Pollen in the Diet of Australian Mammals Ian Gerard Van Tets University of Wollongong

Total Page:16

File Type:pdf, Size:1020Kb

Pollen in the Diet of Australian Mammals Ian Gerard Van Tets University of Wollongong University of Wollongong Research Online University of Wollongong Thesis Collection University of Wollongong Thesis Collections 1996 Pollen in the diet of Australian mammals Ian Gerard Van Tets University of Wollongong Recommended Citation Van Tets, Ian Gerard, Pollen in the diet of Australian mammals, Doctor of Philosophy thesis, Department of Biological Sciences, University of Wollongong, 1996. http://ro.uow.edu.au/theses/1051 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] POLLEN IN THE DIET OF AUSTRALIAN MAMMALS A thesis submitted in fulfilment of the requirements for the award of the degree Doctor of Philosophy from UNIVERSITY OF WOLLONGONG by Ian Gerard van Tets, B. Sc. Hons. (Monash) Department of Biological Sciences 1996 DECLARATION This thesis is submitted in accordance with the regulations of the university of Wollongong in fulfilment of the requirements of the degree of Doctor of Philosophy. The work described in this thesis was carried out by me and has not been submitted to any other University or Institution. Ian Gerard van Tets —<& May 1996 1 ABSTRACT Mammals are frequent visitors to flowers in some Australian plant communities. The energy rich nectar is usually considered to be the food sought, because pollen is thought to be of low digestibility. However, earlier studies have reported finding pollen grains in large quantities in the faeces of some mammals and have speculated on the potential value of pollen as a protein source for these mammals. The aim of this study was to investigate the importance of pollen in the diet of the small non-flying mammals that are known to visit flowers in south-eastern Australia. To achieve this aim, the study was divided into two parts. The first part was a field study, in which the proportion of pollen relative to other food items in the faeces of four non-flying mammal species was determined and their ability to extract the protoplasts from Banksia pollen grains was compared. The species studied were the Eastern Pygmy Possum, Cercartetus nanus, the Sugar Glider, Petaurus breviceps, the Brown Marsupial Mouse, Antechinus stuartii, and the Bush Rat, Rattusfuscipes. The second part involved laboratory feeding trials to determine the ability of one of these species to meet its nitrogen requirements on pollen. The species chosen for this section was C. nanus. The density of Banksia pollen produced in the study sites was also determined. Banksia pollen was produced in the sites from January to October. The highest pollen densities were recorded in July and August, when over 2 kg of pollen was produced per hectare. In the field study, faeces were taken from trapped individuals from each species over a 16-month period. The faecal samples were examined microscopically to determine the proportion of pollen relative to other dietary items in the faeces and the proportion of pollen grains that had lost their protoplast as they passed through the mammal's digestive tract. The proportion of pollen in the faeces varied between species and between times of the year. Banksia pollen was usually absent from the faeces of all four species between November and February, even though this included the main flowering period for Banksia serrata. It was, however, a major component of the faeces of C. nanus and P. breviceps for the remainder of the year. Banksia pollen occasionally composed a large proportion of A. stuartii faeces during this period, but it always composed less than 1% of the faeces of R. fuscipes on average. Other major components of the mammals' faeces included invertebrates, plant material other than pollen and fungal spores. 11 All four species had extracted the protoplast from a large proportion of the Banksia pollen grains. The percentage of empty Banksia pollen grains in the faeces of the four mammals were 66 % for Petaurus breviceps, 65 % for Cercartetus nanus, 55 % for Rattus fuscipes, and 37 % for Antechinus stuartii. The mean percentage of empty grains in the faeces of A. stuartii was significantly lower than it was in the other faecal samples (P<0.05). The mean proportion of empty grains did not differ significantly between the other three species. As the four species tested were all from different families and had quite different diets, the ability to extract the protoplast from Banksia pollen is probably widespread among small mammals and not restricted to flower-feeding specialists. In the laboratory feeding trials, C. nanus were fed diets in which nitrogen was provided either by Eucalyptus pollen or by mealworms. The apparent digestibility of the nitrogen (ADN) from both sources was high. The mean ADN was 76% for the pollen and 73 % for the mealworms. C. nanus was able to maintain nitrogen balance on both food sources and its Maintenance Nitrogen Requirements (MNR) on pollen were very low. The truly digestible MNR of C. nanus on pollen was 43 mg N.kg"°'75.day"1 compared to 127 mg N.kg"0'7 .day'1 on mealworms. This difference appears to be related to the composition of the mealworm and pollen protein. The biological value of the pollen nitrogen was exceptionally high for a plant protein at 73%, whereas the biological value of the mealworm nitrogen was only 43%, suggesting that the amino acid composition of the pollen corresponded more closely with the requirements of C. nanus than the composition of the mealworms protein did. The truly digestible MNR of P. breviceps fed Eucalyptus pollen was also very low (tdMNR = 73 mg N.kg"a75.day~\ Smith and Green 1987) and Eucalyptus pollen nitrogen had a high biological value for that species as well (66%, Smith and Green 1987). Assuming the MNR of these two species on Banksia pollen were similar to the values for Eucalyptus pollen, an individual 25 g C. nanus would require the complete Banksia pollen production of less than 1 ha from May to September to meet its nitrogen requirements on pollen alone. For July and August it required the pollen production of only 0.3 ha. During this period, free-living C. nanus in Barren Grounds Nature Reserve should be able to meet their nitrogen requirements on Banksia pollen alone. Petaurus breviceps has a home range of 3.5 ha (Quinn et al. 1992). Only in July and August, was the area required by a 150 g P. breviceps to meet its maintenance nitrogen requirements on Banksia pollen less than this and, even then, it required the total pollen production of over 2 ha to do so. It is unlikely that P. breviceps could meet its MNR on Banksia pollen alone. ill However, it is still capable of meeting a large percentage of its nitrogen needs on Banksia pollen, particularly in winter when the pollen density is high. Based on the MNR values for C. nanus on the mealworm diet, free-living C. nanus should also be to meet their nitrogen needs on insects. When pollen densities are low, insects may be a valuable source of protein for this species. A wide range of mammals, including non-specialists, are able to extract the protoplast from Banksia pollen. The biological value of Eucalyptus, and presumably Banksia, pollen is exceptionally high for a plant protein source and the maintenance nitrogen requirements of both C. nanus and P. breviceps feeding on pollen are among the lowest recorded for any mammal. When Banksia and Eucalyptus pollen are available in high densities, they are likely to be important sources of protein for the small flower-feeding mammals that are found in Australia. IV ACKNOWLEDGEMENTS I would like to express my gratitude to all the people who have assisted me with this project. So many people have helped in various ways that it is impossible to list them all. However, I would particularly like to than the following people: * Professor R. J. Whelan and Associate Professor A. J. Hulbert, my supervisors, whose advice and encouragement were invaluable. * Mrs C. J. van Tets, my wife, who assisted with the field and the laboratory work, proof­ read this thesis and typed the appendices. * Dr. K. Withers who assisted me with the first Kjeldahl analysis and gave me most of the relevant equipment and glassware. * Mrs D. Tronson from the University of Western Sydney who measured the components of nectar taken from each of the four Banksia species found in Barren Grounds. * Mr. N. Dunningham who made the metabolism cages in return for glass tubing. * Ms L. MacAulay who provided transport and assistance on my first field trip. * Miss S. A. Szarka who assisted me on several occasions with the maintenance of the captive C. nanus and the conduct of the feeding trials. I was supported financially from 1992 to 1995 by an Australian Post-Graduate Research Award scholarship and received an interest-free loan from the Pieus Legaat of J. H. van den Ende and S. A. Noodt to help with my research. A Joyce W. Vickery Grant from the Linnean society of New South Wales was used to purchase the chemicals for the Kjeldahl analysis. The mammals were trapped, kept and released subject to the conditions of National Parks and Wildlife permit no. B1152 and University of Wollongong animal experimentation ethics permit no. AE93/12. TABLE OF CONTENTS ABSTRACT i ACKNOWLEDGEMENTS iv TABLE OF CONTENTS v LIST OF TABLES viii LIST OF FIGURES x LIST OF PLATES xi TABLE OF CONTENTS 1. GENERAL INTRODUCTION 1.1 Pollination and food rewards for pollinators 1 1.2 Pollen as a dietary item 1 1.3 Use of pollen by insects 2' 1.4 Use of pollen by vertebrates 3 1.5 Mammal pollination 4 1.6 Protoplast extraction by mammals 5 1.7 Mechanisms for protoplast extraction by mammals 6 1.8 Measurement of nitrogen use by pollen-feeding mammals 7 1.9 Nitrogen balance and maintenance nitrogen requirements 7 vi 1.10 Apparent digestibility and biological value 8 1.11 Barren Grounds Nature Reserve: potential study site 11 1.12 Aims and obj ectives 1 j 1.13 Thesis outline 18 2.
Recommended publications
  • The Bundanon Trust Properties Are Mapped by the NSW National Vegetation Survey As Supporting Over 14 Different Vegetation Communities
    4 FLORA The Bundanon Trust properties are mapped by the NSW National Vegetation Survey as supporting over 14 different vegetation communities. The Living Land- scape project incorporates many of these communities. Image: Bloodwood trees in blossom at Riversdale, February 2015 VEGETATION COMMUNITIES SUMMARY Groups of native plants that grow in association with each other on a specific soil type, being described as distinct “floristic assemblages”. These floristic assemblages provide an equally distinctive suite of native fauna species with their preferred habitat; when combined the flora, fauna and soil are considered to be an Ecological Community. Floristic assemblages are the framework around which Ecological Communities are defined. These assemblages are described with reference to the dominant plant species, usually trees, and the other vegetation strata which might include mid-storey, shrub, vine, groundcover and forb layers. Comprehensive floristic descriptions might also include fungi, mosses, and lichens; however, these are not presently considered in the “scientific determinations” or legal descriptions of the Ecological Communities made by the Department of Environment and Climate Change Scientific Committee. The floristic assemblages were mapped on site by the NSW Department of Environment and Conservation and the NSW Department of Natural Resources. This report, Native Vegetation of Southeast NSW (NVSNSW), was based on the South Coast - Illawarra Vegetation Integration (SCIVI) Project, which aimed to integrate many previous vegetation classification and mapping works to produce a single regional classification and map plus information on regional conservation status of vegetation types. Survey work for the Land Management Plan generally supported the overall pattern of distribution within study area of the community distribution as mapped by NVSNSW.
    [Show full text]
  • Native Orchid Society South Australia
    Journal of the Native Orchid Society of South Australia Inc Print Post Approved .Volume 36 Nº 7 PP 543662/00018 August 2012 NATIVE ORCHID SOCIETY OF SOUTH AUSTRALIA PO BOX 565 UNLEY SA 5061 www.nossa.org.au. The Native Orchid Society of South Australia promotes the conservation of orchids through the preservation of natural habitat and through cultivation. Except with the documented official representation of the management committee, no person may represent the Society on any matter. All native orchids are protected in the wild; their collection without written Government permit is illegal. PRESIDENT SECRETARY Geoffrey Borg: Robert Lawrence ph 82948014, or 0488 356 720 Email. [email protected] Email: [email protected] VICE PRESIDENT Kris Kopicki COMMITTEE Bill Dear Bob Bates Cathy Houston Pamela Monk EDITOR TREASURER David Hirst Marj Sheppard 14 Beaverdale Avenue Telephone 8344 2124 Windsor Gardens SA 5087 mob. 0419 189 118 Telephone 8261 7998 Email: [email protected] LIFE MEMBERS Mr R. Hargreaves† Mr. L. Nesbitt Mr H. Goldsack† Mr G. Carne Mr R. Robjohns† Mr R Bates Mr J. Simmons† Mr R Shooter Mr D. Wells† Mr W Dear Mrs C Houston Conservation Officer: Cathy Houston telephone 8356 7356; Email: [email protected] Field Trips Coordinator: Wendy Hudson. Ph: 8251 2762, Email: [email protected] Trading Table: Judy Penney Show Marshall: B Jensen Registrar of Judges: Les Nesbitt Tuber bank Coordinator: Jane Higgs ph. 8558 6247; email: [email protected] New Members Coordinator: Vacant PATRON Mr L. Nesbitt The Native Orchid Society of South Australia, while taking all due care, take no responsibility for loss or damage to any plants whether at shows, meetings or exhibits.
    [Show full text]
  • Commonwealth Listing Advice on Alpine Sphagnum Bogs And
    Advice to the Minister for the Environment, Heritage and the Arts from the Threatened Species Scientific Committee (the Committee) on Amendments to the List of Ecological Communities under the Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) 1. Summary of conservation assessment by the Committee This advice follows the assessment of information provided by a nomination to list the Alpine Bog Community as a threatened ecological community. The nomination was made available for public exhibition and comment for a period of two months. The Committee had regard to all public and expert comments that were relevant to the survival of the ecological community. The Committee judges that the ecological community has been demonstrated to have met sufficient elements of: • Criterion 2 to make it eligible for listing as endangered; • Criterion 3 to make it eligible for listing as endangered; and • Criterion 4 to make it eligible for listing as endangered. 2. Name of the ecological community A nomination was received for the Alpine Bog Community. Alpine bogs are commonly found in the vicinity of alpine fens, and have been identified as being dependent on these (VSAC, 1991a). In order to make identification easier in the field, to recognise the importance of Sphagnum species to alpine bogs, and to acknowledge the interdependency of alpine bogs, fens and the natural drainage lines that connect them, the Committee recommends that the name of the ecological community be changed to the “Alpine Sphagnum Bogs and Associated Fens” ecological community. 3. Description The Alpine Sphagnum Bogs and Associated Fens ecological community generally has sharp boundaries and is easily delineated from other alpine vegetation communities.
    [Show full text]
  • Method to Estimate Dry-Kiln Schedules and Species Groupings: Tropical and Temperate Hardwoods
    United States Department of Agriculture Method to Estimate Forest Service Forest Dry-Kiln Schedules Products Laboratory Research and Species Groupings Paper FPL–RP–548 Tropical and Temperate Hardwoods William T. Simpson Abstract Contents Dry-kiln schedules have been developed for many wood Page species. However, one problem is that many, especially tropical species, have no recommended schedule. Another Introduction................................................................1 problem in drying tropical species is the lack of a way to Estimation of Kiln Schedules.........................................1 group them when it is impractical to fill a kiln with a single Background .............................................................1 species. This report investigates the possibility of estimating kiln schedules and grouping species for drying using basic Related Research...................................................1 specific gravity as the primary variable for prediction and grouping. In this study, kiln schedules were estimated by Current Kiln Schedules ..........................................1 establishing least squares relationships between schedule Method of Schedule Estimation...................................2 parameters and basic specific gravity. These relationships were then applied to estimate schedules for 3,237 species Estimation of Initial Conditions ..............................2 from Africa, Asia and Oceana, and Latin America. Nine drying groups were established, based on intervals of specific Estimation
    [Show full text]
  • PUBLISHER S Candolle Herbarium
    Guide ERBARIUM H Candolle Herbarium Pamela Burns-Balogh ANDOLLE C Jardin Botanique, Geneva AIDC PUBLISHERP U R L 1 5H E R S S BRILLB RI LL Candolle Herbarium Jardin Botanique, Geneva Pamela Burns-Balogh Guide to the microform collection IDC number 800/2 M IDC1993 Compiler's Note The microfiche address, e.g. 120/13, refers to the fiche number and secondly to the individual photograph on each fiche arranged from left to right and from the top to the bottom row. Pamela Burns-Balogh Publisher's Note The microfiche publication of the Candolle Herbarium serves a dual purpose: the unique original plants are preserved for the future, and copies can be made available easily and cheaply for distribution to scholars and scientific institutes all over the world. The complete collection is available on 2842 microfiche (positive silver halide). The order number is 800/2. For prices of the complete collection or individual parts, please write to IDC Microform Publishers, P.O. Box 11205, 2301 EE Leiden, The Netherlands. THE DECANDOLLEPRODROMI HERBARIUM ALPHABETICAL INDEX Taxon Fiche Taxon Fiche Number Number -A- Acacia floribunda 421/2-3 Acacia glauca 424/14-15 Abatia sp. 213/18 Acacia guadalupensis 423/23 Abelia triflora 679/4 Acacia guianensis 422/5 Ablania guianensis 218/5 Acacia guilandinae 424/4 Abronia arenaria 2215/6-7 Acacia gummifera 421/15 Abroniamellifera 2215/5 Acacia haematomma 421/23 Abronia umbellata 221.5/3-4 Acacia haematoxylon 423/11 Abrotanella emarginata 1035/2 Acaciahastulata 418/5 Abrus precatorius 403/14 Acacia hebeclada 423/2-3 Acacia abietina 420/16 Acacia heterophylla 419/17-19 Acacia acanthocarpa 423/16-17 Acaciahispidissima 421/22 Acacia alata 418/3 Acacia hispidula 419/2 Acacia albida 422/17 Acacia horrida 422/18-20 Acacia amara 425/11 Acacia in....? 423/24 Acacia amoena 419/20 Acacia intertexta 421/9 Acacia anceps 419/5 Acacia julibross.
    [Show full text]
  • TML Propagation Protocols
    PROPAGATION PROTOCOLS This document is intended as a guide for Tamborine Mountain Landcare members who wish to assist our regeneration projects by growing some of the plants needed. It is a work in progress so if you have anything to add to the protocols – for example a different but successful way of propagating and growing a particular plant – then please give it to Julie Lake so she can add it to the document. The idea is that our shared knowledge and experience can become a valuable part of TML's intellectual property as well as a useful source of knowledge for members. As there are many hundreds of plants native to Tamborine Mountain, the protocols list will take a long time to complete, with growing information for each plant added alphabetically as time permits. While the list is being compiled by those members with competence in this field, any TML member with a query about propagating a particular plant can post it on the website for other me mb e r s to answer. To date, only protocols for trees and shrubs have been compiled. Vines and ferns will be added later. Fruiting times given are usual for the species but many rainforest plants flower and fruit opportunistically, according to weather and other conditions unknown to us, thus fruit can be produced at any time of year. Finally, if anyone would like a copy of the protocols, contact Julie on [email protected] and she’ll send you one. ………………….. Growing from seed This is the best method for most plants destined for regeneration projects for it is usually fast, easy and ensures genetic diversity in the regenerated landscape.
    [Show full text]
  • Conospermum Hookeri Hookeri (Tasmanian Smokebush)
    Listing Statement for Conospermum hookeri (tasmanian smokebush) Conospermum hookeri tasmanian smokebush FAMILY: Proteaceae T A S M A N I A N T H R E A T E N E D S P E C I E S L I S T I N G S T A T E M E N T GROUP: Dicotyledon Photos: Naomi Lawrence Scientific name: Conospermum hookeri (Meisn.) E.M.Benn., Fl. Australia 16: 485 (1995) (Meisn.) Common name: tasmanian smokebush Name history: previously known in Tasmania as Conospermum taxifolium. Group: vascular plant, dicotyledon, family Proteaceae Status: Threatened Species Protection Act 1995: vulnerable Environment Protection and Biodiversity Conservation Act 1999: Vulnerable Distribution: Biogeographic origin: endemic to Tasmania Tasmanian NRM regions: North, South Tasmanian IBRA Bioregions (V6): South East, Northern Midlands, Ben Lomond, Flinders Figure 1. Distribution of Conospermum hookeri Plate 1. Conospermum hookeri in flower. showing IBRA (V6) bioregions 1 Threatened Species Section – Department of Primary Industries, Parks, Water and Environment Listing Statement for Conospermum hookeri (tasmanian smokebush) Conospermum hookeri may be limited by low seed SUMMARY: Conospermum hookeri (tasmanian production rates. Other species of Conospermum smokebush) is a small shrub in the Proteaceae are known to have low reproductive outputs. family. It is endemic to Tasmania, occurring Approximately 50% of flowers of Conospermum along the East Coast from Bruny Island to species form fruit though only a small Cape Barren Island in 10 locations, two proportion of these produce viable seed presumed locally extinct and another of (Morrison et al. 1994). uncertain status. The number of subpopulations is estimated to be 40, with five Conospermum hookeri makes a highly significant presumed locally extinct or of uncertain status.
    [Show full text]
  • Proteaceae), with a Key to the Species of Phaeophleospora
    Fungal Diversity Phaeophleospora faureae comb. novo associated with leaf spots on Faurea saligna (Proteaceae), with a key to the species of Phaeophleospora Joanne E. Taylor* and Pedro W. Crous Department of Plant Pathology, University of Stellenbosch, Private Bag Xl, Stellenbosch 7602, South Africa; * e-mail: [email protected] Taylor, J.E. and erous, P.W. (1999). Phaeophleosporafaureae comb. novo associated with leaf spots on Faurea saligna (Proteaceae), with a key to the species of Phaeophleospora. Fungal Diversity 3: 153-158. During studies of the fungal pathogens occurring on Proteaceae in South Africa, the type specimen of Stilbospora faureae was examined. This fungus was found to be a species of Phaeophleospora, and is transferred to this genus in the present paper. A key to the species in Phaeophleospora is also given. Key words: pathogen, Phaeophleospora, Proteaceae, Stilbospora Introduction Phaeophleospora was considered to be a nomen dubium (Sutton, 1977), until Crous et al. (1997) resurrected it as an earlier name for the coelomycete genus Kirramyces 1. Walker, B. Sutton and 1. Pascoe. There are currently 11 species in Phaeophleospora (Walker et al., 1992; Sutton, 1993; Palm, 1996; Wingfield et al., 1996; Wu et al., 1996; Crous et al., 1997; Crous, 1998; Crous and Palm, 1999) and three of these occur on Proteaceae hosts. Phaeophleospora is associated with leaf spots and is characterised by sub• epidermal, dark-walled pycnidia, which become open and cup-shaped at maturity (Crous et al., 1997). Under conditions of high humidity, these conidiomata exude masses of conidia in a long, brown to black cirrus (Crous et al., 1997).
    [Show full text]
  • Vegetation Benchmarks Rainforest and Related Scrub
    Vegetation Benchmarks Rainforest and related scrub Eucryphia lucida Vegetation Condition Benchmarks version 1 Rainforest and Related Scrub RPW Athrotaxis cupressoides open woodland: Sphagnum peatland facies Community Description: Athrotaxis cupressoides (5–8 m) forms small woodland patches or appears as copses and scattered small trees. On the Central Plateau (and other dolerite areas such as Mount Field), broad poorly– drained valleys and small glacial depressions may contain scattered A. cupressoides trees and copses over Sphagnum cristatum bogs. In the treeless gaps, Sphagnum cristatum is usually overgrown by a combination of any of Richea scoparia, R. gunnii, Baloskion australe, Epacris gunnii and Gleichenia alpina. This is one of three benchmarks available for assessing the condition of RPW. This is the appropriate benchmark to use in assessing the condition of the Sphagnum facies of the listed Athrotaxis cupressoides open woodland community (Schedule 3A, Nature Conservation Act 2002). Benchmarks: Length Component Cover % Height (m) DBH (cm) #/ha (m)/0.1 ha Canopy 10% - - - Large Trees - 6 20 5 Organic Litter 10% - Logs ≥ 10 - 2 Large Logs ≥ 10 Recruitment Continuous Understorey Life Forms LF code # Spp Cover % Immature tree IT 1 1 Medium shrub/small shrub S 3 30 Medium sedge/rush/sagg/lily MSR 2 10 Ground fern GF 1 1 Mosses and Lichens ML 1 70 Total 5 8 Last reviewed – 2 November 2016 Tasmanian Vegetation Monitoring and Mapping Program Department of Primary Industries, Parks, Water and Environment http://www.dpipwe.tas.gov.au/tasveg RPW Athrotaxis cupressoides open woodland: Sphagnum facies Species lists: Canopy Tree Species Common Name Notes Athrotaxis cupressoides pencil pine Present as a sparse canopy Typical Understorey Species * Common Name LF Code Epacris gunnii coral heath S Richea scoparia scoparia S Richea gunnii bog candleheath S Astelia alpina pineapple grass MSR Baloskion australe southern cordrush MSR Gleichenia alpina dwarf coralfern GF Sphagnum cristatum sphagnum ML *This list is provided as a guide only.
    [Show full text]
  • March Meeting and Excursion What’S Inside: Page for Our First Excursion This Year We Will Meet at 9.30Am
    WALLUM AND COASTAL HEATHLAND STUDY GROUP NEWSLETTER No 46 February 2020 ISSN 1038-7889 Leader: Barbara Henderson 36 Railway Terrace MOORE QLD 4306 Ph: 07 5424 7073 Mob: 0438 989 108 Editor: Allan Carr PO Box 541 BRIBIE ISLAND QLD 4507 Ph: 07 3408 7234 Mob: 0424 322 242 [email protected] All photos by Allan Carr unless otherwise indicated March Meeting and Excursion What’s inside: page For our first excursion this year we will meet at 9.30am Sunday, 15 March at Mill Park in Beerwah (UBD SC Map Barbara’s Ramble 2 106:C19). Then we will walk at Beerwah Scientific Area No 1, Feature Plant 3 Mawson Road (UBD SC Map 116:N5). For your Diary 3 The Department of Environment and Science oversees a large Bonni’s Wallum Garden plantation area between Caboolture and Caloundra, and to the west. Due to the foresight of some far-sighted foresters back in at Nerang 4 the 1930s and 1940s, sections of native forest were set aside as More on Bonni’s Garden 5 the pine forests were established. After the Forestry Act of 1959 Vale Betty Sykes 5 was passed, there was provision for such sections to become Quote 6 "Scientific Areas", to be used for scientific purposes, other than Wallum Hotspot 6 pine plantations. Reminders 6 Being the first such area officially declared in Queensland after 1959, the Beerwah section was therefore named "Beerwah State Forest Scientific Area No. 1". Since then it has been gazetted as a National Park. It is divided into blocks of varying size, which are burnt at different intervals and times according to season and weather.
    [Show full text]
  • Jervis Bay Territory Page 1 of 50 21-Jan-11 Species List for NRM Region (Blank), Jervis Bay Territory
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Pollen Analysis of Samples from the Cooperage Archaeological Site, Darling Square West
    Appendix 3: Pollen Report _____________________________________________________________________________________________ Casey & Lowe Archaeological Investigation The Cooperage, South West Plot, Darling Square CHANGES IN THE LANDSCAPE OF DARLING HARBOUR: POLLEN ANALYSIS OF SAMPLES FROM THE COOPERAGE ARCHAEOLOGICAL SITE, DARLING SQUARE WEST, HAYMARKET Mike Macphail View of estuarine deposits in Area A, Test Trench 7, Cooperage archaeological site Darling Square West (photograph by Sandra Kuiters, Casey & Lowe Pty. Ltd.) Report prepared 2 April 2015 for Casey & Lowe Heritage Consultants Pty. Ltd. (Leichardt) Consultant Palynological Services, 13 Walu Place, Aranda. A.C.T. 2614 Ph. 02-6251-1631/0432-233-230. E-mail [email protected] 1 1. INTRODUCTION Belated recognition (Gammage 2012) that much of the Australian landscape is a cultural landscape has refocused interest in the environments encountered by Europeans at the time of first settlement of Sydney Cove in 1788 – both as evidence for (i) the impact of millennia of skilful burning by Australia's Indigenous inhabitants and (ii) as a bench mark to assess change shaped by c. 225 years of European occupation. As for the Tank Stream Valley (Macphail 2014a), direct evidence of the 1788 environment is mostly limited to observations in early Colonial documents and fossils in late eighteen century or older sediments fortuitously preserved under younger cultural deposits. Redevelopment of the foreshore of Darling Harbour has provided a unique opportunity to reconstruct the pre- and post-European settlement landscapes encompassing Cockle Bay, the most eastern bay in the complex of bays called 'the harbour-within-the harbour' by Stephenson & Kennedy 1980). Unlike the eastern (Sydney CBD ridge) foreshore of Cockle Bay, which was occupied by Europeans in the 1790s, the southwestern (Ultimo-Pyrmont) foreshore was part of a large Colonial Period Estate (Harris Estate) that was quarantined from urban developments into the 1850s (Fitzgerald & Golder 2009).
    [Show full text]