August 2020 Sutherland Group Newsletter
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Jervis Bay Territory Page 1 of 50 21-Jan-11 Species List for NRM Region (Blank), Jervis Bay Territory
Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations. -
Flora Fauna Assessment Lowres Part2
Figure 11: Threatened fauna species records within 10 kilometres of the study area SIMTA Moorebank Intermodal Terminal Facility—Flora and Fauna Assessment Hyder Consulting Pty Ltd-ABN 76 104 485 289 Page 65 3.3.2 Field Survey 3.3.2.1 Terrestrial Fauna Habitats Five broad terrestrial fauna habitat types were identified from the study area; remnant vegetation, riparian habitats, landscaped areas and cleared and disturbed areas (Figure 12). Flora and Fauna Assessment Page 66 Hyder Consulting Pty Ltd-ABN 76 104 485 289 Figure 12: Fauna habitat in the study area SIMTA Moorebank Intermodal Terminal Facility—Flora and Fauna Assessment Hyder Consulting Pty Ltd-ABN 76 104 485 289 Page 67 Remnant Vegetation Remnant Woodland Plate 27. Remnant woodland of rail corridor Plate 28. Remnant woodland of rail corridor Remnant woodland communities occur across the proposed rail corridor south of the SIMTA site (Plate 27, Plate 28). The low canopy is dominated by eucalypts and melaleucas, providing potential nesting, roosting and sheltering habitat for birds such as Black-faced Cuckoo-shrike (Coracina novaehollandiae) and Spotted Pardalote (Pardalotus punctatus). The dense shrub layer offers sheltering and foraging habitat for birds such as Red-browed Finch (Neochmia temporalis). Well-developed leaf litter and groundlayer vegetation offers sheltering and foraging habitat for reptiles such as Red-bellied Black Snake (Pseudechis porphyriacus) and Eastern brown Snake (Pseudonaja textilis). Micro-chiropteran bat species including Gould’s Wattled Bat (Chalinolobus gouldii) and the threatened Eastern Bent-wing Bat (Miniopterus schreibersii oceanensis) were recorded by Anabats placed in remnant woodland, suggesting these species may forage for invertebrates above, within and along the margins of woodland vegetation. -
Native Plants of Sydney Harbour National Park: Historical Records and Species Lists, and Their Value for Conservation Monitoring
Native plants of Sydney Harbour National Park: historical records and species lists, and their value for conservation monitoring Doug Benson National Herbarium of New South Wales, Royal Botanic Gardens, Mrs Macquaries Rd, Sydney 2000 AUSTRALIA [email protected] Abstract: Sydney Harbour National Park (lat 33° 53’S; long 151° 13’E), protects significant vegetation on the harbour foreshores close to Sydney City CBD; its floristic abundance and landscape beauty has been acknowledged since the writings of the First Fleet in 1788. Surprisingly, although historical plant collections were made as early as1802, and localised surveys have listed species for parts of the Park since the 1960s, a detailed survey of the flora of whole Park is still needed. This paper provides the first definitive list of the c.400 native flora species for Sydney Harbour National Park (total area 390 ha) showing occurrence on the seven terrestrial sub-regions or precincts (North Head, South Head, Dobroyd Head, Middle Head, Chowder Head, Bradleys Head and Nielsen Park). The list is based on historical species lists, records from the NSW Office of Environment and Heritage (formerly Dept of Environment, Climate Change and Water) Atlas, National Herbarium of New South Wales specimen details, and some additional fieldwork. 131 species have only been recorded from a single precinct site and many are not substantiated with a recent herbarium specimen (though there are historical specimens from the general area for many). Species reported in the sources but for which no current or historic specimen exists are listed separately as being of questionable/non-local status. -
Ecology of Pyrmont Peninsula 1788 - 2008
Transformations: Ecology of Pyrmont peninsula 1788 - 2008 John Broadbent Transformations: Ecology of Pyrmont peninsula 1788 - 2008 John Broadbent Sydney, 2010. Ecology of Pyrmont peninsula iii Executive summary City Council’s ‘Sustainable Sydney 2030’ initiative ‘is a vision for the sustainable development of the City for the next 20 years and beyond’. It has a largely anthropocentric basis, that is ‘viewing and interpreting everything in terms of human experience and values’(Macquarie Dictionary, 2005). The perspective taken here is that Council’s initiative, vital though it is, should be underpinned by an ecocentric ethic to succeed. This latter was defined by Aldo Leopold in 1949, 60 years ago, as ‘a philosophy that recognizes[sic] that the ecosphere, rather than any individual organism[notably humans] is the source and support of all life and as such advises a holistic and eco-centric approach to government, industry, and individual’(http://dictionary.babylon.com). Some relevant considerations are set out in Part 1: General Introduction. In this report, Pyrmont peninsula - that is the communities of Pyrmont and Ultimo – is considered as a microcosm of the City of Sydney, indeed of urban areas globally. An extensive series of early views of the peninsula are presented to help the reader better visualise this place as it was early in European settlement (Part 2: Early views of Pyrmont peninsula). The physical geography of Pyrmont peninsula has been transformed since European settlement, and Part 3: Physical geography of Pyrmont peninsula describes the geology, soils, topography, shoreline and drainage as they would most likely have appeared to the first Europeans to set foot there. -
Vegetation of the Holsworthy Military Area
893 Vegetation of the Holsworthy Military Area Kristine French, Belinda Pellow and Meredith Henderson French, K., Pellow, B. and Henderson, M1. (Janet Cosh Herbarium, Department of Biological Sciences, University of Wollongong, Wollongong, NSW 2522. 1Current address — Biodiversity Survey and Research Division, NSW National Parks and Wildlife Service, PO Box 1967, Hurstville, NSW 2220. Address for correspondence: Kristine French, Dept of Biological Sciences, University of Wollongong, Wollongong, NSW 2522. email: [email protected]) Vegetation of the Holsworthy Military Area. Cunninghamia 6(4): 893–940 Vegetation in the Holsworthy Military Area located 35 km south-west of Sydney (33°59'S 150°57'E) in the Campbelltown and Liverpool local government areas was surveyed and mapped. The data were analysed using multivariate techniques to identify significantly different floristic groups that identified distinct communities. Eight vegetation communities were identified, four on infertile sandstones and four on more fertile shales and alluviums. On more fertile soils, Melaleuca Thickets, Plateau Forest on Shale, Shale/Sandstone Transition Forests and Riparian Scrub were distinguished. On infertile soils, Gully Forest, Sandstone Woodland, Woodland/Heath Complex and Sedgelands were distinguished. We identified sets of species that characterise each community either because they are unique or because they contribute significantly to the separation of the vegetation community from other similar communities. The Holsworthy Military Area contains relatively undisturbed vegetation with low weed invasion. It is a good representation of continuous vegetation that occurs on the transition between the Woronora Plateau and the Cumberland Plain. The Plateau Forest on Shale is considered to be Cumberland Plains Woodland and together with the Shale/Sandstone Transition Forest, are endangered ecological communities under the NSW Threatened Species Conservation Act 1995. -
Cunninghamia : a Journal of Plant Ecology for Eastern Australia
Driscoll, Pollination ecology of Tetratheca juncea (Tremandraceae) 133 Pollination ecology of Tetratheca juncea (Tremandraceae): finding the pollinators Colin Driscoll PO Box 1047, Toronto NSW 2283, AUSTRALIA; email: [email protected] Abstract: Tetratheca juncea Smith (family Tremandraceae) is a terrestrial herbaceous plant now mainly found in the Lake Macquarie area of coastal NSW and listed as Vulnerable under Schedule 2 of the NSW Threatened Species Conservation Act 1995. This study carried out from July 2001 to June 2002 records the observation and identification of two species of native bee buzz-pollinating its flowers and describes a direct relationship between the first appearance of a pollinator and the commencement of seed set. Findings from this study with respect to the pollination ecology of Tetratheca juncea are: • There is a strong flowering period from September to January, though a number of flowers can be found on some plants across the geographic range of the plant in all months of the year; •Two species of native bee Lasioglossum convexum and Exoneura sp, were confirmed collecting pollen from the flowers by way of buzz pollination; • Fruiting only occurred in coincidence with flower pollination by these bees; • Flowering, seed set and seed release was a concurrent process while ever the bees were active; • The bees are polylectic and the sexual reproductive process in Tetratheca juncea appears to be pollinator-limited. Cunninghamia (2003) 8(1): 133–140 Introduction Table 1. Distribution of reports of Tetratheca juncea across vegetation map units in the Lower Hunter and Central Coast. Tetratheca juncea Smith (Tremandraceae) is a terrestrial herbaceous plant endemic to NSW. -
Fire Responses of Bushland Plants After the January 1994 Wildfires in Northern Sydney
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Hochschulschriftenserver - Universität Frankfurt am Main Fire responses of bushland plants after the January 1994 wildfires in northern Sydney P.J.Kubiak P.O. Box 439, Ryde, NSW 1680 AUSTRALIA Abstract: In early January 1994 wildfires burned areas of bushland in northern Sydney (lat 33° 45’ S, long 151° 05’ E) in coastal south-eastern Australia. This paper reports observations of the fire responses for 828 species of bushland plants – 576 native species and 252 exotic species in the Lane Cove River and Narrabeen Lagoon catchment areas. Information recorded includes whether a species was killed by fire or resprouted post-fire, when seedlings were first observed following fire, and the times of first flowering and first fruiting (or spore production) after the fires. The estimated peaks of post-fire flowering or fruiting for a few species are given. It was not practicable to record data in all categories for all of the 828 species due to the logistical challenges involved in recording data across a large area of bushland, over a number of years. The data presented add to the growing body of knowledge on plant fire responses and will assist the management and conservation of bushland in the study areas, as well as the broader Sydney region. Cunninghamia (2009) 11(1): 131–165 Introduction Following a fire, the time taken by plants to flower after germination from seed, is known as the ‘primary juvenile Fire plays an important role in the shaping of Australia’s period’. -
Advisory List of Rare Or Threatened Plants in Victoria - 2014
Advisory list of rare or threatened plants in Victoria - 2014 Cover image: Tall Astelia, Powelltown area (courtesy of Elizabeth James) © The State of Victoria Department of Environment and Primary Industries 2014 This work is licensed under a Creative Commons Attribution 3.0 Australia licence. You are free to re-use the work under that licence, on the condition that you credit the State of Victoria as author. The licence does not apply to any images, photographs or branding, including the Victorian Coat of Arms, the Victorian Government logo and the Department of Environment and Primary Industries logo. To view a copy of this licence, visit http://creativecommons.org/licenses/by/3.0/au/deed.en ISBN 978-1-74146-313-2 (pdf) Accessibility If you would like to receive this publication in an alternative format, please telephone the DEPI Customer Service Centre on 136186, email [email protected] or via the National Relay Service on 133 677 www.relayservice.com.au . This document is also available on the internet at www.depi.vic.gov.au Disclaimer This publication may be of assistance to you but the State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence which may arise from you relying on any information in this publication. Introduction Purpose of the DEPI advisory lists The Advisory Lists are maintained by the Department of Environment and Primary Industries and are based on technical information and advice obtained from a range of experts. -
Castlereagh Biodiversity and Natural Heritage Conservation Master Plan
Castlereagh Biodiversity and Natural Heritage Conservation Master Plan February 2011 TCM SERVICES Copyright text © Penrith Lakes Development Corporation Pty Ltd 2011. Copyright illustrations by C. Lawrie Penrith Lakes Development Corporation Pty Ltd 2011. Copyright photographs remains with the contributors. Disclaimer The information contained in this document remains confidential as between Total Catchment Management Services (the Consultant) and Penrith Lakes Development Corporation (PLDC) (the Client). It has been prepared at the specific request of PLDC for internal design purposes only, acknowledging that there is no liability whatsoever arising from the reliance or use of information or advice. Notwithstanding the above, to the maximum extent permitted by law, the Consultant will not be liable to the Client or any other person (whether under the law of contract, tort, statute or otherwise) for any loss, claim, demand, cost, expense or damage arising in any way out of or in connection with, or as a result of reliance by any person on the information contained in this document (or due to any inaccuracy, error or omission in such information); or any other written or oral communication in respect of the historical or intended business dealings between the Consultant and the Client. Also notwithstanding all of the above, the Consultant’s maximum liability to the Client is limited to the aggregate amount of fees payable for services under the Terms and Conditions between the Consultant and the Client. Any information or advice provided in this document is provided having regard to the prevailing environmental conditions at the time of giving that information or advice. The relevance and accuracy of that information or advice may be materially affected by a change in the environmental conditions after the date that information or advice was provided. -
Pollen in the Diet of Australian Mammals Ian Gerard Van Tets University of Wollongong
University of Wollongong Research Online University of Wollongong Thesis Collection University of Wollongong Thesis Collections 1996 Pollen in the diet of Australian mammals Ian Gerard Van Tets University of Wollongong Recommended Citation Van Tets, Ian Gerard, Pollen in the diet of Australian mammals, Doctor of Philosophy thesis, Department of Biological Sciences, University of Wollongong, 1996. http://ro.uow.edu.au/theses/1051 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] POLLEN IN THE DIET OF AUSTRALIAN MAMMALS A thesis submitted in fulfilment of the requirements for the award of the degree Doctor of Philosophy from UNIVERSITY OF WOLLONGONG by Ian Gerard van Tets, B. Sc. Hons. (Monash) Department of Biological Sciences 1996 DECLARATION This thesis is submitted in accordance with the regulations of the university of Wollongong in fulfilment of the requirements of the degree of Doctor of Philosophy. The work described in this thesis was carried out by me and has not been submitted to any other University or Institution. Ian Gerard van Tets —<& May 1996 1 ABSTRACT Mammals are frequent visitors to flowers in some Australian plant communities. The energy rich nectar is usually considered to be the food sought, because pollen is thought to be of low digestibility. However, earlier studies have reported finding pollen grains in large quantities in the faeces of some mammals and have speculated on the potential value of pollen as a protein source for these mammals. The aim of this study was to investigate the importance of pollen in the diet of the small non-flying mammals that are known to visit flowers in south-eastern Australia. -
Cunninghamia Date of Publication: 17/6/2013
Cunninghamia Date of Publication: 17/6/2013. A journal of plant ecology for eastern Australia ISSN 0727- 9620 (print) • ISSN 2200 - 405X (Online) Revisiting Tony Price’s (1979) account of the native vegetation of Duck River and Rookwood Cemetery, western Sydney Alison Hewitt Postgraduate student, School of Science and Health, University of Western Sydney, Hawkesbury campus, Richmond NSW 2753, AUSTRALIA email: [email protected] Abstract: The Duck River Reserve and Rookwood Cemetery in the highly urbanised Auburn district of western Sydney hold small but botanically valuable stands of remnant native vegetation. In the late 1970s, local resident G.A. (Tony) Price, recognised the value of these remnants, both for the species they held and the clues they could give us to the past, and spent three years surveying and collecting plants at these sites. Price recorded the species present and their abundance, and described the habitats in which they were found. He observed the ecology of plant interactions, moisture, shading and fire response, interpolating them into a picture of the landscape and vegetation of the district prior to European settlement. At a time when field botany was inaccessible to many, and the focus of conservation was largely on the broader scale, Price’s local scale work at these sites was unusual and important. Though never formally published, Price’s 1979 account ‘The Vegetation of Duck River and Rookwood Cemetery, Auburn’ has been cited in all subsequent work of consequence for the area. This paper presents and reviews Price’s work and discusses his observations in relation to the current vegetation of these areas. -
The Holocene History of the Vegetation and the Environment of Jibbon Swamp, Royal National Park, New South Wales
CORE Metadata, citation and similar papers at core.ac.uk Provided by The University of Sydney: Sydney eScholarship Journals online The Holocene History of the Vegetation and the Environment of Jibbon Swamp, Royal National Park, New South Wales JANE M. CHALSON1 AND HELENE A. MARTIN2 146 Kilmarnock St. Engadine N.S.W. 2233 2 School of Biological, Environmental and Earth Sciences, University of New South Wales, Sydney Australia 2052 (h.martin@unsw,edu.au) Published on 3 September 2012 at http://escholarship.library.usyd.edu.au/journals/index.php/LIN Chalson, J.M. and Martin, H.A. (2012). The Holocene history of the vegetation and the environment of Jibbon Swamp, Royal National Park, New South Wales. Proceedings of the Linnean Society of New South Wales 134, B65-B91. Jibbon Swamp, in the north eastern part of Royal National Park, yielded a sedimentary history of 8,000 years. The present vegetation was mapped and the modern pollen deposition studied in order to assist interpretation. The palynology infers little change in the vegetation, other than a shifting mosaic of sclerophyllous communities similar to those seen in the area today. The nature of the accumulating sediments and their algal and fungal spore content can be interpreted to refl ect the hydrological history of the swamp. An initial establishment period of 8,000 to 5,500 year ago was followed by a permanent pool of water too deep for the sedgeland swamp vegetation, from 5,500 to 2,400 years ago and then a vegetated swamp that dried out periodically, from 2,400 years ago to present, as it does today.