Archaea Bacteria

Total Page:16

File Type:pdf, Size:1020Kb

Archaea Bacteria is is x ica o um ana eolar um y um olv ulatus uta wi is v alis iata a aciens utabilis ata ata wusii us acuolar an ucleata eticum r v adiata oides or is um mis ebr otum a aunii y is assata apa unis a acilis y ensis a r v or us a is ultin atum iata v x n i ucleatus um is spongiosa is me ica a acuolatum ella i ypnospor is a or erhamii undans umpens is idis or er k is antica a incr ii opsis similis liquus ia yticus m is ter is pseudoalv lennista utissima acuolatus anacea a papuasica ix alter vif um insigne vir ius icola ubescens ultistr a opfii v abilis andis ucif r essler aeliensis um paucicellulare us comm us uthii us ab us adiosa ydomonas pulsatilla er us pupuk us macrostellata ydomonas ydomonas m ydomonas ydomonas humicola um eucar ydomonas bipapillata ydomonas ydomonas dysosmos us costato g costato us um er on reticulatum on ydomonas niv ydomonas um terrestre ydomonas r ydomonas ticillata us stipitatus us us v us ococcus br ococcus ydomonas reinhardtii ydomonas ydomonas debar ydomonas rosir astr acium saccatum us ob us acium v ata ydomonas baca ydomonas us r us ydomonas z ydomonas x car x ydomonas r ydomonas ydomonas asymmetr ydomonas is vigenis is us producto capitatus producto us matoz is aquatica is y um duple um ydomonas monadina ydomonas ydomonas fimbr ydomonas v er us o us is ia r ia ia cr ia ollinger ydomonas moe ydomonas o ydomonas pitschmannii ydomonas ydomonas noctigama ydomonas iella aur is astr unda motilopsis tetr motilopsis gelatinosa astr ulum i astr ofingiensis acium perf i motila b motila olytoma mir olytoma obtusum olytoma uv olytoma difficile ina olytoma ellipticum itschiella tuberosa ietochlor ter olytoma anomale ter is tii aulschulzia pseudo aulschulzia olv acium hindakii acium ylla par olytomella iella terrestr icea r Char P Char P Chlorococcopsis min Chlorococcopsis Chloromonas perf a prolif Botr P Chlorococcum oleof er ter Ascochlor P Pleur Chloromonas clathr Chloromonas Protosiphon botr Protosiphon Chlam Chlam Haematococcus zimbabwiensis Spongiochlor us barbatus us Chlam Chlam P us atmoph us Gong Chlam Chlam acystis aer acystis P Hafniomonas reticulata Hafniomonas Dunaliella par Chlam Chloromonas serbino Chloromonas Dunaliella salina a coelothr Chlam Asteromonas g icystis minor Chloromonas rosae Chloromonas Sper alasicus Mur V is peniculum olytoma o olytoma Chaetophor P Stigeoclonium helv on boergesenii P F ar i Hor Chloromonas oogama Chloromonas Planophila terrestr Chlam Hor a liebetr a socialis Chlam Chaetopeltis orbicular Oedogonium cardiacum Oedocladium carolinian ochloropsis reticulata Gloeococcus maxim Gloeococcus Oedogonium angustistom a obo a catenata Chlam Chlam icular Chlam agab Chlam Hor xilis P Bulbochaete hiloensis asiliensis Chlam Pleur ens Chlam P Char ediastr Pleur Pleur Car Chlorella sorokiniana Car Chlorella lobophor ina etr a pellucida upestr Chlam Chlam is midium flaccidum midium Chlam alis Chlorococcum echinozygotum Chlorococcum Chlorella vulgar Chlorococcum h Chlorococcum Mur vula Chlorella k Chlorella min mecia biatorellae a pellucidoidea Nanochlor Prototheca wic P T idis Char Hydrodicty mecia astigmatica Chlorella protothecoides a ser Prototheca z Chlorella ellipsoidea a v is mar Neochlor Chlorella mir Neochlor Scenedesm a albida Scenedesm rebouxia jamesii a r Stichococcus bacillar Chor rebouxia arbor rebouxia asymmetr ia dentata Scenedesm Chlorella saccharophilaChlorella luteo ia major Scenedesm ma Scotiellopsis terrestr Scotiellopsis iedmannia isr Coelastrella m Coelastrella acteacoccus giganteus acteacoccus rebouxia usneae ueller rebouxia impressa Dicty T ia acetab Scenedesm T Scotiellopsis oocystif Scotiellopsis T acteacoccus minor acteacoccus tissii r Scenedesm an bosseae Scenedesm acteacoccus g acteacoccus acteacoccus medion acteacoccus T T rebouxia magna vis Myr Scenedesm nodesmis v olutae acteacoccus aer acteacoccus nemannii is a preissii a Ankistrodesm Scenedesm F Myr T Br Chlorella z Chlorella v restis ia schenkii acea Stein ium hook ium Br Chlorella homosphaerMicrothamnion kuetzingian une Leptosir ular oetida Br ular Br Raphidonema longiseta Raphidonema Siphonocladus tropicus Br Er a m a me a austr a Cladophor ular ylla Chlorokyb ia furcata ia iata a conniv a Cladophor is dumentosa Coleochaete orbicular Coleochaete Microdicty Klebsor alonia utr ysa peniculus a occidentalis ica a vulgar a ysa par a oerstedii olypella por olypella Coleochaete scutata Coleochaete a hispida a Cladophor Cladophor a f a Cladophor mosum Nitella fle Nitella a cur a or ychnothamn Nitella axillar Nitella V T Chamaedor a hor a Char if ica Cladophoropsis Cladophormembr L me Nitellopsis obtusa Nitellopsis ogyna brongar ogyna ulum upestr or ma sarcinoidea onata Lamprothamnium papulosum Lamprothamnium CladophoropsisCladophor z atiae Lamprothamnium macropogon Lamprothamnium y Cladophor Cladophor ies Char yr r Char or Char CladophorCladophor Char Acetab Char Acetab olyph xualis Char olyph us ascens Char Acetab Acicular netella nitida ix z Char a megasper ica ossombronia br ossombronia reen alga P P Riccardia pinguis Riccardia utab mis ossombronia pusilla ossombronia elia dubia Metzger Haplomitr Neomer ichocolea tomentella ichocolea F atus Cymopolia v ella elegansium catenoides rometr Chlorocladus austr r F pur Lophocolea heteroph Lophocolea mecia bisecta a eccentr or Batophor Batophor ium p ium aselmis con y a belgica allis g allis T ellia epiph ellia ultiser ichum f ichum Bor a rotula pa Pseudoneochlor aselmis str Plagiochila adiantoides Plagiochila ium Scapania nemorea Scapania ytr Symph yg Gloeotilopsis planctonica aphis pellucida aphis mannia leiantha mannia ichum comm ichum elli P Protoder Pseudendoclonium basiliense a bise Anthoceros lae Anthoceros etr ichum undulatum ichum akakia lepidozioides akakia Ulothr Anthoceros ag Anthoceros etr Andreaea rothii Andreaea Myr T ichum angustatum ichum etr T um yretica T Andreaea r Andreaea er ia h ia olytr ontana T Scherff Oltmannsiellopsis vir icta elopa Atr olytr Pseudoscourfieldia mar yum v yum P ytophthor NephroselmisMantoniella oliv squamata v Atr pus pur pus ia borealis ightw yscomitrella patens yscomitrella P unger pum Coccoid g a um cupressif um a glacialis atulus amesoniella autumnalis amesoniella Calypogeia arguta Calypogeia ythecium r ythecium Achly yscomitr J v ytidiadelphus squarrosus ytidiadelphus Lagenidium giganteum J Ph Timmia sibir Timmia De apiliocellulus elegans Ph Hyphoch Cymatosir adiatus me a Funar amia pomif amia eletonema costatum um eletonema pseudocostatum Ph P ach Rh Thalassiosir tr um ia aquatica ia Hylocomium splendens Hylocomium yllum or Thalassiosir er Hypn iatula Sk Calliergonella cuspidata Calliergonella if Sk orosir amia str amia ia paxillif yum julaceum yum ittonia longipes ittonia Br i Lauder Plagiothecium undulatum Plagiothecium tr P iophilum Pyrrhobr i oides yr Bar Chaetoceros didym Philonotis f Philonotis y Chaetoceros rostr pum thodontium lineare thodontium Eucampia antarctica ians yum giganteum yum Rhacocar Odontella sinensis obr Hedwigia ciliata Hedwigia ionellopsis glacilia Ditylum br ia str ontinalis antip ontinalis y Bar ar Streptotheca thamesis a ambigua Or Lithodesmium undulatum roides um luteum um a distans ia elongata ia yum argenteum yum F yxis broschii ymenium pulchr ymenium Pseudo nitzschia pungens Scouler um macrocar um i ia br ia Br Pseudo nitzschia m ia lingulata ia ium yum caespiticium yum yum p yum Encalypta rhapdocar Encalypta Bacillar a v er Nitzschia apiculata ymenoph yum alpin yum ag Br Cylindrotheca closter mis um yum donian yum er Aster y ia Anomobr agilar osolenia setiger Br ach opsis stellif um Rhaphoneis belgicaer ner olius Br Thalassionema nitzschioides or aplodon mnioides aplodon uda ylor Br n us comosus ica F amineum Rhodobr um us Br a Actinocyclus cur odatensis ium gardner ium Coscinodiscus r T etr Corethron cr Splachn Rhiz ulacoseir er T audy ia costata i Leptobr Melosir ulacoseir a langsdorfii o xan A ohlia bolander ohlia pha Meesia uliginosa Meesia A ica Leptostom alis Stephanop P ropsis m uncata rometr Mielichhof um scopar um Gir a hak ohlia cr ohlia tomnium h tomnium ur Saccorhiza polyschides erens Mielichhof Desmarestia ligulata ina P ylla yllantha ag yg Chorda tomentosa Cinclidium stygium Cinclidium ichum str ichum an Sporochn idis Mnium hor Mnium pus te pus Costar pos donnelli pos Cyr Hizikia fusif pus siliculosus yte Plagiomnium affine Plagiomnium ata My Ptychomitr tula r tula Sargassum macrocar ursata vir ottia tr ottia upestre ix debilis Dicr Sargassum confusum thotr Fissidens taxif Fissidens Sargassum hor etia babingtonii P or Coccophor ynchium hians ynchium ia T ardia h ardia ia b ia virescens Or Cystoseir ydium stolonif Fucus distichuselv ysis mar Ulota ph Ulota Fucus gardner W P ocina Blindia acuta Blindia ulacomnium turgidum ulacomnium Ectocar ydiopsis intercedens ulacomnium androgyn ulacomnium ibonema aequale Eurh Scytosiphon lomentar A yum Botr r A oae pos natans pos olv T amenopile asilis Sphaerocar ieui ogelii Sphaerocar Heterothr aucher Botr acuolar olia um palustre um Riella helicoph Riella V um cuspidatum um Marchantia polymor Marchantia ia v V a omos Bucegia romanica Bucegia Heterosigma akashiw undata istach Preissia quadr Preissia Chattonella subsalsa Reboulia hemisphaer Reboulia ureomonas lagunensis is Sarcinochr a Conocephalum conicum Conocephalum olia Plagiochasma r Plagiochasma A elagomonas calceolata ulata emale Coccoid pelagoph ustum er Riccia fluitans Riccia y P elagococcus sub Ricciocar ureococcus anophageff a petersenii iata P a glabr Sphagn estita Sphagn A allioides essellar ur a sphagnicola Coccoid str ur Isoetes dur Isoetes v T a spinosa Isoetes
Recommended publications
  • Ciliate Diversity, Community Structure, and Novel Taxa in Lakes of the Mcmurdo Dry Valleys, Antarctica
    Reference: Biol. Bull. 227: 175–190. (October 2014) © 2014 Marine Biological Laboratory Ciliate Diversity, Community Structure, and Novel Taxa in Lakes of the McMurdo Dry Valleys, Antarctica YUAN XU1,*†, TRISTA VICK-MAJORS2, RACHAEL MORGAN-KISS3, JOHN C. PRISCU2, AND LINDA AMARAL-ZETTLER4,5,*࿣ 1Laboratory of Protozoology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; 2Montana State University, Department of Land Resources and Environmental Sciences, 334 Leon Johnson Hall, Bozeman, Montana 59717; 3Department of Microbiology, Miami University, Oxford, Ohio 45056; 4The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts 02543; and 5Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island 02912 Abstract. We report an in-depth survey of next-genera- trends in dissolved oxygen concentration and salinity may tion DNA sequencing of ciliate diversity and community play a critical role in structuring ciliate communities. A structure in two permanently ice-covered McMurdo Dry PCR-based strategy capitalizing on divergent eukaryotic V9 Valley lakes during the austral summer and autumn (No- hypervariable region ribosomal RNA gene targets unveiled vember 2007 and March 2008). We tested hypotheses on the two new genera in these lakes. A novel taxon belonging to relationship between species richness and environmental an unknown class most closely related to Cryptocaryon conditions
    [Show full text]
  • PROTISTAS MARINOS Viviana A
    PROTISTAS MARINOS Viviana A. Alder INTRODUCCIÓN plantas y animales. Según este esquema básico, a las plantas les correspondían las características de En 1673, el editor de Philosophical Transac- ser organismos sésiles con pigmentos fotosinté- tions of the Royal Society of London recibió una ticos para la síntesis de las sustancias esenciales carta del anatomista Regnier de Graaf informan- para su metabolismo a partir de sustancias inor- do que un comerciante holandés, Antonie van gánicas (nutrición autótrofa), y de poseer células Leeuwenhoek, había “diseñado microscopios rodeadas por paredes de celulosa. En oposición muy superiores a aquéllos que hemos visto has- a las plantas, les correspondía a los animales los ta ahora”. Van Leeuwenhoek vendía lana, algo- atributos de tener motilidad activa y de carecer dón y otros materiales textiles, y se había visto tanto de pigmentos fotosintéticos (debiendo por en la necesidad de mejorar las lentes de aumento lo tanto procurarse su alimento a partir de sustan- que comúnmente usaba para contar el número cias orgánicas sintetizadas por otros organismos) de hebras y evaluar la calidad de fibras y tejidos. como de paredes celulósicas en sus células. Así fue que construyó su primer microscopio de Es a partir de los estudios de Georg Gol- lente única: simple, pequeño, pero con un poder dfuss (1782-1848) que estos diminutos organis- de magnificación de hasta 300 aumentos (¡diez mos, invisibles a ojo desnudo, comienzan a ser veces más que sus precursores!). Este magnífico clasificados como plantas primarias
    [Show full text]
  • Dynamic of the Sargassum Tide Holobiont in the Caribbean Islands
    From the Sea to the Land: Dynamic of the Sargassum Tide Holobiont in the Caribbean Islands Pascal Jean Lopez ( [email protected] ) CNRS Délégation Paris B https://orcid.org/0000-0002-9914-4252 Vincent Hervé Max-Planck-Institut for Terrestrial Microbiology Josie Lambourdière Centre National de la Recherche Scientique Malika René-Trouillefou Universite des Antilles et de la Guyane Damien Devault Centre National de la Recherche Scientique Research Keywords: Macroalgae, Methanogenic archaea, Sulfate-reducing bacteria, Epibiont, Microbial communities, Nematodes, Ciliates Posted Date: June 9th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-33861/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/27 Abstract Background Over the last decade, intensity and frequency of Sargassum blooms in the Caribbean Sea and central Atlantic Ocean have dramatically increased, causing growing ecological, social and economic concern throughout the entire Caribbean region. These golden-brown tides form an ecosystem that maintains life for a large number of associated species, and their circulation across the Atlantic Ocean support the displacement and maybe the settlement of various species, especially microorganisms. To comprehensively identify the micro- and meiofauna associated to Sargassum, one hundred samples were collected during the 2018 tide events that were the largest ever recorded. Results We investigated the composition and the existence of specic species in three compartments, namely, Sargassum at tide sites, in the surrounding seawater, and in inland seaweed storage sites. Metabarcoding data revealed shifts between compartments in both prokaryotic and eukaryotic communities, and large differences for eukaryotes especially bryozoans, nematodes and ciliates.
    [Show full text]
  • Biologia Celular – Cell Biology
    Biologia Celular – Cell Biology BC001 - Structural Basis of the Interaction of a Trypanosoma cruzi Surface Molecule Implicated in Oral Infection with Host Cells and Gastric Mucin CORTEZ, C.*1; YOSHIDA, N.1; BAHIA, D.1; SOBREIRA, T.2 1.UNIFESP, SÃO PAULO, SP, BRASIL; 2.SINCROTRON, CAMPINAS, SP, BRASIL. e-mail:[email protected] Host cell invasion and dissemination within the host are hallmarks of virulence for many pathogenic microorganisms. As concerns Trypanosoma cruzi that causes Chagas disease, the insect vector-derived metacyclic trypomastigotes (MT) initiate infection by invading host cells, and later blood trypomastigotes disseminate to diverse organs and tissues. Studies with MT generated in vitro and tissue culture-derived trypomastigotes (TCT), as counterparts of insect- borne and bloodstream parasites, have implicated members of the gp85/trans-sialidase superfamily, MT gp82 and TCT Tc85-11, in cell invasion and interaction with host factors. Here we analyzed the gp82 structure/function characteristics and compared them with those previously reported for Tc85-11. One of the gp82 sequences identified as a cell binding site consisted of an alpha-helix, which connects the N-terminal beta-propeller domain to the C- terminal beta-sandwich domain where the second binding site is nested. In the gp82 structure model, both sites were exposed at the surface. Unlike gp82, the Tc85-11 cell adhesion sites are located in the N-terminal beta-propeller region. The gp82 sequence corresponding to the epitope for a monoclonal antibody that inhibits MT entry into target cells was exposed on the surface, upstream and contiguous to the alpha-helix. Located downstream and close to the alpha-helix was the gp82 gastric mucin binding site, which plays a central role in oral T.
    [Show full text]
  • VII EUROPEAN CONGRESS of PROTISTOLOGY in Partnership with the INTERNATIONAL SOCIETY of PROTISTOLOGISTS (VII ECOP - ISOP Joint Meeting)
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/283484592 FINAL PROGRAMME AND ABSTRACTS BOOK - VII EUROPEAN CONGRESS OF PROTISTOLOGY in partnership with THE INTERNATIONAL SOCIETY OF PROTISTOLOGISTS (VII ECOP - ISOP Joint Meeting) Conference Paper · September 2015 CITATIONS READS 0 620 1 author: Aurelio Serrano Institute of Plant Biochemistry and Photosynthesis, Joint Center CSIC-Univ. of Seville, Spain 157 PUBLICATIONS 1,824 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Use Tetrahymena as a model stress study View project Characterization of true-branching cyanobacteria from geothermal sites and hot springs of Costa Rica View project All content following this page was uploaded by Aurelio Serrano on 04 November 2015. The user has requested enhancement of the downloaded file. VII ECOP - ISOP Joint Meeting / 1 Content VII ECOP - ISOP Joint Meeting ORGANIZING COMMITTEES / 3 WELCOME ADDRESS / 4 CONGRESS USEFUL / 5 INFORMATION SOCIAL PROGRAMME / 12 CITY OF SEVILLE / 14 PROGRAMME OVERVIEW / 18 CONGRESS PROGRAMME / 19 Opening Ceremony / 19 Plenary Lectures / 19 Symposia and Workshops / 20 Special Sessions - Oral Presentations / 35 by PhD Students and Young Postdocts General Oral Sessions / 37 Poster Sessions / 42 ABSTRACTS / 57 Plenary Lectures / 57 Oral Presentations / 66 Posters / 231 AUTHOR INDEX / 423 ACKNOWLEDGMENTS-CREDITS / 429 President of the Organizing Committee Secretary of the Organizing Committee Dr. Aurelio Serrano
    [Show full text]
  • Deep Sequencing of Subseafloor Eukaryotic Rrna Reveals Active Fungi Across Marine Subsurface Provinces
    Deep Sequencing of Subseafloor Eukaryotic rRNA Reveals Active Fungi across Marine Subsurface Provinces William Orsi1*, Jennifer F. Biddle2, Virginia Edgcomb1 1 Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America, 2 College of Earth, Ocean, and Environment, University of Delaware, Lewes, Delaware, United States of America Abstract The deep marine subsurface is a vast habitat for microbial life where cells may live on geologic timescales. Because DNA in sediments may be preserved on long timescales, ribosomal RNA (rRNA) is suggested to be a proxy for the active fraction of a microbial community in the subsurface. During an investigation of eukaryotic 18S rRNA by amplicon pyrosequencing, unique profiles of Fungi were found across a range of marine subsurface provinces including ridge flanks, continental margins, and abyssal plains. Subseafloor fungal populations exhibit statistically significant correlations with total organic carbon (TOC), nitrate, sulfide, and dissolved inorganic carbon (DIC). These correlations are supported by terminal restriction length polymorphism (TRFLP) analyses of fungal rRNA. Geochemical correlations with fungal pyrosequencing and TRFLP data from this geographically broad sample set suggests environmental selection of active Fungi in the marine subsurface. Within the same dataset, ancient rRNA signatures were recovered from plants and diatoms in marine sediments ranging from 0.03 to 2.7 million years old, suggesting that rRNA from some eukaryotic taxa may be much more stable than previously considered in the marine subsurface. Citation: Orsi W, Biddle JF, Edgcomb V (2013) Deep Sequencing of Subseafloor Eukaryotic rRNA Reveals Active Fungi across Marine Subsurface Provinces. PLoS ONE 8(2): e56335.
    [Show full text]
  • Aquatic Microbial Ecology 74:121
    Vol. 74: 121–141, 2015 AQUATIC MICROBIAL ECOLOGY Published online February 12 doi: 10.3354/ame01727 Aquat Microb Ecol Eutrophication of peatbogs: consequences of P and N enrichment for microbial and metazoan communities in mesocosm experiments Tomasz Mieczan*, Małgorzata Adamczuk, Barbara Pawlik-Skowronska,´ Magdalena Toporowska Department of Hydrobiology, University of Life Sciences, Dobrzanskiego´ 37, 20-262 Lublin, Poland ABSTRACT: Complex interactions between bacteria and protists are essential to the ecosystem ecology of peatbogs. However, little is known about how short-term changes in environmental conditions may influence microbial and metazoan communities. Microbial processes and para - meters may be used as sensitive indicators of eutrophication. We address the hypothesis that an increase in the concentration of nutrients (in an experiment simulating eutrophication) will affect species richness and abundance of microorganisms and small metazoans and will cause changes in food web structure in different types of peatbogs. The experiments were performed in a Sphag- num peatland and a carbonate fen. Four experimental treatments were established (control and fertilised: +P, +N, P+N). An increase in habitat fertility was found to modify the taxonomic compo- sition and functioning of microbial communities. This was reflected in a decrease in the species richness of testate amoebae and a substantial increase in the abundance of bacteria, flagellates and ciliates in both types of peatbogs. A better understanding of which parameters regulate microbial populations in peatbogs is critical for more accurate prediction of how peatbogs will respond to global change or anthropogenic disturbances. KEY WORDS: Bog · Algae · Bacteria · Protists · Rotifers · Cladocera · Copepoda · Microbial food webs Resale or republication not permitted without written consent of the publisher INTRODUCTION pH (Kankaala et al.
    [Show full text]
  • Morphology, Ultrastructure, Genomics, and Phylogeny of Euplotes Vanleeuwenhoeki Sp
    www.nature.com/scientificreports OPEN Morphology, ultrastructure, genomics, and phylogeny of Euplotes vanleeuwenhoeki sp. nov. and its ultra‑reduced endosymbiont “Candidatus Pinguicoccus supinus” sp. nov. Valentina Serra1,7, Leandro Gammuto1,7, Venkatamahesh Nitla1, Michele Castelli2,3, Olivia Lanzoni1, Davide Sassera3, Claudio Bandi2, Bhagavatula Venkata Sandeep4, Franco Verni1, Letizia Modeo1,5,6* & Giulio Petroni1,5,6* Taxonomy is the science of defning and naming groups of biological organisms based on shared characteristics and, more recently, on evolutionary relationships. With the birth of novel genomics/ bioinformatics techniques and the increasing interest in microbiome studies, a further advance of taxonomic discipline appears not only possible but highly desirable. The present work proposes a new approach to modern taxonomy, consisting in the inclusion of novel descriptors in the organism characterization: (1) the presence of associated microorganisms (e.g.: symbionts, microbiome), (2) the mitochondrial genome of the host, (3) the symbiont genome. This approach aims to provide a deeper comprehension of the evolutionary/ecological dimensions of organisms since their very frst description. Particularly interesting, are those complexes formed by the host plus associated microorganisms, that in the present study we refer to as “holobionts”. We illustrate this approach through the description of the ciliate Euplotes vanleeuwenhoeki sp. nov. and its bacterial endosymbiont “Candidatus Pinguicoccus supinus” gen. nov., sp. nov. The endosymbiont possesses an extremely reduced genome (~ 163 kbp); intriguingly, this suggests a high integration between host and symbiont. Taxonomy is the science of defning and naming groups of biological organisms based on shared characteristics and, more recently, based on evolutionary relationships. Classical taxonomy was exclusively based on morpho- logical-comparative techniques requiring a very high specialization on specifc taxa.
    [Show full text]
  • The Hydrogenosomes of Psalteriomonas Lanterna
    BMC Evolutionary Biology BioMed Central Research article Open Access The hydrogenosomes of Psalteriomonas lanterna Rob M de Graaf†1, Isabel Duarte†2, Theo A van Alen1, Jan WP Kuiper1,4, Klaas Schotanus1,5, Jörg Rosenberg3, Martijn A Huynen2,6 and Johannes HP Hackstein*1 Address: 1Department of Evolutionary Microbiology, IWWR, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands, 2Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein 28, 6525GA Nijmegen, The Netherlands, 3Sommerhaus 45, D-50129 Bergheim, Germany, 4CIHR Group in Matrix Dynamics, University of Toronto, 150 College Street, Toronto, Ontario, Canada M5S 3E2, 5Department of Ecology and Evolutionary Biology, 106A Guyot Hall, Princeton University, Princeton NJ 08554-2016, USA and 6Netherlands Bioinformatic Centre, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands Email: Rob M de Graaf - [email protected]; Isabel Duarte - [email protected]; Theo A van Alen - [email protected]; Jan WP Kuiper - [email protected]; Klaas Schotanus - [email protected]; Jörg Rosenberg - [email protected]; Martijn A Huynen - [email protected]; Johannes HP Hackstein* - [email protected] * Corresponding author †Equal contributors Published: 9 December 2009 Received: 20 July 2009 Accepted: 9 December 2009 BMC Evolutionary Biology 2009, 9:287 doi:10.1186/1471-2148-9-287 This article is available from: http://www.biomedcentral.com/1471-2148/9/287 © 2009 de Graaf et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • The Revised Classification of Eukaryotes
    Published in Journal of Eukaryotic Microbiology 59, issue 5, 429-514, 2012 which should be used for any reference to this work 1 The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D. MITCHELL,l SHARON E. MOZLEY-STANRIDGE,p LAURA W. PARFREY,q JAN PAWLOWSKI,r SONJA RUECKERT,s LAURA SHADWICK,t CONRAD L. SCHOCH,u ALEXEY SMIRNOVv and FREDERICK W. SPIEGELt aDepartment of Soil Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada, and bDepartment of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada, and cDepartment of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, 02881, USA, and dBiology Center and Faculty of Sciences, Institute of Parasitology, University of South Bohemia, Cˇeske´ Budeˇjovice, Czech Republic, and eZoology Department, Natural History Museum, London, SW7 5BD, United Kingdom, and fWadsworth Center, New York State Department of Health, Albany, New York, 12201, USA, and gDepartment of Biochemistry, Dalhousie University, Halifax, NS, B3H 4R2, Canada, and hDepartment of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada, and iDepartment of Ecology, University of Kaiserslautern, 67663, Kaiserslautern, Germany, and jDepartment of Parasitology, Charles University, Prague, 128 43, Praha 2, Czech
    [Show full text]
  • Adl S.M., Simpson A.G.B., Lane C.E., Lukeš J., Bass D., Bowser S.S
    The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 59(5), 2012 pp. 429–493 © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists DOI: 10.1111/j.1550-7408.2012.00644.x The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D. MITCHELL,l SHARON E. MOZLEY-STANRIDGE,p LAURA W. PARFREY,q JAN PAWLOWSKI,r SONJA RUECKERT,s LAURA SHADWICK,t CONRAD L. SCHOCH,u ALEXEY SMIRNOVv and FREDERICK W. SPIEGELt aDepartment of Soil Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada, and bDepartment of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada, and cDepartment of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, 02881, USA, and dBiology Center and Faculty of Sciences, Institute of Parasitology, University of South Bohemia, Cˇeske´ Budeˇjovice, Czech Republic, and eZoology Department, Natural History Museum, London, SW7 5BD, United Kingdom, and fWadsworth Center, New York State Department of Health, Albany, New York, 12201, USA, and gDepartment of Biochemistry, Dalhousie University, Halifax, NS, B3H 4R2, Canada, and hDepartment of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada, and iDepartment
    [Show full text]
  • Evolution of Hydrogenosomes in Anaerobic Ciliates
    Evolution of hydrogenosomes in anaerobic ciliates William H. Lewis Doctor of Philosophy Institute for Cell and Molecular Biosciences March 2017 i Abstract Within ciliates (protozoa of the phylum Ciliophora), anaerobic species are widespread and typically possess organelles which produce H2 and ATP, called hydrogenosomes. Hydrogenosomes are mitochondrial homologues and are a product of evolutionary convergence, having been found in wide-ranging and diverse anaerobic eukaryotes. Ciliates seem to have evolved hydrogenosomes on multiple occasions from the mitochondria of their aerobic ancestors. The hydrogenosomes of the ciliate Nyctotherus ovalis were studied in detail previously but little is known about the hydrogenosomes from other ciliate species. In the present study seven species of ciliate, Cyclidium porcatum, Metopus contortus, Metopus es, Metopus striatus, Nyctotherus ovalis, Plagiopyla frontata and Trimyema sp. were cultured and their hydrogenosomes were investigated using genomic and transcriptomic sequencing from whole genome amplifications from single and small numbers of isolated cells. The data were then used to reconstruct putative hydrogenosome metabolic pathways. Components of these pathways are typically encoded by the ciliate nuclear genomes but Nyctotherus ovalis, Metopus contortus, Metopus es, Metopus striatus and Cyclidium porcatum have also retained mitochondrial (now hydrogenosomal) genomes which were sequenced for the first time. The most complete of these genomes were from Nyctotherus ovalis and Metopus contortus.
    [Show full text]