA, 603 Casilla, La Serena, Chile e-mail: [email protected] 5 UNIFEI, Instituto de Engenharia de Produção e Gestão, Av. BPS, 1303, Pinheirinho, CEP 37500-903 Itajubá, MG, Brazil Received 30 May 2013 / Accepted 21 August 2013 ABSTRACT Aims. We report detailed morphological and kinematical insights into the disturbed galaxy FM 287-14, which is reported in the literature as a member of strongly interacting galaxies with a clear case of mergers. The main purpose of this paper is to provide a first observational study of this double-nuclei object based on photometry and spectroscopy. Methods. The study is based on BVR photometry with the 1.6-m telescope at OPD, and long-slit spectroscopy with Gemini South’s GMOS spectrograph, with two-gratings centered at 5 011 Å and 6 765 Å. -