Two-Stage Rifting of Zealandia-Australia-Antarctica: Evidence from 40Ar/39Ar Thermochronometry of the Sisters Shear Zone, Stewart Island, New Zealand

Total Page:16

File Type:pdf, Size:1020Kb

Two-Stage Rifting of Zealandia-Australia-Antarctica: Evidence from 40Ar/39Ar Thermochronometry of the Sisters Shear Zone, Stewart Island, New Zealand Two-stage rifting of Zealandia-Australia-Antarctica: Evidence from 40Ar/39Ar thermochronometry of the Sisters shear zone, Stewart Island, New Zealand Joseph Kula Department of Geoscience, University of Nevada, Las Vegas, Nevada 89154-4010, USA Andy Tulloch GNS Science, Private Bag 1930, Dunedin, New Zealand Terry L. Spell Department of Geoscience, University of Nevada, Las Vegas, Nevada 89154-4010, USA Michael L. Wells ABSTRACT (Fig. 1). At some localities, it is as wide as 5 km The Sisters shear zone is a newly discovered Late Cretaceous detachment fault system (map view); however, the boundaries are not exposed for 40 km along the southeast coast of Stewart Island, southernmost New Zealand. well constrained due to relatively poor exposure. Footwall rocks consist of variably deformed ca. 310 and 105 Ma granites that range from The shear zone occurs within Carboniferous undeformed to protomylonite, mylonite, and ultramylonite. The hanging wall includes non- and Early Cretaceous granitic rocks that exhibit marine conglomerate and brittley deformed granite. K-feldspar thermochronometry of the varying degrees of deformation from essen- footwall indicates moderately rapid cooling (20–30 C°/m.y.) due to tectonic denudation over tially undeformed to protomylonite, mylonite, the interval ca. 89–82 Ma. Return to slow cooling at 82 Ma coincides with the age of the oldest and ultramylonite, with widespread but gener- seafl oor adjacent to the Campbell Plateau and refl ects the mechanical transition from conti- ally minor brittle deformation overprints. Shear nental extension to lithospheric rupture and formation of the Pacifi c-Antarctic Ridge. Our bands, oblique-grain-shape fabrics, sigma- and fi ndings support a two-stage rift model for continental breakup of this part of the Gondwana delta-type feldspar porphyroclasts, and mica margin. Stage one (ca. 101–88 Ma) is the northward propagation of continental extension and fi sh indicate shear sense. the Tasman Ridge as recorded in mylonite dredged from the Ross Sea and the Paparoa core The Sisters shear zone is divided into two complex. Stage two (ca. 89–82 Ma) is extension between the Campbell Plateau and West Ant- segments based on the nature of ductile fab- arctica leading to formation of the Pacifi c-Antarctic Ridge. rics, predominant kinematics, and along-strike offset of the western boundary of ductile fabric Keywords: New Zealand, extension, thermochronology, Gondwana, rifting, Cretaceous. (Fig. 1). The northern segment of the shear zone typically consists of granite mylonite and proto- INTRODUCTION ing to seafl oor spreading is documented using mylonite with foliations dipping 20–30ºSSE Plate reconstructions of Mesozoic Gondwana 40Ar/39Ar thermochronometry, which indicates and top-to-the-southeast shear sense. Footwall place Zealandia (New Zealand and surround- that this event is 5 to 10 m.y. younger than exten- rocks there are locally overprinted by south- ing continental shelf, e.g., Mortimer, 2004) at sion documented in the Ross Sea and western east-dipping brittle normal faults, commonly the Pacifi c margin, adjacent to southeast Aus- New Zealand. Our new results and observa- subparallel to the ~060° strike of the foliation. tralia and West Antarctica (e.g., Sutherland, tions, combined with published thermochronol- In the southern segment, foliations are gener- 1999; Eagles et al., 2004). Much attention has ogy data from western New Zealand and West ally less well developed than in the north, and been directed toward extension between west- Antarctica, reveal a sequence of extensional deformation tends to be localized into 5–50-m- ern Zealandia and eastern Australia leading tectonism that can be best explained by a two- thick high-strain zones including ultramylonite. to opening of the Tasman Sea (Tulloch and stage model for breakup of the Pacifi c margin Ductile kinematic indicators in the southern Kimbrough, 1989; Etheridge et al., 1989; Spell of Gondwana. portion exhibit both top-to-the-northwest and et al., 2000) and rift-related deformation in top-to-the-southeast downdip shear sense, but Marie Byrd Land, West Antarctica, and the SISTERS SHEAR ZONE, STEWART brittle normal faults are consistently top-to-the- adjacent Ross Sea (e.g., Luyendyk et al., 2003; ISLAND southeast. Stretching lineations throughout the Siddoway et al., 2005). These studies have Stewart Island is part of the Median batholith shear zone consistently trend 330/150° ± 15°. outlined the timing and style of extension and and Western Province of New Zealand (Fig. 1). Because of apparent along-strike offset of the breakup between Australia and Zealandia, and The Median batholith represents a magmatic western boundary of ductile fabric and differ- of extension between East and West Antarctica. arc that developed above the paleosubduc- ences in kinematics and foliation attitudes, we This paper focuses on the outstanding prob- tion zone along the Gondwana Pacifi c margin infer that the north and south segments of the lem of the nature and timing of extension in (Tulloch and Kimbrough, 2003). Major struc- shear zone are separated by a transfer fault (e.g., eastern Zealandia leading to Pacifi c-Antarctic tures on Stewart Island include the northwest- Lister et al., 1986) (Fig. 1). Ridge forma tion and separation of the Campbell striking Freshwater fault zone, Escarpment Microstructures in the deformed granites indi- Plateau from West Antarctica. fault, and Gutter shear zone. These structures cate greenschist facies metamorphic conditions Field observations and 40Ar/39Ar data from are related to pre-breakup convergent margin followed by decreasing temperatures during the Sisters shear zone on Stewart Island, south- tectonism and have been described by Allibone shearing. In thin section, quartz exhibits features ernmost New Zealand, are presented here as and Tulloch (1997, 2004). In contrast, the Sis- of plastic deformation including oblique-grain- evidence for a Late Cretaceous detachment fault ters shear zone, located along the southeast shape fabrics in dynamically recrystallized system that accommodated continental exten- coast and oriented obliquely to these structures, grains (regime 2 of Hirth and Tullis, 1992) sion and thinning of the Campbell Plateau and is here interpreted to represent an extensional and ribbons with patchy to undulose extinc- was kinematically linked to formation of the detachment fault system. tion, whereas feldspars exhibit dominantly Pacifi c-Antarctic Ridge. The timing of exten- The Sisters shear zone is exposed along the brittle deformation. The lack of postdeforma- sion and the transition from continental rift- southeast coastline of Stewart Island for ~40 km tional growth in ~30 µm grains of recrystallized © 2007 The Geological Society of America. For permission to copy, contact Copyright Permissions, GSA, or [email protected]. GEOLOGYGeology, May, May 2007; 2007 v. 35; no. 5; p. 411–414; doi: 10.1130/G23432A.1; 4 fi gures; Data Repository item 2007099. 411 40 39 167o E pet/). The Ar/ Ar analyses were conducted at Median Batholith the Nevada Isotope Geochronology Laboratory 10000E 5330000N Western 2100000E 21 2120000E 2130000E 1 9 at University of Nevada–Las Vegas (UNLV); Province ca. 305 Ma data tables and descriptions of analytical meth- Knob pluton 1 8 (?) ods are given in appendices DR1 and DR2 in the Fiordland Alpine FaultEastern GSA Data Repository.1 45o S Province PP 4 9 105 Ma ) Median Stewart (? 4 5 P76106 Footwall Mica Ages 3 8 Batholith Gog pluton Figure 2 5320000N Island 3 5 Muscovite and biotite were collected from 2 0 2 3 PP 2 4 footwall rocks from the Knob pluton in the north- 2 5 5 thern Segment Nor ern segment ~50–100 m below the detachment 2090000E 1 0 1 0 Inferred surface (P76106, Fig. 1). Muscovite yielded a 1 5 1 5 transfer relatively fl at age spectrum with a plateau age 1 4 P67866 5 km 2 9 fault of 93.8 ± 0.4 Ma (uncertainties 2σ), incorporat- 5310000N ing 96% of the gas released (Fig. 3A). Biotite Southern Segment yielded a plateau age of 90.0 ± 0.8 Ma (59% of Paleozoic granite & Hanging-wall Solid-state P62424 the gas released) and an isochron age of 90.6 ± schist breccia mylonitic North Traps 1.2 Ma with a 40Ar/36Ar intercept of 294.5 ± 2.2, Detachment Cretaceous granite fabric (FW) granite 40 fault indicating no excess Ar in the sample. Figure 1. Generalized geologic map of southern Stewart Island (modifi ed from Allibone and Footwall and Hanging-Wall K-Feldspar Tulloch, 2004) showing dominantly plutonic nature (Median batholith—black in inset). Note Three K-feldspar separates were analyzed distribution of ductile fabric, stretching lineation orientation, and inferred transfer fault (see text). Sample locations are labeled with P-numbers (PETLAB database (http://data.gns.cri. using detailed furnace step-heating, including nz/pet/). North Traps are a set of low-lying rock and reefs consisting of undeformed granite. isothermal duplicates, to determine Ar diffusion Box indicates area of Figure 2. Eastings and northings conform to the New Zealand Map Grid kinetics for application of multiple diffusion (NZMG). PP—Port Pegasus. domain (MDD) thermal modeling (Lovera et al., 1989, 1991). Two samples were collected from footwall rocks: P76106, (discussed previously), quartz, preservation of unrecovered quartz rib- The Sisters Islets, a pair of ~200 × 400 m and P67866 from the western side of the southern bons with undulose extinction, and cataclastic islets ~1 km offshore (Fig. 2), are composed segment of the shear zone (Fig. 1). The footwall “crush zone” overprinting collectively indicate of essentially undeformed conglomerate samples yielded maximum ages of 89–90 Ma, cooling during deformation. (Fleming and Watters, 1974) and represent the and sample P76106 exhibited a prominent age A brittle detachment surface oriented hanging wall of the Sisters shear zone. Con- gradient over the initial gas release that was 061/27°S is exposed in a small bay in the glomerate beds on the Sisters strike ~070°, absent in sample P67866 (Fig.
Recommended publications
  • Hikurangi Plateau: Crustal Structure, Rifted Formation, and Gondwana Subduction History
    Article Geochemistry 3 Volume 9, Number 7 Geophysics 3 July 2008 Q07004, doi:10.1029/2007GC001855 GeosystemsG G ISSN: 1525-2027 AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society Click Here for Full Article Hikurangi Plateau: Crustal structure, rifted formation, and Gondwana subduction history Bryan Davy Institute of Geological and Nuclear Sciences, P.O. Box 30368, Lower Hutt, New Zealand ([email protected]) Kaj Hoernle IFM-GEOMAR, Wischhofstraße 1-3, D-24148 Kiel, Germany Reinhard Werner Tethys Geoconsulting GmbH, Wischhofstraße 1-3, D-24148 Kiel, Germany [1] Seismic reflection profiles across the Hikurangi Plateau Large Igneous Province and adjacent margins reveal the faulted volcanic basement and overlying Mesozoic-Cenozoic sedimentary units as well as the structure of the paleoconvergent Gondwana margin at the southern plateau limit. The Hikurangi Plateau crust can be traced 50–100 km southward beneath the Chatham Rise where subduction cessation timing and geometry are interpreted to be variable along the margin. A model fit of the Hikurangi Plateau back against the Manihiki Plateau aligns the Manihiki Scarp with the eastern margin of the Rekohu Embayment. Extensional and rotated block faults which formed during the breakup of the combined Manihiki- Hikurangi plateau are interpreted in seismic sections of the Hikurangi Plateau basement. Guyots and ridge- like seamounts which are widely scattered across the Hikurangi Plateau are interpreted to have formed at 99–89 Ma immediately following Hikurangi Plateau jamming of the Gondwana convergent margin at 100 Ma. Volcanism from this period cannot be separately resolved in the seismic reflection data from basement volcanism; hence seamount formation during Manihiki-Hikurangi Plateau emplacement and breakup (125–120 Ma) cannot be ruled out.
    [Show full text]
  • Greenpeace Deep Sea Oil Briefing
    May 2012 Out of our depth: Deep-sea oil exploration in New Zealand greenpeace.org.nz Contents A sea change in Government strategy ......... 4 Safety concerns .............................................. 5 The risks of deep-sea oil ............................... 6 International oil companies in the dock ..... 10 Where is deep-sea oil exploration taking place in New Zealand? ..................... 12 Cover: A view from an altitude of 3200 ft of the oil on the sea surface, originated by the leaking of the Deepwater Horizon wellhead disaster. The BP leased oil platform exploded April 20 and sank after burning, leaking an estimate of more than 200,000 gallons of crude oil per day from the broken pipeline into the sea. © Daniel Beltrá / Greenpeace Right: A penguin lies in oil spilt from the wreck of the Rena © GEMZ Photography 2 l Greenpeace Deep-Sea Oil Briefing l May 2012 The inability of the authorities to cope with the effects of the recent oil spill from the Rena cargo ship, despite the best efforts of Maritime New Zealand, has brought into sharp focus the environmental risks involved in the Government’s decision to open up vast swathes of the country’s coastal waters for deep-sea oil drilling. The Rena accident highlighted the devastation that can be caused by what in global terms is actually still a relatively small oil spill at 350 tonnes and shows the difficulties of mounting a clean-up operation even when the source of the leaking oil is so close to shore. It raised the spectre of the environmental catastrophe that could occur if an accident on the scale of the Deepwater Horizon disaster in the Gulf of Mexico were to occur in New Zealand’s remote waters.
    [Show full text]
  • Vulnerable Marine Ecosystems – Processes and Practices in the High Seas Vulnerable Marine Ecosystems Processes and Practices in the High Seas
    ISSN 2070-7010 FAO 595 FISHERIES AND AQUACULTURE TECHNICAL PAPER 595 Vulnerable marine ecosystems – Processes and practices in the high seas Vulnerable marine ecosystems Processes and practices in the high seas This publication, Vulnerable Marine Ecosystems: processes and practices in the high seas, provides regional fisheries management bodies, States, and other interested parties with a summary of existing regional measures to protect vulnerable marine ecosystems from significant adverse impacts caused by deep-sea fisheries using bottom contact gears in the high seas. This publication compiles and summarizes information on the processes and practices of the regional fishery management bodies, with mandates to manage deep-sea fisheries in the high seas, to protect vulnerable marine ecosystems. ISBN 978-92-5-109340-5 ISSN 2070-7010 FAO 9 789251 093405 I5952E/2/03.17 Cover photo credits: Photo descriptions clockwise from top-left: Acanthagorgia spp., Paragorgia arborea, Vase sponges (images courtesy of Fisheries and Oceans, Canada); and Callogorgia spp. (image courtesy of Kirsty Kemp, the Zoological Society of London). FAO FISHERIES AND Vulnerable marine ecosystems AQUACULTURE TECHNICAL Processes and practices in the high seas PAPER 595 Edited by Anthony Thompson FAO Consultant Rome, Italy Jessica Sanders Fisheries Officer FAO Fisheries and Aquaculture Department Rome, Italy Merete Tandstad Fisheries Resources Officer FAO Fisheries and Aquaculture Department Rome, Italy Fabio Carocci Fishery Information Assistant FAO Fisheries and Aquaculture Department Rome, Italy and Jessica Fuller FAO Consultant Rome, Italy FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2016 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Campbell Plateau: a Major Control on the SW Pacific Sector of The
    Ocean Sci. Discuss., doi:10.5194/os-2017-36, 2017 Manuscript under review for journal Ocean Sci. Discussion started: 15 May 2017 c Author(s) 2017. CC-BY 3.0 License. Campbell Plateau: A major control on the SW Pacific sector of the Southern Ocean circulation. Aitana Forcén-Vázquez1,2, Michael J. M. Williams1, Melissa Bowen3, Lionel Carter2, and Helen Bostock1 1NIWA 2Victoria University of Wellington 3The University of Auckland Correspondence to: Aitana ([email protected]) Abstract. New Zealand’s subantarctic region is a dynamic oceanographic zone with the Subtropical Front (STF) to the north and the Subantarctic Front (SAF) to the south. Both the fronts and their associated currents are strongly influenced by topog- raphy: the South Island of New Zealand and the Chatham Rise for the STF, and Macquarie Ridge and Campbell Plateau for the SAF. Here for the first time we present a consistent picture across the subantarctic region of the relationships between front 5 positions, bathymetry and water mass structure using eight high resolution oceanographic sections that span the region. Our results show that the northwest side of Campbell Plateau is comparatively warm due to a southward extension of the STF over the plateau. The SAF is steered south and east by Macquarie Ridge and Campbell Plateau, with waters originating in the SAF also found north of the plateau in the Bounty Trough. Subantarctic Mode Water (SAMW) formation is confirmed to exist south of the plateau on the northern side of the SAF in winter, while on Campbell Plateau a deep reservoir persists into the following 10 autumn.
    [Show full text]
  • Geophysical Structure of the Southern Alps Orogen, South Island, New Zealand
    Regional Geophysics chapter 15/04/2007 1 GEOPHYSICAL STRUCTURE OF THE SOUTHERN ALPS OROGEN, SOUTH ISLAND, NEW ZEALAND. F J Davey1, D Eberhart-Phillips2, M D Kohler3, S Bannister1, G Caldwell1, S Henrys1, M Scherwath4, T Stern5, and H van Avendonk6 1GNS Science, Gracefield, Lower Hutt, New Zealand, [email protected] 2GNS Science, Dunedin, New Zealand 3Center for Embedded Networked Sensing, University of California, Los Angeles, California, USA 4Leibniz-Institute of Marine Sciences, IFM-GEOMAR, Kiel, Germany 5School of Earth Sciences, Victoria University of Wellington, Wellington, New Zealand 6Institute of Geophysics, University of Texas, Austin, Texas, USA ABSTRACT The central part of the South Island of New Zealand is a product of the transpressive continental collision of the Pacific and Australian plates during the past 5 million years, prior to which the plate boundary was largely transcurrent for over 10 My. Subduction occurs at the north (west dipping) and south (east dipping) of South Island. The deformation is largely accommodated by the ramping up of the Pacific plate over the Australian plate and near-symmetric mantle shortening. The initial asymmetric crustal deformation may be the result of an initial difference in lithospheric strength or an inherited suture resulting from earlier plate motions. Delamination of the Pacific plate occurs resulting in the uplift and exposure of mid- crustal rocks at the plate boundary fault (Alpine fault) to form a foreland mountain chain. In addition, an asymmetric crustal root (additional 8 - 17 km) is formed, with an underlying mantle downwarp. The crustal root, which thickens southwards, comprises the delaminated lower crust and a thickened overlying middle crust.
    [Show full text]
  • The Eighth Continent?
    www.Breaking News English.com Ready-to-Use English Lessons by Sean Banville “1,000 IDEAS & ACTIVITIES Thousands more free lessons FOR LANGUAGE TEACHERS” from Sean's other websites www.breakingnewsenglish.com/book.html www.freeeslmaterials.com/sean_banville_lessons.html Level 2 Zealandia – The eighth continent? 19th February, 2017 http://www.breakingnewsenglish.com/1702/170219-zealandia-2.html Contents The Reading 2 Phrase Matching 3 Listening Gap Fill 4 No Spaces 5 Survey 6 Writing and Speaking 7 Writing 8 Please try Levels 0, 1 and 3. They are (a little) harder. Twitter twitter.com/SeanBanville Facebook www.facebook.com/pages/BreakingNewsEnglish/155625444452176 Google + https://plus.google.com/+SeanBanville THE READING From http://www.breakingnewsenglish.com/1702/170219-zealandia-2.html We used to believe there were nine planets, but now there are eight (Pluto is not a planet). Now we may have to change how many continents there are. We are taught there are seven - Asia, Africa, North and South America, Antarctica, Europe, and Australia. Geologists now say there is an eighth continent - Zealandia. This is a big, largely underwater landmass in the Pacific Ocean. Six per cent of it is above water and is New Zealand and New Caledonia. The rest is under the ocean. It is five million square kilometres, which scientists say is big enough to be a continent. Geologists explained why Zealandia is a continent in a research paper in the Geological Society of America's Journal. They argue that the land does not have to be above water to be a continent. They said Zealandia is a continent because of four points: It is a lot higher than the area around it, it has a special geology, it is easy to see its shape, and it is thicker than the ocean floor.
    [Show full text]
  • Redalyc.Lost Terranes of Zealandia: Possible Development of Late
    Andean Geology ISSN: 0718-7092 [email protected] Servicio Nacional de Geología y Minería Chile Adams, Christopher J Lost Terranes of Zealandia: possible development of late Paleozoic and early Mesozoic sedimentary basins at the southwest Pacific margin of Gondwanaland, and their destination as terranes in southern South America Andean Geology, vol. 37, núm. 2, julio, 2010, pp. 442-454 Servicio Nacional de Geología y Minería Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=173916371010 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Andean Ge%gy 37 (2): 442-454. July. 2010 Andean Geology formerly Revista Geológica de Chile www.scielo.cl/andgeol.htm Lost Terranes of Zealandia: possible development of late Paleozoic and early Mesozoic sedimentary basins at the southwest Pacific margin of Gondwana­ land, and their destination as terranes in southern South America Christopher J. Adams GNS Science, Private Bag 1930, Dunedin, New Zealand. [email protected] ABSTRACT. Latesl Precambrian to Ordovician metasedimentary suecessions and Cambrian-Ordovician and Devonian­ Carboniferous granitoids form tbe major par! oftbe basemenl of soutbem Zealandia and adjacenl sectors ofAntarctica and southeastAustralia. Uplift/cooling ages ofthese rocks, and local Devonian shallow-water caver sequences suggest tbal final consolidation oftbe basemenl occurred tbrough Late Paleozoic time. A necessary consequence oftlris process would have been contemporaneous erosion and tbe substantial developmenl of marine sedimentary basins al tbe Pacific margin of Zealandia.
    [Show full text]
  • Bathymetry of the New Zealand Region
    ISSN 2538-1016; 11 NEW ZEALAND DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH BULLETIN 161 BATHYMETRY OF THE NEW ZEALAND REGION by J. W. BRODIE New Zealand Oceanographic Institute Wellington New Zealand Oceanographic Institute Memoir No. 11 1964 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Fromispiece: The survey ship HMS Penguin from which many soundings were obtained around the New Zealand coast and in the south-west Pacific in the decade around 1900. (Photograph by courtesy of the Trustees, National Maritime Museum, Greenwich.) This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ NEW ZEALAND DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH BULLETIN 161 BATHYMETRY OF THE NEW ZEALAND REGION by J. W. BRODIE New Zealand Oceanographic Institute Wellington New Zealand Oceanographic Institute Memoir No. 11 1964 Price: 15s. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ CONTENTS Page No. ABSTRACT 7 INTRODUCTION 7 Sources of Data 7 Compilation of Charts 8 EARLIER BATHYMETRIC INTERPRETATIONS 10 Carte Gen�rale Bathymetrique des Oceans 17 Discussion 19 NAMES OF OCEAN FLOOR FEATURES 22 Synonymy of Existing Names 22 Newly Named Features .. 23 FEATURES ON THE CHARTS 25 Major Morphological Units 25 Offshore Banks and Seamounts 33 STRUCTURAL POSITION OF NEW ZEALAND 35 The New Zealand Plateau 35 Rocks of the New Zealand Plateau 37 Crustal Thickness Beneath the New Zealand Plateau 38 Chatham Province Features 41 The Alpine Fault 41 Minor Irregularities on the Sea Floor 41 SEDIMENTATION IN THE NEW ZEALAND REGION .
    [Show full text]
  • Thurston Island
    RESEARCH ARTICLE Thurston Island (West Antarctica) Between Gondwana 10.1029/2018TC005150 Subduction and Continental Separation: A Multistage Key Points: • First apatite fission track and apatite Evolution Revealed by Apatite Thermochronology ‐ ‐ (U Th Sm)/He data of Thurston Maximilian Zundel1 , Cornelia Spiegel1, André Mehling1, Frank Lisker1 , Island constrain thermal evolution 2 3 3 since the Late Paleozoic Claus‐Dieter Hillenbrand , Patrick Monien , and Andreas Klügel • Basin development occurred on 1 2 Thurston Island during the Jurassic Department of Geosciences, Geodynamics of Polar Regions, University of Bremen, Bremen, Germany, British Antarctic and Early Cretaceous Survey, Cambridge, UK, 3Department of Geosciences, Petrology of the Ocean Crust, University of Bremen, Bremen, • ‐ Early to mid Cretaceous Germany convergence on Thurston Island was replaced at ~95 Ma by extension and continental breakup Abstract The first low‐temperature thermochronological data from Thurston Island, West Antarctica, ‐ fi Supporting Information: provide insights into the poorly constrained thermotectonic evolution of the paleo Paci c margin of • Supporting Information S1 Gondwana since the Late Paleozoic. Here we present the first apatite fission track and apatite (U‐Th‐Sm)/He data from Carboniferous to mid‐Cretaceous (meta‐) igneous rocks from the Thurston Island area. Thermal history modeling of apatite fission track dates of 145–92 Ma and apatite (U‐Th‐Sm)/He dates of 112–71 Correspondence to: Ma, in combination with kinematic indicators, geological
    [Show full text]
  • Gondwana Large Igneous Provinces (Lips): Distribution, Diversity and Significance
    Downloaded from http://sp.lyellcollection.org/ by guest on September 30, 2021 Gondwana Large Igneous Provinces (LIPs): distribution, diversity and significance SARAJIT SENSARMA1*, BRYAN C. STOREY2 & VIVEK P. MALVIYA3 1Centre of Advanced Study in Geology, University of Lucknow, Lucknow, Uttar Pradesh 226007, India 2Gateway Antarctica, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand 324E Mayur Residency Extension, Faridi Nagar, Lucknow, Uttar Pradesh 226016, India *Correspondence: [email protected] Abstract: Gondwana, comprising >64% of the present-day continental mass, is home to 33% of Large Igneous Provinces (LIPs) and is key to unravelling the lithosphere–atmosphere system and related tectonics that mediated global climate shifts and sediment production conducive for life on Earth. Increased recognition of bimodal LIPs in Gondwana with significant, sometimes subequal, proportions of synchronous silicic volcanic rocks, mostly rhyolites to high silica rhyolites (±associ- ated granitoids) to mafic volcanic rocks is a major frontier, not considered in mantle plume or plate process hypotheses. On a δ18O v. initial 87Sr/86Sr plot for silicic rocks in Gondwana LIPs there is a remarkable spread between continental crust and mantle values, signifying variable contributions of crust and mantle in their origins. Caldera-forming silicic LIP events were as large as their mafic counterparts, and erupted for a longer duration (>20 myr). Several Gondwana LIPs erupted near the active continental margins, in addition to within-continents; rifting, however, continued even after LIP emplacements in several cases or was aborted and did not open into ocean by coeval com- pression. Gondwana LIPs had devastating consequences in global climate shifts and are major global sediment sources influencing upper continental crust compositions.
    [Show full text]
  • Overview of Zealandia and Its Subduction Record
    Overview of Zealandia and its subduction record Nick Mortimer, GNS Science, Dunedin, New Zealand GNS Science New Guinea SW Pacific geography Fiji New Caledonia Scattered, remote Australia islands Tasman 4 million people Sea New Near Australia Zealand 1000 km GNS Science SW Pacific bathymetry Fiji New Based on satellite Caledonia gravity Broad plateaus and ridges 1-2 km water depth New Zealand 1000 km Sandwell & Smith (1997), Stagpoole (2002) GNS Science SW Pacific 87 present day Fiji tectonics 77 New Caledonia 67 mm/yr • Pacific and Australian plates 53 • nearby pole of PAC plate rotation AUS plate New Zealand 38 • convergence variably oblique • subduction polarity 30 changes 1000 km Bird (2003) GNS Science OJP MP Zealandia • continent that is 95% submerged • rifted internally and on most margins 45-0 Ma 120-85 Ma • now on two plates PAC plate • Hikurangi Plateau adjacent AUS plate HP continental rock 85-55 Ma samples Median Batholith (Cambrian-Cret) Late Cret. MCCs 85-0 Ma Early Cret LIPs 45-0 Ma Preserved E Cret subduction zone 1000 km GNS Science Zealandia and Gondwana • ZLD on PAC and AUS plates PAC plate • match piercing points AUS plate HP • track fracture zones • rotation and translation 1000 km Sutherland (1995, 1999) GNS Science 1000 km 14 April 84,000,000 B.P. Gondwana reconstruction NG Just before major LP breakup episode MR QP KP Continental crust MP NewCal Oceanic crust NLHR AUST Hikurangi LIP SNR SLHR <85 Ma continental breakup D ZLND lines ET Chall STR IB HP Camp CR • Zealandia EANT WR was a ribbon continent WANT After Gaina et al.
    [Show full text]
  • Seismic Characteristics of Polygonal Fault Systems in the Great South Basin, New Zealand During the Diagenesis Process
    Open Geosciences 2020; 12: 851–865 Research Article Sukonmeth Jitmahantakul, Piyaphong Chenrai*, Pitsanupong Kanjanapayont, and Waruntorn Kanitpanyacharoen Seismic characteristics of polygonal fault systems in the Great South Basin, New Zealand https://doi.org/10.1515/geo-2020-0177 during the diagenesis process. Interpretation of the received January 30, 2020; accepted June 12, 2020 polygonal fault in this area is useful in assessing the Abstract: Awell-developed multi-tier polygonal fault migration pathway and seal ability of the Eocene mudstone system is located in the Great South Basin offshore New sequence in the Great South Basin. Zealand’s South Island. The system has been characterised Keywords: seismic interpretation, polygonal fault using a high-quality three-dimensional seismic survey tied system, Great South Basin to available exploration boreholes using regional two- dimensional seismic data. In this study area, two polygonal fault intervals are identified and analysed, Tier 1 and Tier 2. Tier 1 coincides with the Tucker Cove Formation (Late 1 Introduction Eocene) with small polygonal faults. Tier 2 is restricted to ( ) - the Paleocene-to-Late Eocene interval with a great number Since polygonal fault systems PFSs have been dis of large faults. In map view, polygonal fault cells are covered in sedimentary basins worldwide, many PFSs outlined by a series of conjugate pairs of normal faults. The have been studied with respect to petroleum exploration, - polygonal faults are demonstrated to be controlled by such as their seal capacity and as a paleo stress [ – ] ( ) fi depositional facies, specifically offshore bathyal deposits indicator 1 5 . Henriet et al. 1991 rst described PFS characterised by fine-grained clays, marls and muds.
    [Show full text]