Managed Coastal Retreat

Total Page:16

File Type:pdf, Size:1020Kb

Managed Coastal Retreat MANAGED COASTAL RETREAT A LEGAL HANDBOOK ON SHIFTING DEVELOPMENT AWAY FROM VULNERABLE AREAS BY ANNE SIDERS OCTOBER 2013 This page intentionally blank © 2013 Columbia Center for Climate Change Law, Columbia Law School Cover image: Hurricane Ike Damage in Texas, from the Federal Emergency Management Agency, http://www.fema.gov/region-vi/new-modern-national-flood-insurance-program-nfip. The Columbia Center for Climate Change Law (CCCL) develops legal techniques to fight climate change, trains law students and lawyers in their use, and provides the legal profession and the public with up-to-date resources on key topics in climate law and regulation. It works closely with the scientists at Columbia University's Earth Institute and with a wide range of governmental, non- governmental and academic organizations. Managed Coastal Retreat: A Handbook of Tools, Case Studies, and Lessons Learned October 2013 Columbia Center for Climate Change Law Columbia Law School 435 West 116th Street New York, NY 10027 Tel: +1 (212) 854-2372 Web: http://www.ColumbiaClimateLaw.com Twitter: @ColumbiaClimate This report was written by Anne Siders, Associate Director of CCCL and edited by Professor Michael B. Gerrard, CCCL Director. Background research was contributed by Columbia Law School students Ifeoma Anunkor, Eugene Baek, James Crowley, and Ololade Oladopo; Columbia Law School students and Environmental Law Clinic participants Jean Choi, Robert Denicola, Andrew Kirchner, and Xiaotang Wang; Columbia University student Nicole Migliore; and Ann Tran and Smita Walavalkar. We would like to thank Peter Byrne, Jessica Grannis, Eleanor Saunders, and Courtney St. John for their comments and suggestions. The text is the responsibility of CCCL alone, and does not reflect the views of Columbia Law School or Columbia University. "As the coasts become increasingly populated, more and more people are placed in harm's way. Thus far, science has not found effective ways to reduce most hazards. Therefore, citizens must look to strengthening communities. Building safer buildings and strengthening infrastructure are important steps, but it is the manner in which societies are built that largely determines disaster resilience. A vital part of effective disaster planning—whether for mitigation, preparation, response, or recovery—is an understanding of the people and institutions that make up each community, including their strengths and their weaknesses, as a basis for developing policies, programs, and practices to protect them. In the end, it is human decisions related to such matters as land use planning and community priorities that will build stronger, safer, and better communities." — H. John Heinz III Center for Science, Economics and the Environment, 2002, Human Links to Coastal Disasters TABLE OF CONTENTS Acronyms and Abbreviations Coastal Geography and Terms Executive Summary ............................................................................................................................. i Complete Lessons Learned and Recommendations ............................................................................. ii Introduction ...................................................................................................................................... 1 Table of Managed Retreat Tools ......................................................................................................... 5 Preliminary Matters ........................................................................................................................... 9 National Flood Insurance Program ........................................................................................................... 9 Takings Background ................................................................................................................................ 13 Chapter 1. Coastal Management Planning ................................................................................. 21 Federal Coastal Planning ........................................................................................................................ 21 Coastal Zone Management Act .............................................................................................................. 22 State Coastal Management Programs .................................................................................................... 24 Texas Coastal Management Program ................................................................................................. 25 Local Planning and State Mandates ........................................................................................................ 27 North Carolina Coastal Area Management Act .................................................................................. 30 Maine Shoreland Zoning Act ............................................................................................................... 33 Chapter 2. Setbacks and Rolling Easements .............................................................................. 41 Public Trust Doctrine ............................................................................................................................... 41 Setbacks .................................................................................................................................................. 44 Florida Coastal Construction Control Line .......................................................................................... 47 Kauai, Hawaii ....................................................................................................................................... 47 California Coastal Act & Local Coastal Plans ....................................................................................... 49 Lessons Learned ....................................................................................................................................... 52 Rolling Easements ................................................................................................................................... 54 Texas Open Beaches Act ..................................................................................................................... 54 Lessons Learned ....................................................................................................................................... 57 Contents Chapter 3. Preventing Private Coastal Armoring ........................................................................ 63 Maine Sand Dune Rules ...................................................................................................................... 70 Exactions ............................................................................................................................................. 72 Massachusetts Public Waterfront Act ................................................................................................ 75 Lessons Learned ....................................................................................................................................... 77 Chapter 4. Rebuilding Restrictions............................................................................................. 85 Federal Restrictions (NFIP) ...................................................................................................................... 86 State Restrictions .................................................................................................................................... 91 Maine Sand Dune Rules ...................................................................................................................... 91 Local Restrictions .................................................................................................................................... 93 Waveland, Mississippi ......................................................................................................................... 93 Zoning Changes ....................................................................................................................................... 97 Uninhabitability ....................................................................................................................................... 97 Lessons Learned ....................................................................................................................................... 98 Chapter 5. Acquisition: Easements and Buyout Programs ........................................................ 103 Conservation Easements ....................................................................................................................... 104 Buyout Programs ................................................................................................................................... 109 Grand Forks, North Dakota ............................................................................................................... 115 Soldiers Grove, Wisconsin................................................................................................................. 118 Ames, Cherokee and Wapello, Iowa ................................................................................................. 119 Charlotte, North Carolina.................................................................................................................. 127 Eminent Domain ...................................................................................................................................
Recommended publications
  • Directional Dependency and Coastal Framework Geology: Implications for Barrier Island Resilience
    Earth Surf. Dynam., 6, 1139–1153, 2018 https://doi.org/10.5194/esurf-6-1139-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Directional dependency and coastal framework geology: implications for barrier island resilience Phillipe A. Wernette1,2,a, Chris Houser1, Bradley A. Weymer3, Mark E. Everett4, Michael P. Bishop2, and Bobby Reece4 1Department of Earth and Environmental Sciences, University of Windsor, Windsor, Ontario, N9B 3P4, Canada 2Department of Geography, Texas A&M University, College Station, Texas, 77843, USA 3GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany 4Department of Geology and Geophysics, Texas A&M University, College Station, Texas, 77843, USA anow at: Department of Earth and Environmental Sciences, University of Windsor, 401 Sunset Ave., Windsor, Ontario, N9B 3P4, Canada Correspondence: Phillipe A. Wernette ([email protected]) Received: 9 May 2018 – Discussion started: 15 June 2018 Revised: 18 October 2018 – Accepted: 6 November 2018 – Published: 27 November 2018 Abstract. Barrier island transgression is influenced by the alongshore variation in beach and dune morphol- ogy, which determines the amount of sediment moved landward through wash-over. While several studies have demonstrated how variations in dune morphology affect island response to storms, the reasons for that vari- ation and the implications for island management remain unclear. This paper builds on previous research by demonstrating that paleo-channels in the irregular framework geology can have a directional influence on along- shore beach and dune morphology. The influence of relict paleo-channels on beach and dune morphology on Padre Island National Seashore, Texas, was quantified by isolating the long-range dependence (LRD) parame- ter in autoregressive fractionally integrated moving average (ARFIMA) models, originally developed for stock market economic forecasting.
    [Show full text]
  • Preparing for Sea-Level Rise Through Adaptive Managed Retreat of a New Zealand Stormwater and Wastewater Network
    infrastructures Article Preparing for Sea-Level Rise through Adaptive Managed Retreat of a New Zealand Stormwater and Wastewater Network Rick Kool 1,2, Judy Lawrence 1,* , Martin Drews 2 and Robert Bell 3 1 New Zealand Climate Change Research Institute, Victoria University of Wellington, 6012 Wellington, New Zealand; [email protected] 2 Department of Technology, Management and Economics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; [email protected] 3 National Institute of Water and Atmospheric Research, 3251 Hamilton, New Zealand; [email protected] * Correspondence: [email protected] Received: 6 October 2020; Accepted: 16 October 2020; Published: 1 November 2020 Abstract: Sea-level rise increasingly affects low-lying and exposed coastal communities due to climate change. These communities rely upon the delivery of stormwater and wastewater services which are often co-located underground in coastal areas. Due to sea-level rise and associated compounding climate-related hazards, managing these networks will progressively challenge local governments as climate change advances. Thus, responsible agencies must reconcile maintaining Levels of Service as the impacts of climate change worsen over the coming decades and beyond. A critical question is whether such networks can continue to be adapted/protected over time to retain Levels of Service, or whether eventual retreat may be the only viable adaptation option? If so, at what performance threshold? In this paper, we explore these questions for stormwater and wastewater, using a dynamic adaptive pathway planning (DAPP) approach designed to address thresholds and increasing risk over time. Involving key local stakeholders, we here use DAPP to identify thresholds for stormwater and wastewater services and retreat options, and for developing a comprehensive and area-specific retreat strategy comprising pathway portfolios, retreat phases, potential land use changes, and for exploring pathway conflicts and synergies.
    [Show full text]
  • Climate-Driven Community Relocations in the Solomon Islands and Alaska Provide Insight for a 1.5 °C Future
    Regional Environmental Change https://doi.org/10.1007/s10113-017-1256-8 ORIGINAL ARTICLE Heading for the hills: climate-driven community relocations in the Solomon Islands and Alaska provide insight for a 1.5 °C future Simon Albert1 & Robin Bronen2 & Nixon Tooler 3 & Javier Leon4 & Douglas Yee5 & Jillian Ash6 & David Boseto7 & Alistair Grinham1 Received: 4 May 2017 /Accepted: 12 November 2017 # Springer-Verlag GmbH Germany, part of Springer Nature 2017 Abstract Whilst future air temperature thresholds have become the centrepiece of international climate negotiations, even the most ambitious target of 1.5 °C will result in significant sea-level rise and associated impacts on human populations globally. Of additional concern in Arctic regions is declining sea ice and warming permafrost which can increasingly expose coastal areas to erosion particularly through exposure to wave action due to storm activity. Regional variability over the past two decades provides insight into the coastal and human responses to anticipated future rates of sea-level rise under 1.5 °C scenarios. Exceeding 1.5 °C will generate sea-level rise scenarios beyond that currently experienced and substantially increase the propor- tion of the global population impacted. Despite these dire challenges, there has been limited analysis of how, where and why communities will relocate inland in response. Here, we present case studies of local responses to coastal erosion driven by sea- level rise and warming in remote indigenous communities of the Solomon Islands and Alaska, USA, respectively. In both the Solomon Islands and the USA, there is no national government agency that has the organisational and technical capacity and resources to facilitate a community-wide relocation.
    [Show full text]
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • Four Strategies for Dealing with Sea Level Rise
    Sea level Rise Adaptation Tools and Resources Did you know….? Canada has the longest coastline in the world – approximately 151,019 miles (243,041.5 km) In British Columbia, 80% of population lives within 5 km from the coast. 59 municipalities out of 169 municipalities are coastal, 14 out 28 regional Districts contain coastal communities. The length of the coast is approximatively 29,000 km including the mainland and all islands from Haida Gwaii south to Vancouver Island and the Gulf Islands Coastal population: 3,500,000 Major ports: Metro Vancouver, Prince Rupert and Victoria In BC, the government is planning for Sea Level Rise (SLR) using this projected data: 0.5m sea level rise by 2050, 1m by 2100 and 2 m by 2200 BC communities won't be affected by sea level rise in the same way due in part to vertical land movement. The highest relative sea level rise is projected to occur in the Fraser low land, the southern part of Vancouver Island and the North Coast of British Columbia The greatest threat to communities along the coast besides sea level rise is storm surge flooding. Coastal communities are already dealing with extreme water levels. Four Strategies for dealing with Sea Level Rise Protect – advance or hold the line: Reactive strategy to protect people, property and Four Main Main ApproaFourea infrastructure – dikes, seawalls for example, to keep the shoreline at the same position. May be very expensive, have limited effectiveness on long term and may increase the level Four Main Approaches to Adaptation of erosion instead of addressing it.
    [Show full text]
  • Estimating Global Damages from Sea Level Rise with the Coastal Impact and Adaptation Model (CIAM)
    Estimating Global Damages from Sea Level Rise with the Coastal Impact and Adaptation Model (CIAM) Delavane B. Diazy FEEM Note di Lavoro/Working Paper Series originally presented at European Summer School in Resource and Environmental Economics San Servolo, Venice, Italy July 12, 2014 Abstract The costs of coastal sector impacts from sea level rise (SLR) are an important component of the total projected economic damages of climate change, a major input to decision-making and design of climate policy. Moreover, the ultimate costs to coastal resources will depend strongly on adaptation, society's response to cope with the impacts. This paper presents a new model to assess coastal impacts from SLR, combining global scope with high spatial resolution to fill a gap between very detailed local studies and aggregate global estimates. The Coastal Impact and Adaptation Model (CIAM) determines the optimal strategy for adaptation at the local level, evaluating over 12,000 coastal segments, as described in the DIVA database (Vafeidis et al, 2006), based on their socioeconomic characteristics and the potential impacts of relative sea level rise and uncertain storm surge. An application of CIAM is then presented to demonstrate the model's ability to assess local impacts and direct costs, choose the least-cost adaptation, and estimate global net damages for several probabilistic SLR scenarios (Kopp et al, 2014). CIAM finds that there is large potential for coastal adaptation to reduce the expected impacts of SLR compared to the alternative of no adaptation, lowering global net present costs by a factor of 10 to less than $1.5 trillion over the next two centuries, although this does not include initial transition costs to overcome an under-adapted current state.
    [Show full text]
  • September 2016 CURRICULUM VITAE KARL F
    September 2016 CURRICULUM VITAE KARL F. NORDSTROM Institute of Marine and Coastal Sciences Rutgers - the State University of New Jersey New Brunswick, NJ, 08901-8521 (848) 932-3284, [email protected] Academic Degrees A.B. German, Rutgers University, 1963. M.S. Geography, Rutgers University, 1970. Ph.D. Geography, Rutgers University, 1975. Professional History Rutgers University, New Brunswick, N.J. 7/1/12 to Present – Distinguished Professor, Department of Marine and Coastal Sciences (DMCS). 7/94 to 6/12 - Professor, DMCS. 7/80 to 6/94 - Associate Professor, DMCS. 7/75 to 6/80 - Assistant Professor, Center for Coastal and Environmental Studies. 6/73 to 6/75 - Research Associate, Marine Sciences Center. 2/69 to 6/71 and l/73 to 6/73 – Research/Teaching Assistant, Geography Department. Visiting Positions 3/14 to 7/14 - Visiting Scholar, Dept. of Physics and Earth Science, University of Ferrara, Italy. 5/12 to 6/12 - Visiting Scholar, National Laboratory for Civil Engineering, Lisbon, Portugal. 2/06 to 5/06 and 3/99 to 7/99 - Visiting Scholar, Geography Institute, University of Greifswald, Germany. 2/05 to 5/05 - Visiting Scholar, Dept. of Territorial Studies and Planning, Polytechnic of Turin, Italy. 2/02 - Instructor (short course) Marine Institute (CTTMar), Universidade do Vale do Itajaí, Brazil. 5/98 to 8/98 - Visiting Scholar, Dept. of Geography, University of Western Australia. 5/95 to 7/95 - Visiting Scholar, Dept. of Geography and Soil Science, University of Amsterdam. 5/90 to 7/90 - Visiting Scholar, Geography Institute, University of Kiel, Germany. 9/81 to 12/81 - Visiting Scholar, Geography Dept., University of California, Los Angeles.
    [Show full text]
  • Short Curriculum Vitae
    Prof. Virginie K.E. DUVAT UMR LIENSs 7266 - Littoral, Environment and Societies La Rochelle University-CNRS (National Centre for Scientific Research) Institute of Littoral and Environment, 2 rue Olympe de Gouges- 17000 La Rochelle - France Email: [email protected] Tel Office: + 33 5 46 50 76 47 / Mobile: + 33 6 50 81 39 27 SHORT CURRICULUM VITAE 1. Professional experience and position Since 2006 Professor in Coastal Geography, La Rochelle University, La Rochelle, France 1999-2006 Assistant Professor in Coastal Geography, University of La Reunion (south-western Indian Ocean), France 2. Education 2005 Accreditation to supervise research (HDR in French) in Geography, University of Paris IV-Sorbonne, France - Title: Geomorphology and management of coral beaches in south-western Indian Ocean Islands (in French). 1996-1998 PhD in Coastal Geography, University of Reunion Island, France – Title: Coral beaches and islands of the Seychelles Islands: from physical processes to beach and island management (Mahe, Praslin, La Digue and Desroches islands) – award of the French Geographical Society (Paris) for my PhD thesis 3. Fields of expertise 3.1. Thematic areas: è Coastal geomorphology: 1950s-Present changes in the configuration of atoll reef islands and high mountainous islands’ beach-dune systems, including island and shoreline change assessment, impacts of and resilience to tropical cyclones (including marine inundation and river flooding, impacts on shoreline position and on coastal vegetation), interference of human activities with natural processes, island-reef ecosystem interactions – See for example: Duvat et al., 2016; Testut, Duvat et al., 2016; Duvat and Pillet, 2017; Duvat et al., 2017; Duvat et al., 2017; Collin, Duvat et al., 2021.
    [Show full text]
  • Improving the Prospect for Managed Retreat by Us Cities
    CAN IT HAPPEN HERE? IMPROVING THE PROSPECT FOR MANAGED RETREAT BY US CITIES Peter Plastrik & John Cleveland Innovation Network for Communities With funding from the Summit Foundation March 2019 Managed retreat is a strategy that most effectively eliminates risk.1 —Urban Land Institute Communities have generally focused on actions that address risks from current climate variability and recent extreme events . Fewer communities have focused on actions to address the anticipated scale of future change and emergent threats, such as reducing exposure by preventing building in high-risk locations or retreating from at-risk coastal areas. —"Fourth National Climate Assessment” (2018)2 1 Table of Contents Overview ............................................................................................................................................... 3 Insight #1 -- Many cities will not be able to avoid retreat, but they can choose what kind of retreat to have. ................................................................................................................................ 6 o Disaster-Driven Retreat ................................................................................................... 11 o Market-Driven Retreat ..................................................................................................... 12 o Plan-Driven Retreat ......................................................................................................... 18 Insight #2 -- There is an emerging roadmap for generating community
    [Show full text]
  • Managed Retreat Report Final
    Disclaimer: The information contained in this report is intended for general informational and demonstration purposes only. Resemblance to any actual locations, places and/or residences is not intentional. The provision of scenario profiles and the document itself does not constitute any advice, opinions or directives of the State of any kind. The information does not create any duties, obligations or requirements of the State and/or its contractors. The State and/or its contractors will not be liable for any damages, losses or causes of action of any nature arising from any use of these documents or information provided herein. ASSESSING THE FEASIBILITY AND IMPLICATIONS OF MANAGED RETREAT STRATEGIES FOR VULNERABLE COASTAL AREAS IN HAWAI‘I FINAL REPORT Commissioned by: State of Hawai‘i Department of Business Economic Development & Tourism Office of Planning, Coastal Zone Management Program Prepared by: Office of Planning, Coastal Zone Management Program with support from SSFM International, Inc. 501 Sumner Street, Suite 620 Honolulu, Hawai‘i 96817 February 2019 This report is a publication of the Hawai‘i State Office of Planning, Coastal Zone Management Program, pursuant to National Oceanic and Atmospheric Administration (NOAA) Award Nos. NA14NOS4190079 and NA15NOS4190105, funded in part by the Coastal Zone Management Act of 1972, as amended, administered by the Office of Ocean and Coastal Resource Management, National Ocean Service, National Oceanic and Atmospheric Administration, United States Department of Commerce. The views expressed herein are those of the author(s) and do not necessarily reflect the views of NOAA or any of its sub‐agencies. THIS PAGE INTENTIONALLY LEFT BLANK ACKNOWLEDGEMENTS This project engaged over 200 stakeholders, including decision makers, government agencies, private industries, researchers and community groups and private citizens involved in coastal zone management.
    [Show full text]
  • The Use of Site Suitability Analysis to Model Changes in Beach Geomorphology Due to Coastal Structures
    The Use of Site Suitability Analysis to Model Changes in Beach Geomorphology Due to Coastal Structures by Michael Erin Thibodaux A Thesis Presented to the Faculty of the USC Graduate School University of Southern California In Partial Fulfillment of the Requirements for the Degree Master of Science (Geographic Information Science and Technology) May 2018 Copyright © 2018 by Michael Thibodaux To my family Table of Contents List of Figures -------------------------------------------------------------------------------------------------vi List of Tables-------------------------------------------------------------------------------------------------- vii Acknowledgements ----------------------------------------------------------------------------------------- viii List of Abbreviations -----------------------------------------------------------------------------------------ix Abstract --------------------------------------------------------------------------------------------------------- x Chapter 1 Introduction ---------------------------------------------------------------------------------------- 1 1.1 The Study Area ----------------------------------------------------------------------------------------- 2 1.2 Motivation ----------------------------------------------------------------------------------------------- 5 1.3 The Sediment Cycle and Coastal Structures ------------------------------------------------------- 6 1.3.1 Longshore Drift ----------------------------------------------------------------------------------- 8 1.4 Nourishment
    [Show full text]
  • Communicating Managed Retreat in California
    water Article Communicating Managed Retreat in California Wendy Karen Bragg 1, Sara Tasse Gonzalez 1 , Ando Rabearisoa 1 and Amanda Daria Stoltz 2,* 1 Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA; [email protected] (W.K.B.); [email protected] (S.T.G.); [email protected] (A.R.) 2 Department of Environmental Studies, University of California, Santa Cruz, CA 95060, USA * Correspondence: [email protected]; Tel.: +1-301-356-3496 Abstract: California cities face growing threats from sea-level rise as increased frequency and severity of flooding and storms cause devastating erosion, infrastructure damage, and loss of property. Management plans are often designed to prevent or slow flooding with short-term, defensive strategies such as shoreline hardening, beach nourishment, and living shorelines. By contrast, managed retreat focuses on avoiding hazards and adapting to changing shorelines by relocating out of harm’s way. However, the term “managed retreat” can be controversial and has engendered heated debates, defensive protests, and steady resistance in some communities. Such responses have stymied inclusion of managed retreat in adaptation plans, and in some cases has resulted in complete abandonment of the policy review process. We examined the Local Coastal Program review process in seven California communities at imminent risk of sea-level rise and categorized each case as receptive or resistant to managed retreat. Three prominent themes distinguished the two groups: (1) inclusivity, timing, and consistency of communication, (2) property ownership, and (3) stakeholder reluctance to change. We examined use of terminology and communication strategies and provided recommendations to communicate “managed retreat” more effectively.
    [Show full text]