<<

Overview of and its record

Nick Mortimer, GNS Science, Dunedin,

GNS Science SW Pacific geography

Fiji

New Caledonia Scattered, remote

Tasman 4 million people Sea New Near Australia Zealand

1000 km

GNS Science SW Pacific bathymetry

Fiji

New Based on satellite Caledonia gravity

Broad plateaus and ridges 1-2 km water depth

New Zealand

1000 km

Sandwell & Smith (1997), Stagpoole (2002) GNS Science SW Pacific 87 present day

Fiji tectonics 77 67 mm/yr • Pacific and Australian plates

53 • nearby pole of PAC plate rotation

AUS plate New Zealand 38 • convergence variably oblique

• subduction polarity 30 changes

1000 km

Bird (2003) GNS Science OJP MP Zealandia

that is 95% submerged

• rifted internally and on most margins 45-0 Ma 120-85 Ma • now on two plates

PAC plate • adjacent AUS plate HP continental rock 85-55 Ma samples

Median Batholith (Cambrian-Cret)

Late Cret. MCCs

85-0 Ma Early Cret LIPs

45-0 Ma Preserved E Cret subduction zone 1000 km

GNS Science Zealandia and

• ZLD on PAC and AUS plates

PAC plate • match piercing points AUS plate HP • track fracture zones

• rotation and translation

1000 km

Sutherland (1995, 1999) GNS Science 1000 km 14 April 84,000,000 B.P. Gondwana reconstruction

NG Just before major LP breakup episode MR QP KP MP NewCal

Oceanic crust NLHR

AUST Hikurangi LIP

SNR SLHR <85 Ma continental breakup D ZLND lines ET Chall STR

IB HP Camp CR • Zealandia EANT WR was a ribbon continent WANT

After Gaina et al. (1998,1999), Sutherland (1999), Eagles et al. (2004) GNS Science 1000 km Gondwana geology WANT-ZLND-AUST along-strike CONVERGENT OROGENS comparisons MESOZOIC Sed-volc-met Plutonic

NEO PALEOZOIC AUST Sed-volc-met

Lachlan Plutonic

Del ZLND EXTENSIONAL OROGEN

CRETACEOUS HP pre-breakup MCCs EANT Rifting, thin crust, breakup, cooling, subsidence, WANT submergence: Zealandia

Mortimer (2008) GNS Science GNS Science New Zealand’s subduction history

Cambrian to Now

500 Ma Jaquiery Granite, Fiordland

White , August 2012

Expressions of subduction:

plate convergence, Benioff zone EQs, magmatic arc with distinct petrochemistry, fore-arc basin, back-arc basin, accretionary .5 mm wedge

GNS Science GEONET, Eberhart-Phillips et al. (2008), Wallace et al. (2009), Schellart & Spakman (2012) GNS Science Mantle wedge

Lee et al. (2012) Hawkes Bay QMAP GNS Science New Zealand’s igneous rock record

Interpreted subduction episodes

16

14 MCCs 12 10

n 8

6

4 2 Ferrar 0 0 50 100 150 200 250 300 350 400 450 500 Ma Cretaceous Triassic Permian Carbonif Devonian Silur Ordov Camb

SUBDUCTION? Yes Maybe No

Cz VOLCANICS (K-Ar, Ar-Ar) Mz-Pz BATHOLITH SUITES (U-Pb zc) I-type S & IS-type A-type Subduction-related Low Sr/Y Low Sr/Y Intraplate High Sr/Y

Hayward et al. (1994), Mortimer et al. (1999), Tulloch et al. (2009), Hoernle et al. (2006) Timm et al. (2010) GNS Science New Zealand’s magmatic arcs

• different arcs give insights into different arc processes

• only some have associated FABs, accretionary wedges Camb • Cenozoic arcs founded on Mesozoic accretionary wedge

• ignore Pz, just talk about Mz, Cz Dev-Carb Tr-Cret subduction

GNS Science Mesozoic orogen

• Mz arc, Wedge forearc, wedge Forearc elements all in position Arc

• crustal thickness affected by Moho widespread extension

Mortimer et al. (2002) GNS Science Mesozoic orogen

• preserved long- Wedge lived, convergent margin Forearc Arc • variably exhumed, so can study shallow and deep levels

Arc Forearc Wedge

Mortimer et al. (2002) GNS Science The Mesozoic Arc

Median Batholith = site of most NZ Phanerozoic magmatism

GNS Science Thermobarometry

112 Ma

105 Ma

Mortimer (2000), Flowers (2005), DePaoli et al. (2011) GNS Science Mesozoic plutonic record

Interpreted subduction episodes

16

14 MCCs 12 10

n 8

6

4 2 Ferrar 0 0 50 100 150 200 250 300 350 400 450 500 Ma Cenozoic Cretaceous Jurassic Triassic Permian Carbonif Devonian Silur Ordov Camb

SUBDUCTION? Yes Maybe No

Cz VOLCANICS (K-Ar, Ar-Ar) Mz-Pz BATHOLITH SUITES (U-Pb zc) I-type S & IS-type A-type Subduction-related Low Sr/Y Low Sr/Y Intraplate High Sr/Y

Hayward et al. (1994), Mortimer et al. (1999), Tulloch et al. (2009), Hoernle et al. (2006) Timm et al. (2010) GNS Science Major change in Zealandia arc at c. 130 Ma

170-130 Ma

High Sr/Y 130-110 Ma Low Sr/Y Mafic underplate Garnet-in

SW NE

• thickening crust in maturing arc and/or flat slab subduction

Tulloch & Kimbrough (2003) GNS Science Mesozoic fore-arc basin

• at least 13 km Murihiku Terrane strata over 120 m.y.

• marine and non- marine Monotis 205-212 Ma • zeolite facies

Curio Bay, 160 Ma

GNS Science Mesozoic fore-arc basin

• in New Caledonia as well as New Zealand

• structurally simple

• provenance links to Median Batholith arc

GNS Science Mesozoic accretionary wedge

Lloyd Homer, GNS GNS Science Mesozoic accretionary wedge

• first cycle sandstones

• different Perm-Cret basins accreted in wedge

• frontal accretion and underplating

• polyphase Jura-Cret schist overprint

Mackinnon (1983) GNS Science Exotic vs local provenance Older Jura-Trias wedge Younger Cretaceous wedge

116 240 250 124

264 132

184

100 200 300 400 500 Ma 100 200 300 400 500 Ma

• detrital zircon peaks don’t match • detrital zircon peaks do match NZ NZ pluton chronology pluton chronology • northern Queensland source • local Median Batholith source • constrain time of wedge cessation

• detrital zircon studies of Mesozoic accretionary wedge

Wandres et al. (2004), Adams et al. (2008, 2009) GNS Science Haast Schist: an exhumed accretionary wedge

quartz veins, fluids, mass balance, Ar-Ar, thermochronology, PTt paths, c. 135 Ma exhumation & mesothermal Au-W GNS Science Subduction termination • 130, 105, 85 Ma?

• youngest rocks in arc and wedge c. 110 Ma

• oldest Zealandia intraplate c. 97 Ma

• reason = Hikurangi Plateau collision. Other models

• BUT – did it ever really stop to the north?

GNS Science OJP MP North vs South 12-0 Ma 5-0 Ma Zealandia

Cenozoic arcs 35-15 Ma North 85- 15? Cz allochthons Zealandia Ma with back-arc basin ophiolitic basalts

HP 12-0 Ma Age of back arc basin

South Zealandia

1000 km

GNS Science North South Zealandia Zealandia

SOUTH ZEALANDIA Subsiding, simple, passive, on since 84 Ma NZL NORTH ZEALANDIA Subsiding, but complex: arcs, back-arc basins, allochthons, SZL ophiolites, (re) captured by

PEGI (2012) GNS Science Cenozoic volcanic record

Interpreted subduction episodes

16

14 MCCs 12 10

n 8

6

4 2 Ferrar 0 0 50 100 150 200 250 300 350 400 450 500 Ma Cenozoic Cretaceous Jurassic Triassic Permian Carbonif Devonian Silur Ordov Camb

SUBDUCTION? Yes Maybe No

Cz VOLCANICS (K-Ar, Ar-Ar) Mz-Pz BATHOLITH SUITES (U-Pb zc) I-type S & IS-type A-type Subduction-related = NORTH Low Sr/Y Low Sr/Y Intraplate = SOUTH High Sr/Y

Hayward et al. (1994), Mortimer et al. (1999), Tulloch et al. (2009), Hoernle et al. (2006) Timm et al. (2010) GNS Science Onland Cenozoic arc footprint

• volcanic levels exposed onland

Camb • migration in space and time

• age and cause of inception near NZ is speculative

Dev-Carb Tr-Cret

GNS Science 12-0 Ma 14-6 5-0 Arc Minerva Ma Plain 40 footprints offshore

0-2 Ma 6-17 Ma 17-23 Ma 30- 37 1 20 Ma MCC 18 35-18 Ma

Ma

32-20 32-20 Kupe Ophiolite allochthon arc at 23arcat Ma? Plain emplaced 25 Ma

• 23-18 Ma = rapid trench rollback to east

• pre-23Ma initiation = uncertain time and 500 km mechanism 85 Mortimer et al. (2007, 2010), Herzer et al. (2011) GNS Science Rick Herzer GNS Science New Zealand National Databases

QMAP data.gns.cri.nz/geology PETLAB pet.gns.cri.nz FRED fred.org.nz 1:250K geol map data Rocks, analyses Fossils

GNS Science GNS Science Zealandia and its subduction history

520-100 Ma 100-0 Ma Gondwanaland Pacific Rim

Sutherland (2007) GNS Science