Anthracnose of Cereals and Grasses

Total Page:16

File Type:pdf, Size:1020Kb

Anthracnose of Cereals and Grasses Online advance Fungal Diversity Anthracnose of cereals and grasses Crouch, J.A.1,2* and Beirn, L.A.1 1Department of Plant Biology and Pathology, Rutgers University, 59 Dudley Road, New Brunswick, NJ, USA 2Current address: Cereal Disease Laboratory, United States Department of Agriculture, Agricultural Research Service, 1551 Lindig Street, St. Paul, MN 55108, USA Crouch, J.A. and Beirn, L.A. (2009). Anthracnose of cereals and grasses. Fungal Diversity 39: 19-44. Anthracnose impacts on the health of cereals and grasses worldwide and is caused by a monophyletic group of taxa in the genus Colletotrichum. During the past decade there have been important changes in our knowledge of how the grass-associated Colletotrichum have evolved, and an increased understanding of the mechanisms by which these fungi engage in hemibiotrophic interactions with their host plants. Several new species of graminicolous Colletotrichum have been described from both cool- and warm-season grasses, revealing a pattern of distinctly specialized relationships between these fungi and their hosts. In this review, an overview of the Colletotrichum species that cause anthracnose disease in cereals and grasses is provided. The current knowledge of how these organisms interact with and impact their hosts, their evolutionary histories, population processes, and how these factors come together to influence the diversity and ecology of the graminicolous Colletotrichum group are highlighed. Key words: anthracnose, Colletotrichum, corn, disease epidemics, endophyte, oats, plant disease, phylogenetics, Poaceae, prairie, sorghum, sugarcane, turfgrass, wheat. Article Information Received 09 Oct 2009 Accepted 05 Nov 2009 Published online 9 December 2009 *Corresponding author: Jo Anne Crouch; e-mail: [email protected] Introduction character that distinguishes the group from the morphologically similar genus Gloeosporium. Colletotrichum species cause anthracnose Colletotrichum species associated with gra- diseases of cereals and grasses worldwide, minicolous plants have falcate-shaped asexual infesting at least 42 genera of plants in the conidia, a morphological feature that is also family Poaceae (Table 1). Representative shared by a number of Colletotrichum found on illustrations of disease symptoms caused by dicotyledonous and non-graminicolous mono- these fungi are shown in Fig. 1. Although best cotyledonous hosts, including C. dematium, known as plant pathogens, naturally occurring C. capsici, C. circinans and C. trichellum endophytic strains of Colletotrichum in the (Sutton, 1980; Shenoy et al., 2007). With the species C. cereale have recently been reported exception of a single report of the fusoid- from grasses in the subfamily Pooideae, includ- spored C. acutatum inhabiting Calamagrostis Χ ing wheat, orchardgrass, Canadian wildrye and acutifolia as a non-pathogen or the rare smooth brome grass (Triticum aestivum, pathogenic association of C. gloeosporioides Dactylis glomerata, Elymus canadensis and with local landraces of sorghum, only Colleto- Bromus inermis; Crouch et al., 2009c). trichum with falcate conidia have been iden- In their sexual state, these fungi are tified from grass hosts (Mathur et al., 2002; members of the ascomycete genus Glomerella, Crouch and Inguagiato, 2009). Conversely, although with the exception of C. falcatum, only one grass-associated species, C. grami- teleomorphs are rare or absent, and have never nicola, has been reported from a host other been reported from the field. Like all members than graminicolous plants, causing keratitis in of the genus, graminicolous Colletotrichum humans (Ritterband et al., 1997). Given the produce erumpent acervuli containing heavily frequent inaccurate application of the name C. melanized, sterile hairs called setae (Fig. 2), a graminicola prior to 2006 (see taxonomy 19 Table 1. The 14 species of Colletotrichum associated with cereal and grass hosts, with host range and Glomerella teleomorphs. Species Teleomorph Host genera C. axonopodi – Axonopus C. caudatum – Andropogon, Agropyron, Aristida, Bothriochloa, Cymbopogon, Eragrostis, Eremochloa, Eulaliopsis, Koeleria, Imperata, Roetboellia, Schizachyrium, Setaria, Sorghastrum, Sporobolus, Zoysia C. cereale – Agrostis, Avena, Bromus, Calamagrostis, Dactylis, Elymus, Festuca, Hierochloe, Holcus, Hordeum, Lolium, Poa, Polypogon, Triticum C. echinochloae – Echinochloa C. eleusines – Eleusines C. falcatum G. tucamensis Saccharum C. graminicola G. graminicola Zea C. hanaui – Digitaria C. jacksonii – Echinochloa C. miscanthi – Miscanthus C. navitas – Panicum C. nicholsonii – Paspalum C. paspali – Paspalum C. sublineola G. sorghi1 Sorghum, Eremochloa 1The teleomorph of C. sublineola has been generated in vitro by Vaillancourt and Hanau (1992) but is not yet formally described. A forthcoming paper is in preparation, describing the fungus as Glomerella sorghi (Lisa Vaillancourt, pers. comm.). section, below), it is currently unknown major themes that underlie the diversity of whether the keratitis-associated strain of the these fungi: (1) life cycle and biology; (2) fungus is a true member of C. graminicola. species boundaries and taxonomy; and (3) Although anthracnose diseases in cereals ecology of the graminicolous Colletotrichum, and grasses have been well-studied since the as influenced by the environment, physiolo- beginning of the 20th century, recent research gical races, population dynamics and disease. has shown that the group is larger and more complex than previously expected. Periodic I. Biology and lifecycle of the graminicolous outbreaks of anthracnose disease in important Colletotrichum cereal and grass crops over the course of the past 70 years attests to the adaptive potential of Much of what is known concerning the these organisms, but additional research is biology, epidemiology and the interaction of needed in this area if we are to understand the Colletotrichum species with cereal and grass underlying mechanisms responsible for disease hosts is drawn from just two species: C. emergence. In this review, we present an graminicola and C. sublineola which cause overview of the graminicolous Colletotrichum anthracnose pathogens of corn (Zea mays) and group, emphasizing recent findings about its sorghum, respectively. In particular, beginning evolution and phylogeny, biology and host- with the onset of a devastating corn anthrac- pathogen interactions, novel anthracnose nose epidemic during the early 1970s, C. gra- disease outbreaks in new grass systems, and minicola has emerged as a model system for practical considerations for the molecular the biology and epidemiology for the entire discrimination of these fungi. We also provide graminicolous Colletotrichum group. Colleto- a synthesis of several older studies for the first trichum graminicola also holds the distinction time, providing connections that would not of being the first Colletotrichum species with have been possible prior to the current a sequenced genome (http://www.broadinsti advances in taxonomy and nomenclature for tute.org/annotation/genome/colletotrichum_gro the group. The review is organized in three up/MultiHome.html). Bergstrom and Nichol- major sections, in order to explore some of the son (1999, 2000) provided comprehensive 20 Fungal Diversity (A) (B) (C) (D) (E) (F) (G) (H) Fig. 1. Anthracnose disease symptoms on cereals and grasses caused by Colletotrichum species. A, B. anthracnose basal stem rot of Poa annua turf; B shows a close-up of setae emerging from acervuli on plant surface; C, D. C. navitas on Panicum virgatum leaves and stem; E, F. C. sublineola on Sorghum bicolor leaves; G. Red rot of Saccharum officinarum caused by C. falcatum; and H. C. caudatum on Sorghastrum nutans. Photos courtesy of John Inguagiato (A, B); Ester Buiate (E, F); Eric McKenzie (G) and Gary Bergstrom (H). 21 Hordeum vulgare; Sanford, 1935; Caglevic, 1960) or overwinter as living mycelia in winter grains (Selby and Manns, 1909). Disease can a be initiated from any of these sources; however, C. graminicola has been shown to cause more destruction when primary inoculum initiates from saprotrophic residues on the soil surface (Naylor and Leonard, 1977; Casela and Frederiksen, 1993; Lipps, 1983, 1985, 1988). In the absence of decaying plant material, b lysing of C. graminicola spores and mycelium occurs rapidly due to competition from other c fungal soil inhabitants (Vizvary and Warren 1982; Lipps, 1983, 1985). Survival in the soil is heavily dependent on environmental conditions, temperature, and other soil Fig. 2. Colletotrichum cereale grown on potato dextrose microflora. When ample debris is present, agar. Shown: diagnostic black setae emerging from a fungal material can effectively overwinter for central mass of hyphae, surrounded by conidia which lengthy periods and provide a source of have been produced from conidiogenous cells. Bar = 25 primary inoculum for the following season. μm. Colletotrichum sublineola is capable of surviving on crop debris for 18 months (Casela reviews of C. graminicola as a pathogen of and Frederiksen, 1993) and C. graminicola for corn in (1999, 2000) provided comprehensive 20 months (Naylor and Leonard, 1977). Corn reviews of C. graminicola as a pathogen of kernels stored at 4°C may also harbor C. corn in The following section provides an graminicola for more than three years (Warren, overview of the biology and lifecycle of the 1977), while C. sublineola survives in sorghum graminicolous Colletotrichum, updated to in- seed at room temperature for
Recommended publications
  • Colletotrichum – Names in Current Use
    Online advance Fungal Diversity Colletotrichum – names in current use Hyde, K.D.1,7*, Cai, L.2, Cannon, P.F.3, Crouch, J.A.4, Crous, P.W.5, Damm, U. 5, Goodwin, P.H.6, Chen, H.7, Johnston, P.R.8, Jones, E.B.G.9, Liu, Z.Y.10, McKenzie, E.H.C.8, Moriwaki, J.11, Noireung, P.1, Pennycook, S.R.8, Pfenning, L.H.12, Prihastuti, H.1, Sato, T.13, Shivas, R.G.14, Tan, Y.P.14, Taylor, P.W.J.15, Weir, B.S.8, Yang, Y.L.10,16 and Zhang, J.Z.17 1,School of Science, Mae Fah Luang University, Chaing Rai, Thailand 2Research & Development Centre, Novozymes, Beijing 100085, PR China 3CABI, Bakeham Lane, Egham, Surrey TW20 9TY, UK and Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK 4Cereal Disease Laboratory, U.S. Department of Agriculture, Agricultural Research Service, 1551 Lindig Street, St. Paul, MN 55108, USA 5CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands 6School of Environmental Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada 7International Fungal Research & Development Centre, The Research Institute of Resource Insects, Chinese Academy of Forestry, Bailongsi, Kunming 650224, PR China 8Landcare Research, Private Bag 92170, Auckland 1142, New Zealand 9BIOTEC Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology, NSTDA, 113 Thailand Science Park, Paholyothin Road, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand 10Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou 550006 PR China 11Hokuriku Research Center, National Agricultural Research Center,
    [Show full text]
  • Estudio De La Evolución De Un Fitopatógeno: Genómica Comparada Del Hongo Patógeno De Maíz Colletotrichum Graminicola
    Universidad de salamanca FACULTAD DE BIOLOGÍA DEPARTAMENTO DE MICROBIOLOGÍA Y GENÉTICA ÁREA: GENÉTICA TESIS DOCTORAL Estudio de la evolución de un fitopatógeno: Genómica comparada del hongo patógeno de maíz Colletotrichum graminicola GABRIEL EDUARDO RECH SALAMANCA, 2013 UNIVERSIDAD DE SALAMANCA Facultad de Biología Departamento de Microbiología y Genética Área: Genética Centro Hispano-Luso de Investigaciones Agrarias Insight into the evolution of a plant pathogen: Comparative genomic analysis of the fungal maize pathogen Colletotrichum graminicola PhD Thesis Programa de Doctorado: Agrobiotecnología Órgano responsable del Programa de Doctorado: Departamento de Fisiología Vegetal Gabriel Eduardo Rech Salamanca, 2013 UNIVERSIDAD DE SALAMANCA Facultad de Biología Departamento de Microbiología y Genética Área: Genética Centro Hispano-Luso de Investigaciones Agrarias Estudio de la evolución de un fitopatógeno: Genómica comparada del hongo patógeno de maíz Colletotrichum graminicola Tesis Doctoral Programa de Doctorado: Agrobiotecnología Órgano responsable del Programa de Doctorado: Departamento de Fisiología Vegetal Gabriel Eduardo Rech Salamanca, 2013 D. Luis Román Fernández Lago, Director del Departamento de Microbiología y Genética de la Facultad de Biología de la Universidad de Salamanca y Dña. Berta Dopico Rivela, Directora del Departamento de Fisiología Vegetal de la Facultad de Biología de la Universidad de Salamanca, órgano responsable del Programa de Doctorado en Agrobiotecnología CERTIFICAMOS: Que la presente Memoria titulada “Estudio de la evolución de un fitopatógeno: Genómica comparada del hongo patógeno de maíz Colletotrichum graminicola”, ha sido realizada en el Departamento de Microbiología y Genética de la Facultad de Biología y el Centro Hispano-Luso de Investigaciones Agrarias de la Universidad de Salamanca por el Licenciado D. Gabriel Eduardo Rech, bajo la dirección del Dr.
    [Show full text]
  • Colletotrichum: a Catalogue of Confusion
    Online advance Fungal Diversity Colletotrichum: a catalogue of confusion Hyde, K.D.1,2*, Cai, L.3, McKenzie, E.H.C.4, Yang, Y.L.5,6, Zhang, J.Z.7 and Prihastuti, H.2,8 1International Fungal Research & Development Centre, The Research Institute of Resource Insects, Chinese Academy of Forestry, Bailongsi, Kunming 650224, PR China 2School of Science, Mae Fah Luang University, Thasud, Chiang Rai 57100, Thailand 3Novozymes China, No. 14, Xinxi Road, Shangdi, HaiDian, Beijing, 100085, PR China 4Landcare Research, Private Bag 92170, Auckland, New Zealand 5Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou 550006 PR China 6Department of Biology and Geography, Liupanshui Normal College. Shuicheng, Guizhou 553006, P.R. China 7Institute of Biotechnology, College of Agriculture & Biotechnology, Zhejiang University, Kaixuan Rd 258, Hangzhou 310029, PR China 8Department of Biotechnology, Faculty of Agriculture, Brawijaya University, Malang 65145, Indonesia Hyde, K.D., Cai, L., McKenzie, E.H.C., Yang, Y.L., Zhang, J.Z. and Prihastuti, H. (2009). Colletotrichum: a catalogue of confusion. Fungal Diversity 39: 1-17. Identification of Colletotrichum species has long been difficult due to limited morphological characters. Single gene phylogenetic analyses have also not proved to be very successful in delineating species. This may be partly due to the high level of erroneous names in GenBank. In this paper we review the problems associated with taxonomy of Colletotrichum and difficulties in identifying taxa to species. We advocate epitypification and use of multi-locus phylogeny to delimit species and gain a better understanding of the genus. We review the lifestyles of Colletotrichum species, which may occur as epiphytes, endophytes, saprobes and pathogens.
    [Show full text]
  • Colletotrichum Truncatum (Schwein.) Andrus & W.D
    -- CALIFORNIA D EPAUMENT OF cdfa FOOD & AGRICULTURE ~ California Pest Rating Proposal for Colletotrichum truncatum (Schwein.) Andrus & W.D. Moore 1935 Soybean anthracnose Current Pest Rating: Q Proposed Pest Rating: B Domain: Eukaryota, Kingdom: Fungi, Phylum: Ascomycota, Subphylum: Pezizomycotina, Class: Sordariomycetes, Subclass: Sordariomycetidae, Family: Glomerellaceae Comment Period: 02/02/2021 through 03/19/2021 Initiating Event: In 2003, an incoming shipment of Jatropha plants from Costa Rica was inspected by a San Luis Obispo County agricultural inspector. The inspector submitted leaves showing dieback symptoms to CDFA’s Plant pest diagnostics center for diagnosis. From the leaf spots, CDFA plant pathologist Timothy Tidwell identified the fungal pathogen Colletotrichum capsici, which was not known to be present in California, and assigned a temporary Q rating. In 2015, a sample was submitted by Los Angeles County agricultural inspectors from Ficus plants shipping from Florida. Plant Pathologist Suzanne Latham diagnosed C. truncatum, a species that was synonymized with C. capsisi in 2009, from the leaf spots. She was able to culture the fungus from leaf spots and confirm its identity by PCR and DNA sequencing. Between 2016 and 2020, multiple samples of alfalfa plants from Imperial County with leafspots and dieback were submitted to the CDFA labs as part of the PQ seed quarantine program with infections from C. truncatum. Seed mother plants must be free-from specific disease of quarantine significance in order to be given phytosanitary certificates for export. Although not a pest of concern for alfalfa, C. truncatum is on the list for beans grown for export seed. The risk to California from C.
    [Show full text]
  • Notes on Currently Accepted Species of Colletotrichum
    Mycosphere 7(8) 1192-1260(2016) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/si/2c/9 Copyright © Guizhou Academy of Agricultural Sciences Notes on currently accepted species of Colletotrichum Jayawardena RS1,2, Hyde KD2,3, Damm U4, Cai L5, Liu M1, Li XH1, Zhang W1, Zhao WS6 and Yan JY1,* 1 Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, People’s Republic of China 2 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 3 Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China 4 Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany 5State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China 6Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China. Jayawardena RS, Hyde KD, Damm U, Cai L, Liu M, Li XH, Zhang W, Zhao WS, Yan JY 2016 – Notes on currently accepted species of Colletotrichum. Mycosphere 7(8) 1192–1260, Doi 10.5943/mycosphere/si/2c/9 Abstract Colletotrichum is an economically important plant pathogenic genus worldwide, but can also have endophytic or saprobic lifestyles. The genus has undergone numerous revisions in the past decades with the addition, typification and synonymy of many species. In this study, we provide an account of the 190 currently accepted species, one doubtful species and one excluded species that have molecular data. Species are listed alphabetically and annotated with their habit, host and geographic distribution, phylogenetic position, their sexual morphs and uses (if there are any known).
    [Show full text]
  • Approaches to Species Delineation in Anamorphic (Mitosporic) Fungi: a Study on Two Extreme Cases
    Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 917 Approaches to Species Delineation in Anamorphic (mitosporic) Fungi: A Study on Two Extreme Cases BY OLGA VINNERE ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2004 ! ""# $"%"" & ' & & ( ) * + ') , -) ""#) . / . 0 1 2 '% . / *+ ) . ) 3$4) 4 ) ) 5/6 3$788#78!9 74 / ' ' & ' & & ' ' & ' & ) ' + +& & & & ' ) : ' & ' ' ' & + & & & 0 1 & ') 5 5 & & & + ' & ' ) - & ; + + ' & ' + ' ' & ' & ) * & ' ' & < & & ) * + ; & ' & & ' + & & & < & < ' ' & & ' ' & ' + ) ' + < ' & ') 5 + < 5 & ' 0 1 0 1 ) 2 & ' + + & 6. = ' & = ' ) . 7 & & 0 1 + + + ) 2 & ' & + & ' ' ' ) - ' & + ' + ' + & ' + ) . & & & & ' + ' ' & ) /= ' & ' & 6. ' ' ' + 7 ' + & ' ' ' ! ) > + ' ' ' + ) * & & ' & & ' = ' & & ' ' & < +') " # $ & ' ? / ( ' & ' % & ' (
    [Show full text]
  • From Colletotrichum Graminicola, a Systemic Vascular Pathogen of Maize
    mycological research 113 (2009) 1433–1442 journal homepage: www.elsevier.com/locate/mycres Antifungal metabolites (monorden, monocillins I, II, III) from Colletotrichum graminicola, a systemic vascular pathogen of maize Donald T. WICKLOWa,*, Annalisa M. JORDANb, James B. GLOERb aMycotoxin Research Unit, Agricultural Research Service, National Center for Agricultural Utilization Research, USDA, Peoria, IL 61604, USA bDepartment of Chemistry, University of Iowa, Iowa City, IA 52242, USA article info abstract Article history: Colletotrichum graminicola is a systemic vascular pathogen that causes anthracnose stalk rot Received 18 August 2009 and leaf blight of maize. In the course of an effort to explore the potential presence and Received in revised form roles of C. graminicola metabolites in maize, ethyl acetate extracts of solid substrate 1 October 2009 fermentations of several C. graminicola isolates from Michigan and Illinois were found to Accepted 4 October 2009 be active against Aspergillus flavus and Fusarium verticillioides, both mycotoxin-producing Available online 13 October 2009 seed-infecting fungal pathogens. Chemical investigations of the extract of one such isolate Corresponding Editor: Marc Stadler (NRRL 47511) led to the isolation of known metabolites monorden (also known as radicicol) and monocillins I–III as major components. Monorden and monocillin I displayed in vitro Keywords: activity against the stalk- and ear-rot pathogen Stenocarpella maydis while only the most Anthracnose abundant metabolite (monorden) showed activity against foliar pathogens Alternaria alter- Biotrophy nata, Bipolaris zeicola, and Curvularia lunata. Using LC–HRESITOFMS, monorden was detected Hsp90 inhibitor in steam-sterilized maize stalks and stalk residues inoculated with C. graminicola but not in Necrosis the necrotic stalk tissues of wound-inoculated plants grown in an environmental chamber.
    [Show full text]
  • Fostering the Safe Distribution of Maize and Wheat Seed
    Fostering the Safe Distribution of Maize and Wheat Seed General guidelines Third edition Monica Mezzalama Headquartered in Mexico, the International Maize and Wheat Improvement Center (known by its Spanish acronym, CIMMYT) is a not-for-profit agriculture research and training organization. The center works to reduce poverty and hunger by sustainably increasing the productivity of maize and wheat in the developing world. CIMMYT maintains the world’s largest maize and wheat seed bank and is best known for initiating the Green Revolution, which saved millions of lives across Asia and for which CIMMYT’s Dr. Norman Borlaug was awarded the Nobel Peace Prize. CIMMYT is a member of the CGIAR Consortium and receives support from national governments, foundations, development banks, and other public and private agencies. © International Maize and Wheat Improvement Center (CIMMYT) 2012. All rights reserved. The designations employed in the presentation of materials in this publication do not imply the expression of any opinion whatsoever on the part of CIMMYT or its contributory organizations concerning the legal status of any country, territory, city, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The opinions expressed are those of the author(s), and are not necessarily those of CIMMYT or our partners. CIMMYT encourages fair use of this material. Proper citation is requested. Correct citation: Mezzalama, M. 2012. Seed Health: Fostering the Safe Distribution of Maize and Wheat Seed: General guidelines. Third edition. Mexico, D.F.: CIMMYT. ISBN: 978-607-8263-14-1 AGROVOC Descriptors: Wheats; Maize; Seed certification; Seed treatment; Standards; Licenses; Import quotas; Health policies; Stored products pests; Laboratory experimentation; Tilletia indica; Urocystis; Ustilago segetum; Ustilago seae; Smuts; Mexico Additional Keywords: CIMMYT AGRIS Category Codes: D50 Legislation E71 International Trade Dewey decimal classification: 631.521 Printed in Mexico.
    [Show full text]
  • Colletotrichum: Biological Control, Bio- Catalyst, Secondary Metabolites and Toxins
    Mycosphere 7(8) 1164-1176(2016) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/si/2c/7 Copyright © Guizhou Academy of Agricultural Sciences Mycosphere Essay 16: Colletotrichum: Biological control, bio- catalyst, secondary metabolites and toxins Jayawardena RS1,2, Li XH1, Liu M1, Zhang W1 and Yan JY1* 1 Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, People’s Republic of China 2 Center of Excellence in Fungal Research and School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand Jayawardena RS, Li XH, Liu M, Zhang W, Yan JY 2016 – Mycosphere Essay 16: Colletotrichum: Biological control, bio-catalyst, secondary metabolites and toxins. Mycosphere 7(8) 1164–1176, Doi 10.5943/mycosphere/si/2c/7 Abstract The genus Colletotrichum has received considerable attention in the past decade because of its role as an important plant pathogen. The importance of Colletotrichum with regard to industrial application has however, received little attention from scientists over many years. The aim of the present paper is to explore the importance of Colletotrichum species as bio-control agents and as a bio-catalyst as well as secondary metabolites and toxin producers. Often the names assigned to the above four industrial applications have lacked an accurate taxonomic basis and this needs consideration. The current paper provides detailed background of the above topics. Key words – biotransformation – colletotrichin – mycoherbicide – mycoparasites – pathogenisis – phytopathogen Introduction Colletotrichum was introduced by Corda (1831), and is a coelomycete belonging to the family Glomerellaceae (Maharachchikumbura et al. 2015, 2016). Species of this genus are widely known as pathogens of economical crops worldwide (Cannon et al.
    [Show full text]
  • Colletotrichum Graminicola
    Apr 19Pathogen of the month – April 2019 SH V (1914) a b c d e Fig. 1. (a) Colletotrichum graminicola asexual falcate conidia stained with calcofluor white; (b) acervuli with setae; (c) cross section of an acervulus (black arrow); (d) lobed, melanized appressoria, and (e) intracellular hyphae in a mesophyll cell. Note two distinct types of hyphae: vesicles (V; also known as biotrophic hyphae) and necrotrophic secondary hyphae (SH). Figs (b-e) were observed on maize leaf sheaths. Figs (b- e) were cleared in chloral hydrate and (d-e) stained with lactophenol blue. Wilson Wilson Common Name: Maize anthracnose fungus Disease: Maize Anthracnose; Anthracnose leaf blight (ALB); anthracnose stalk rot (ASR) Classification: K: Fungi P: Ascomycota C: Sordariomycetes O:Glomerellales F: Glomerellaceae The hemibiotrophic fungal pathogen, Colletotrichum graminicola (Teleomorph – Glomerella graminicola D.J. Politis G.W (1975)) causes anthracnose in maize (corn) and is a major problem as some varieties of engineered maize seem more susceptible to infection resulting in increasing economic concerns in the US. With a 57.4-Mb genome .) .) distributed among 13 chromosomes, it belongs to the graminicola species complex with other 14 closely related species. Such graminicolous Colletotrichum species infect other cereals and grasses such as C. sublineolum in sorghum, C. falcatum in sugarcane and C. cereale in wheat and turfgrass. Of the 44 Colletotrichum species that exist in Australia, graminicolous Colletotrichum isolates still need to be verified in the Australian collection. Ces Biology and Ecology: of pith tissue in the corn stalk around the stalk internodes. ( The fungus forms fluffly aerial mycelium and produces two Maize roots can be infected by the fungus leading to differently shaped hyaline conidia: (a) falcate (24-30 x 4-5 asymptomatic systemic colonization of the plants.
    [Show full text]
  • Agricultural Microbiology E Acarologia, Av
    DOI: http://dx.doi.org/10.1590/1678-992X-2018-0269 ISSN 1678-992X Research Article Colletotrichum nymphaeae var. entomophilum var. nov. a natural enemy of the citrus scale insect, Praelongorthezia praelonga (Hemiptera: Ortheziidae) Anja Amtoft Wynns1 , Annette Bruun Jensen1* , Jørgen Eilenberg1 , Italo Delalibera Júnior2 1University of Copenhagen – Dept. of Plant and ABSTRACT: The citrus scale insect Praelongorthezia praelonga (Douglas), a major pest of citrus Environmental Sciences, Thorvaldsensvej 40, 1871 – and other economically important crops, has only two commonly documented natural enemies: Frederiksberg C – Denmark. an entomopathogenic strain of the fungus Colletotrichum nymphaeae (Pass.) Aa and several 2Universidade de São Paulo/ESALQ – Depto. de Entomologia parasitoids. The entomopathogenic strain of C. nymphaeae, formerly recognized under the syn- Agricultural Microbiology e Acarologia, Av. Pádua Dias, 11 – 13418-900 – Piracicaba, onym C. gloeosporioides f. sp. ortheziidae, is under development for commercial application as SP – Brasil. a biological control agent in citrus in Brazil-the top exporter of citrus globally. The synonomy of *Corresponding author <[email protected]> C. gloeosporioides f. sp. ortheziidae with C. nymphaeae remains based on limited DNA sequence data and without morphological study. To qualify for future approval as a biological control agent Edited by: Richard V. Glatz by federal agencies in Brazil and the European Union, the circumscription of a microorganism must be explicit and without ambiguities. Herein, through morphological study and phylogenetic Received August 20, 2018 analysis of five DNA regions we clarify the circumscription and affinity of entomopathogenic C. Accepted April 30, 2019 nymphaeae and describe it as a new variety. Keywords: Biological control, Colletotrichum (Sordariomycetes: Glomerellaceae), entomopathogen Introduction In Brazil, C.
    [Show full text]
  • Fungal Planet Description Sheets: 400–468
    Persoonia 36, 2016: 316– 458 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158516X692185 Fungal Planet description sheets: 400–468 P.W. Crous1,2, M.J. Wingfield3, D.M. Richardson4, J.J. Le Roux4, D. Strasberg5, J. Edwards6, F. Roets7, V. Hubka8, P.W.J. Taylor9, M. Heykoop10, M.P. Martín11, G. Moreno10, D.A. Sutton12, N.P. Wiederhold12, C.W. Barnes13, J.R. Carlavilla10, J. Gené14, A. Giraldo1,2, V. Guarnaccia1, J. Guarro14, M. Hernández-Restrepo1,2, M. Kolařík15, J.L. Manjón10, I.G. Pascoe6, E.S. Popov16, M. Sandoval-Denis14, J.H.C. Woudenberg1, K. Acharya17, A.V. Alexandrova18, P. Alvarado19, R.N. Barbosa20, I.G. Baseia21, R.A. Blanchette22, T. Boekhout3, T.I. Burgess23, J.F. Cano-Lira14, A. Čmoková8, R.A. Dimitrov24, M.Yu. Dyakov18, M. Dueñas11, A.K. Dutta17, F. Esteve- Raventós10, A.G. Fedosova16, J. Fournier25, P. Gamboa26, D.E. Gouliamova27, T. Grebenc28, M. Groenewald1, B. Hanse29, G.E.St.J. Hardy23, B.W. Held22, Ž. Jurjević30, T. Kaewgrajang31, K.P.D. Latha32, L. Lombard1, J.J. Luangsa-ard33, P. Lysková34, N. Mallátová35, P. Manimohan32, A.N. Miller36, M. Mirabolfathy37, O.V. Morozova16, M. Obodai38, N.T. Oliveira20, M.E. Ordóñez39, E.C. Otto22, S. Paloi17, S.W. Peterson40, C. Phosri41, J. Roux3, W.A. Salazar 39, A. Sánchez10, G.A. Sarria42, H.-D. Shin43, B.D.B. Silva21, G.A. Silva20, M.Th. Smith1, C.M. Souza-Motta44, A.M. Stchigel14, M.M. Stoilova-Disheva27, M.A. Sulzbacher 45, M.T. Telleria11, C. Toapanta46, J.M. Traba47, N.
    [Show full text]