Tectonic Controls on the Distribution of Large Copper and Gold Deposits in Southeast Asia to Identify Productive and Non-Productive Structures
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Neogene Sutures in Eastern Indonesia
Journal of Asian Earth Sciences 18 (2000) 781–808 www.elsevier.nl/locate/jseaes Neogene sutures in eastern Indonesia R. Hall*, M.E.J. Wilson1 SE Asia Research Group, Department of Geology, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK Received 4 February 2000; accepted 21 July 2000 Abstract Five suture zones are described from the zone of collision between the Eurasian, Indian–Australian and Pacific–Philippine Sea plates within the eastern Indonesia region. These are the Molucca, Sorong, Sulawesi, Banda and Borneo sutures. Each of these sutures has a relatively short history compared to most pre-Neogene orogenic belts, but each preserves a record of major changes in tectonics including subduction polarity reversals, elimination of volcanic arcs, changing plate boundaries, and important extension within an overall contrac- tional setting. Rapid tectonic changes have occurred within periods of less than 5 Ma. Many of these events, although important, would be overlooked in older orogenic belts because the age resolution required to identify them, even when the evidence is preserved, is simply not possible. ᭧ 2000 Elsevier Science Ltd. All rights reserved. Keywords: Suture zones; Eastern Indonesia; Tectonic changes 1. Introduction that could be regarded as ranging from trivial to cata- strophic. However, it does create problems when attempting Eastern Indonesia is situated at the junction of three major to define sutures and to understand their development, parti- plate regions: the Eurasian, Indian–Australian and Pacific– cularly when comparison is to be made with orogenic events Philippine Sea plates (Fig. 1). The boundary between each much earlier in the history of the Earth when the time reso- pair of plates is a relatively narrow zone of deformation, lution may be much less, and when orogenic deformation typically of the order of 100–200 km; although a detailed has clearly finished. -
Geologic History of Siletzia, a Large Igneous Province in the Oregon And
Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot Wells, R., Bukry, D., Friedman, R., Pyle, D., Duncan, R., Haeussler, P., & Wooden, J. (2014). Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot. Geosphere, 10 (4), 692-719. doi:10.1130/GES01018.1 10.1130/GES01018.1 Geological Society of America Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Downloaded from geosphere.gsapubs.org on September 10, 2014 Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot Ray Wells1, David Bukry1, Richard Friedman2, Doug Pyle3, Robert Duncan4, Peter Haeussler5, and Joe Wooden6 1U.S. Geological Survey, 345 Middlefi eld Road, Menlo Park, California 94025-3561, USA 2Pacifi c Centre for Isotopic and Geochemical Research, Department of Earth, Ocean and Atmospheric Sciences, 6339 Stores Road, University of British Columbia, Vancouver, BC V6T 1Z4, Canada 3Department of Geology and Geophysics, University of Hawaii at Manoa, 1680 East West Road, Honolulu, Hawaii 96822, USA 4College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 104 CEOAS Administration Building, Corvallis, Oregon 97331-5503, USA 5U.S. Geological Survey, 4210 University Drive, Anchorage, Alaska 99508-4626, USA 6School of Earth Sciences, Stanford University, 397 Panama Mall Mitchell Building 101, Stanford, California 94305-2210, USA ABSTRACT frames, the Yellowstone hotspot (YHS) is on southern Vancouver Island (Canada) to Rose- or near an inferred northeast-striking Kula- burg, Oregon (Fig. -
Dynamic Subsidence of Eastern Australia During the Cretaceous
Gondwana Research 19 (2011) 372–383 Contents lists available at ScienceDirect Gondwana Research journal homepage: www.elsevier.com/locate/gr Dynamic subsidence of Eastern Australia during the Cretaceous Kara J. Matthews a,⁎, Alina J. Hale a, Michael Gurnis b, R. Dietmar Müller a, Lydia DiCaprio a,c a EarthByte Group, School of Geosciences, The University of Sydney, NSW 2006, Australia b Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125, USA c Now at: ExxonMobil Exploration Company, Houston, TX, USA article info abstract Article history: During the Early Cretaceous Australia's eastward passage over sinking subducted slabs induced widespread Received 16 February 2010 dynamic subsidence and formation of a large epeiric sea in the eastern interior. Despite evidence for Received in revised form 25 June 2010 convergence between Australia and the paleo-Pacific, the subduction zone location has been poorly Accepted 28 June 2010 constrained. Using coupled plate tectonic–mantle convection models, we test two end-member scenarios, Available online 13 July 2010 one with subduction directly east of Australia's reconstructed continental margin, and a second with subduction translated ~1000 km east, implying the existence of a back-arc basin. Our models incorporate a Keywords: Geodynamic modelling rheological model for the mantle and lithosphere, plate motions since 140 Ma and evolving plate boundaries. Subduction While mantle rheology affects the magnitude of surface vertical motions, timing of uplift and subsidence Australia depends on plate boundary geometries and kinematics. Computations with a proximal subduction zone Cretaceous result in accelerated basin subsidence occurring 20 Myr too early compared with tectonic subsidence Tectonic subsidence calculated from well data. -
Waves of Destruction in the East Indies: the Wichmann Catalogue of Earthquakes and Tsunami in the Indonesian Region from 1538 to 1877
Downloaded from http://sp.lyellcollection.org/ by guest on May 24, 2016 Waves of destruction in the East Indies: the Wichmann catalogue of earthquakes and tsunami in the Indonesian region from 1538 to 1877 RON HARRIS1* & JONATHAN MAJOR1,2 1Department of Geological Sciences, Brigham Young University, Provo, UT 84602–4606, USA 2Present address: Bureau of Economic Geology, The University of Texas at Austin, Austin, TX 78758, USA *Corresponding author (e-mail: [email protected]) Abstract: The two volumes of Arthur Wichmann’s Die Erdbeben Des Indischen Archipels [The Earthquakes of the Indian Archipelago] (1918 and 1922) document 61 regional earthquakes and 36 tsunamis between 1538 and 1877 in the Indonesian region. The largest and best documented are the events of 1770 and 1859 in the Molucca Sea region, of 1629, 1774 and 1852 in the Banda Sea region, the 1820 event in Makassar, the 1857 event in Dili, Timor, the 1815 event in Bali and Lom- bok, the events of 1699, 1771, 1780, 1815, 1848 and 1852 in Java, and the events of 1797, 1818, 1833 and 1861 in Sumatra. Most of these events caused damage over a broad region, and are asso- ciated with years of temporal and spatial clustering of earthquakes. The earthquakes left many cit- ies in ‘rubble heaps’. Some events spawned tsunamis with run-up heights .15 m that swept many coastal villages away. 2004 marked the recurrence of some of these events in western Indonesia. However, there has not been a major shallow earthquake (M ≥ 8) in Java and eastern Indonesia for the past 160 years. -
The Plate Tectonics of Cenozoic SE Asia and the Distribution of Land and Sea
Cenozoic plate tectonics of SE Asia 99 The plate tectonics of Cenozoic SE Asia and the distribution of land and sea Robert Hall SE Asia Research Group, Department of Geology, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK Email: robert*hall@gl*rhbnc*ac*uk Key words: SE Asia, SW Pacific, plate tectonics, Cenozoic Abstract Introduction A plate tectonic model for the development of SE Asia and For the geologist, SE Asia is one of the most the SW Pacific during the Cenozoic is based on palaeomag- intriguing areas of the Earth$ The mountains of netic data, spreading histories of marginal basins deduced the Alpine-Himalayan belt turn southwards into from ocean floor magnetic anomalies, and interpretation of geological data from the region There are three important Indochina and terminate in a region of continen- periods in regional development: at about 45 Ma, 25 Ma and tal archipelagos, island arcs and small ocean ba- 5 Ma At these times plate boundaries and motions changed, sins$ To the south, west and east the region is probably as a result of major collision events surrounded by island arcs where lithosphere of In the Eocene the collision of India with Asia caused an the Indian and Pacific oceans is being influx of Gondwana plants and animals into Asia Mountain building resulting from the collision led to major changes in subducted at high rates, accompanied by in- habitats, climate, and drainage systems, and promoted dis- tense seismicity and spectacular volcanic activ- persal from Gondwana via India into SE Asia as well -
Of a Volcanic Island Arc Late Palaeogene–Quaternary Geology Of
Journal of the Geological Society Late Palaeogene–Quaternary geology of Halmahera, Eastern Indonesia: initiation of a volcanic island arc R. HALL, M. G. AUDLEY-CHARLES, F. T. BANNER, S. HIDAYAT and S. L. TOBING Journal of the Geological Society 1988; v. 145; p. 577-590 doi:10.1144/gsjgs.145.4.0577 Email alerting click here to receive free email alerts when new articles cite this article service Permission click here to seek permission to re-use all or part of this article request Subscribe click here to subscribe to Journal of the Geological Society or the Lyell Collection Notes Downloaded by Robert Hall on 4 June 2008 © 1988 Geological Society of London Journal of the Geological Society, London, Vol. 145, 1988, pp. 577-590, 12 figs Printed in Northern Ireland Late Palaeogene-Quaternary geology of Halmahera, Eastern Indonesia: initiation of a volcanic island arc R.HALL,l M. G. AUDLEY-CHARLES,' F. T. BANNER,' S. HIDAYAT2 &L S. L. TOBING~ Department of Geological Sciences, University Collcge London, Gower Street, London WClE 6BT, UK Geological Research and Development Centre, Bandung, Indonesia Abstract The Late Palaeogene-Quaternary stratigraphy of Halmahera is described, and new forma- tion names are proposed, based on recent field investigationsof the NE and central partof the island. This stratigraphic information provides new insights into the Neogene history of Halmahera and the development of the present island arc. The Late Palaeogene and younger rocks rest unconformablyon an ophiolitic Basement Complex which formed part of a Late Cretaceous-Early Tertiary fore-arc. After volcanic arc activity ceased in the Eocene the former fore-arc terrane was uplifted and deeply erodedin the Late Palaeogene. -
Hall Etal 1995 Philippine Sea Plate Tectonophysics.Pdf
TECTONOPHYSICS i ELSEVIER Tectonophysics 251 (1995) 229-250 Origin and motion history of the Philippine Sea Plate Robert Hall a, Jason R. Ali b, Charles D. Anderson c, Simon J. Baker a Department of Geological Sciences, University College London, Gower Street, London, WCI E 6BT, UK b Oceanography Department, Southampton University, Southampton, S09 5NH, UK c Department of Geological Sciences, University of California, Santa Barbara, CA 93106, USA Received 23 March 1994; accepted 21 March 1995 Abstract The Philippine Sea Plate is the one major plate whose Tertiary motion is poorly constrained and whose origin is problematical. Its southern boundary is the Sorong Fault system which is part of a major left-lateral fault system at the northern margin of the Australian plate. The southern part of the plate in eastern Indonesia has been neglected in most syntheses but includes some of the oldest rocks within the plate which are separated from remnant arcs of the Daito Ridge province of the northern Philippine Sea by the West Philippine Central Basin. The east Indonesian islands of the Halmahera-Waigeo region contain a good Mesozoic and Tertiary stratigraphic record indicating a long arc history for the southern part of the plate. New palaeomagnetic data from these islands define two sub-areas: an area forming part of the Philippine Sea Plate north of the Sorong Fault, and an area within the Sorong Fault system. The area north of the fault records a long-term clockwise rotation history whereas that within the fault zone records local rotations interpreted as due to deformation at the plate edge. -
The Saharides and Continental Growth During the Final Assembly of Gondwana-Land
Reconstructing orogens without biostratigraphy: The Saharides and continental growth during the final assembly of Gondwana-Land A. M. Celâl S¸ engöra,b,1, Nalan Lomc, Cengiz Zabcıb, Gürsel Sunalb, and Tayfun Önerd aIstanbul_ Teknik Üniversitesi (ITÜ)_ Avrasya Yerbilimleri Enstitüsü, Ayazaga˘ 34469 Istanbul,_ Turkey; bITÜ_ Maden Fakültesi, Jeoloji Bölümü, Ayazaga˘ 34469 Istanbul,_ Turkey; cDepartement Aardwetenschappen, Universiteit Utrecht, 3584 CB Utrecht, The Netherlands; and dSoyak Göztepe Sitesi, Üsküdar 34700 Istanbul,_ Turkey Contributed by A. M. Celâl S¸ engör, October 3, 2020 (sent for review July 17, 2020; reviewed by Jonas Kley and Leigh H. Royden) A hitherto unknown Neoproterozoic orogenic system, the Sahar- identical to those now operating (the snowball earth and the ab- ides, is described in North Africa. It formed during the 900–500-Ma sence of land flora were the main deviating factors), yet the interval. The Saharides involved large subduction accretion com- dominantly biostratigraphy-based methods used to untangle oro- plexes occupying almost the entire Arabian Shield and much of genic evolution during the Phanerozoic are not applicable Egypt and parts of the small Precambrian inliers in the Sahara in- to them. cluding the Ahaggar mountains. These complexes consist of, at least by half, juvenile material forming some 5 million km2 new Method of Reconstructing Complex Orogenic Evolution in continental crust. Contrary to conventional wisdom in the areas the Neoproterozoic without Biostratigraphy: Example of the they occupy, -
Overview of Zealandia and Its Subduction Record
Overview of Zealandia and its subduction record Nick Mortimer, GNS Science, Dunedin, New Zealand GNS Science New Guinea SW Pacific geography Fiji New Caledonia Scattered, remote Australia islands Tasman 4 million people Sea New Near Australia Zealand 1000 km GNS Science SW Pacific bathymetry Fiji New Based on satellite Caledonia gravity Broad plateaus and ridges 1-2 km water depth New Zealand 1000 km Sandwell & Smith (1997), Stagpoole (2002) GNS Science SW Pacific 87 present day Fiji tectonics 77 New Caledonia 67 mm/yr • Pacific and Australian plates 53 • nearby pole of PAC plate rotation AUS plate New Zealand 38 • convergence variably oblique • subduction polarity 30 changes 1000 km Bird (2003) GNS Science OJP MP Zealandia • continent that is 95% submerged • rifted internally and on most margins 45-0 Ma 120-85 Ma • now on two plates PAC plate • Hikurangi Plateau adjacent AUS plate HP continental rock 85-55 Ma samples Median Batholith (Cambrian-Cret) Late Cret. MCCs 85-0 Ma Early Cret LIPs 45-0 Ma Preserved E Cret subduction zone 1000 km GNS Science Zealandia and Gondwana • ZLD on PAC and AUS plates PAC plate • match piercing points AUS plate HP • track fracture zones • rotation and translation 1000 km Sutherland (1995, 1999) GNS Science 1000 km 14 April 84,000,000 B.P. Gondwana reconstruction NG Just before major LP breakup episode MR QP KP Continental crust MP NewCal Oceanic crust NLHR AUST Hikurangi LIP SNR SLHR <85 Ma continental breakup D ZLND lines ET Chall STR IB HP Camp CR • Zealandia EANT WR was a ribbon continent WANT After Gaina et al. -
USGS Analysis of the Australian UNCLOS Submission
USGS Analysis of the Australian UNCLOS Submission By Deborah R. Hutchinson and Robert W. Rowland Open-File Report 2006-1073 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey P. Patrick Leahy, Acting Director U.S. Geological Survey, Reston, Virginia For Additional Information: See the United Nations web page on the United Nations Convention on the Law of the Sea at http://www.un.org/Depts/los/index.htm, and the Executive Summary of the Australian UNCLOS submission at http://www.un.org/Depts/los/clcs_new?submission_files/submission_aus.htm. Contact Deborah R. Hutchinson U.S. Geological Survey 384 Woods Hole Road Woods Hole, MA, 02543 [email protected] 508-457-2263 Robert W. Rowland U.S. Geological Survey, Retired 55825 River Shore Lane Elkhart, IN 46516 [email protected] For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation Hutchinson, D.R., and Rowland, R.W., 2006, USGS Analysis of the Australian UNCLOS Submission: U.S. Geological Survey Open-File Report 2006-1073, 19 p., http://pubs.usgs.gov/of/2006/1073. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government, nor does the interpretation presented here reflect official U.S. -
Original Pdf Version
Rhiana Elizabeth Henry Tectonic History Hildebrand Project 1A December 9th, 2016 North America subducted under Rubia Are there modern analogs for Hildebrand’s model of North America subducting under Rubia? In the Geological Society of America Special Papers “Did Westward Subduction Cause Cretaceous–Tertiary Orogeny in the North American Cordillera?” and “Mesozoic Assembly of the North American Cordillera” by Robert S. Hildebrand, the author argues that the North American continent experienced westward subduction under what he calls a “ribbon continent” known as Rubia around ~124Ma. This ribbon continent is composed of multiple terranes both known to be exotic to North America, and terranes that were previously thought to be part of North America. As the seaway between Rubia and North America closed, Hildebrand postulates that North America was dragged underneath with the oceanic crust. This continental material combined with the fluids from the margin caused great amounts of magmatism in the North American Cordillera. Eventually the continental crust broke due to upward buoyancy. This caused slab failure around 75-60 Ma, followed by a reversal of subduction polarity around 53 Ma, with eastward subduction through the mid- Tertiary (Fig. 1). As a way of checking to see if this hypothesis is plausible, I investigated modern geologic settings that are undergoing similar tectonic events. Although these regions are Figure 1: Hildebrand’s model of subduction of not perfect analogies, they share enough North America and Rubia. From Hildebrand, 2009. 1 Rhiana Elizabeth Henry Tectonic History Hildebrand Project 1A December 9th, 2016 tectonic features that Hildebrand’s model appears somewhat less outlandish. -
From Oceanic Plateaus to Allochthonous Terranes: Numerical Modelling
Gondwana Research 25 (2014) 494–508 Contents lists available at ScienceDirect Gondwana Research journal homepage: www.elsevier.com/locate/gr From oceanic plateaus to allochthonous terranes: Numerical modelling Katharina Vogt a,⁎, Taras V. Gerya a,b a Geophysical Fluid Dynamics Group, Institute of Geophysics, Department of Earth Sciences, Swiss Federal Institute of Technology (ETH-Zurich), Sonneggstrasse, 5, 8092 Zurich, Switzerland b Adjunct Professor of Geology Department, Moscow State University, 119899 Moscow, Russia article info abstract Article history: Large segments of the continental crust are known to have formed through the amalgamation of oceanic pla- Received 29 April 2012 teaus and continental fragments. However, mechanisms responsible for terrane accretion remain poorly un- Received in revised form 25 August 2012 derstood. We have therefore analysed the interactions of oceanic plateaus with the leading edge of the Accepted 4 November 2012 continental margin using a thermomechanical–petrological model of an oceanic-continental subduction Available online 23 November 2012 zone with spontaneously moving plates. This model includes partial melting of crustal and mantle lithologies and accounts for complex rheological behaviour including viscous creep and plastic yielding. Our results in- Keywords: Crustal growth dicate that oceanic plateaus may either be lost by subduction or accreted onto continental margins. Complete Subduction subduction of oceanic plateaus is common in models with old (>40 Ma) oceanic lithosphere whereas models Terrane accretion with younger lithosphere often result in terrane accretion. Three distinct modes of terrane accretion were Oceanic plateau identified depending on the rheological structure of the lower crust and oceanic cooling age: frontal plateau accretion, basal plateau accretion and underplating plateaus.