Chironomini (Diptera: Chironomidae: Chironominae)

Total Page:16

File Type:pdf, Size:1020Kb

Chironomini (Diptera: Chironomidae: Chironominae) Chironomini (Diptera: Chironomidae: Chironominae) Keys to Central European larvae using mainly macroscopic characters Second, revised edition Claus Orendt Martin Spies sponsored by Deutsche Gesellschaft für Limnologie e.V. Preface to the second edition 3 The original, German-language edition of ture as recent as feasible that offers possi- this work, Orendt & Spies (2010), met bilities for further identification. Readers with such demand that it sold out soon should be aware, however, that the applica- after its publication. Continued interest, tion of such references may require more not least from outside of Germany, has involved working methods and/or greater encouraged us to produce a second edi- experience. tion, this time in English. Besides translation of the German ver- The authors would be glad to see this ver- sion, the present work also offers a num- sion of the Chironomini key find the same ber of changes in content that are aimed reception as the first edition, and will be at making some parts of the keys even most grateful for any feedback to help us easier to use. Such modifications concern improve this taxonomic tool. • early keying of taxa that can be rec- ognised readily by head capsule pat- Lastly, we would like to announce in ad- tern or body shape; vance a comparable work that is scheduled • improvements to some illustrations, to become available in autumn of 2012 (see and addition of new ones; also last page). Orendt et al. (in press) will • the incorporation of Glyptotendipes present keys to all chironomid taxa that are ospeli , which has been recorded re- identifiable in the larval stage and are known peatedly from Central European low- to occur in brackish waters of German and land waters. adjacent North Sea and Baltic Sea coasts. These items have necessitated the re- The book will be available in separate Eng- structuring of some taxon sequences in lish and German editions. the key. However, none of these changes have made the first edition significantly less applicable. Leipzig and Munich, August 2012 A number of readers have asked whether some taxa could be made identifiable at lower ranks of the systematic hierarchy than in the first edition. We should like to honour these requests while remaining true to the general design of this work specifically for users who are relatively inexperienced with chironomid larvae. Therefore, several corresponding termi- nals in our key now refer to special litera- 4 Introduction In Central European standing waters, the ductivity, functional processes or any other larvae of Chironomini constitute a most important aspect. important part of the chironomid fauna. The present authors are hoping to remove The group includes a major share of what such barriers and reservations against chiro- is commonly known as 'red midge larvae' nomid determinations by offering a key that or 'bloodworms', since the larvae of most mainly uses 'macroscopic' morphological Chironomini species carry molecules in features discernible at relatively low magni- their body fluids that bind oxygen and fication, while it resorts to microscopic char- cause colouration in similar fashion as acters only where this is unavoidable. Our human hemoglobin. For the same reason approach aims to facilitate successful identi- some species are capable of producing fications especially by workers who have enormous numbers and densities of indi- little previous experience with midge larvae. viduals especially in nutrient-rich or pol- Another beneficial consequence could be lutant-laden waters. As a result, both the that more studies will begin to unlock the aquatic immature stages and the aerial critical ecological information that is often adults of these midges often attract the wasted when the chironomids present in a attention of water engineers and manag- habitat are left undetermined, whereas ers, as well as of members of the general fewer studies will stop at meaningless com- public, even those otherwise little inter- parisons of 'Chironomidae indet.' or the like ested in natural phenomena. with other taxa identified at genus or species In the family Chironomidae the animals level. are so small that they cannot be studied Naturally, as in any group of organisms, reli- with unaided eyes, the species diversity is able identifications of non-biting midge lar- very high, and the literature one has to vae in many cases will be reached only as consult for detailed identifications often the result of intensive study and experience, amounts to numerous specialised works including attention to the specialist scientific rather than just a few comprehensive literature. However, the present work has ones. These and other factors have com- been designed to open a gate and get the bined to give the group a reputation of reader started in that direction. requiring relatively high effort for deter- The keys offered below separate the Central minations and interpretations. For these European Chironomidae larvae by subfami- reasons many macroinvertebrate workers lies, and then the members of the tribe Chi- have stayed away from adequate consid- ronomini in the subfamily Chironominae. eration of non-biting midges, even With many Chironomini, no special prepara- though they do not dispute the group's tions of the material will be necessary for significance in the studied ecosystems identifications to genera, occasionally not concerning faunal diversity, biomass pro- even for species. Glossary 8 Body Thorax Abdomen 3 segments 9 segments Posterior abdomen Lateral tubules Ventral tubules Lateral tubules Without tubules anterior posterior Parapods (false feet) A1: Subfamilies 12 Eyespots Ventromental plates ( ) usually 2 and well separated along a vertical or slightly usually relatively wide and distinct (occasionally rather transparent); oblique line; with or without distinct beard setae in some cases the lower eyespot is subdivided, in others the upper and lower spots are almost fused Chironominae beard Prodiamesinae A2 Faasch (orig.) 1 or 2; in some cases in an almost horizontal line; or usually absent or indistinct and relatively narrow; eyespots absent beard setae absent or very rarely distinct Orthocladiinae Diamesinae Podonominae Tanypodinae Buchonomyiinae Telmatogetoninae A4 Orthocladiinae Tanypodinae B1-4: Chironominae: Chironomini 19 Abdomen 8th segment Chironomus with 2 pairs of sp. ventral tubules (some species) for identification of certain species, see Vallenduuk et al. (1995), Vallenduuk & Langton (2010), Orendt & Spies (2012) Photo: Faasch 8th segment with 1 pair of long or short ventral tubules B1-5 Photo: Janecek Photo: Faasch 8th segment without ventral tubules B1-9 B1-7: Chironominae: Chironomini 22 with 1 pair of ventral tubules Head / Posterior abdomen Head in dorsal view ( ) Ventromental plates and mentum head long central ventromental plates touching medially, one plate as sclerite > 2 x as wide as the mentum; mentum with a group of 4 long relatively central teeth (appearing as a single tooth when worn; see as wide , p. 47) that are slightly shorter than the 1st lateral teeth wide the unpaired sclerite anterior to it indistinct; modified long sclerite with medial from Kiknadze ventral et al. (1991) Lipiniella tubules longitudinal furrow, anterior moderata short to that a granulated depression , farther anterior the surface is smooth (examine also from the side) head longer than modified from wide Kiknadze et al. (1991) long central sclerite ventromental plates separated by distinct medial gap, tapering to a point one plate not wider than the mentum; posteriorly , without longitudinal furrow, Benthalia ventral the unpaired sclerite carbonaria tubules anterior to it distinct; central tooth of short long sclerite mentum larger than ('dissidens' anteriorly without any lateral tooth eco-variety) Photo: depression , smooth Faasch B3-1: Chironominae: Chironomini 41 without ventral tubules - mentum with 1 central tooth Head above the mouth opening ( ) Mentum ( ) Mandible labrum with a brush of long chaetae entirely and uniformly dark; central inner teeth barely discernible or that is retractable/eversible, thus and 1st lateral teeth surpassed by the absent varies in extension among specimens 2nd laterals (even the apical tooth can be worn down to a short stump) Xenochironomus xenolabis Photo: Faasch ! often strongly worn, so that the anterior margin looks different: in freshwater sponges Photo: Faasch labrum without brush with at least a few teeth always inner teeth usually discernible; in some taxa, certain teeth discernible, if low are darker than others; and flat-tipped ( ) see illustrations on p. 44 (B3-4) then apical tooth with +/- acute tip B3-2 B3-9: Chironominae: Chironomini 49 without ventral tubules - mentum with 1 central tooth Head Mentum wider posteriorly anterior margin nearly straight or slightly convex , teeth not always clearly distinguishable; central tooth wide, with or without notch; in some cases the tips of some lateral teeth point diagonally to medial rather than straight ahead B3-10 wider posteriorly anterior margin distinctly convex in most cases; where it is nearly straight, the teeth are clearly or oval distinguishable; central tooth with or ( ) without medial notch; tips of lateral teeth usually pointing straight ahead B3-11 notch notch B3-12: Chironominae: Chironomini 52 without ventral tubules - mentum with 1 central tooth Head: pattern Mentum ventrally with a brown area interrupted central tooth not distinctly projecting to anterior, frequently with medial notch by
Recommended publications
  • (Diptera: Chironomidae), with The
    Zootaxa 2497: 1–36 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) The problems with Polypedilum Kieffer (Diptera: Chironomidae), with the description of Probolum subgen. n. OLE A. SÆTHER1, TROND ANDERSEN2,5, LUIZ C. PINHO3 & HUMBERTO F. MENDES4 1, 2 & 4Department of Natural History, Bergen Museum, University of Bergen, Pb. 7800, N-5020 Bergen, Norway. 3Departamento de Biologia, FFCLRP-USP, Avenida Bandeirantes, n. 3900, CEP 14040-901, Ribeirão Preto - SP, Brazil. E-mails: [email protected], [email protected], [email protected], [email protected] 5Corresponding author. E-mail: [email protected] Table of contents Abstract ............................................................................................................................................................................... 2 Introduction ......................................................................................................................................................................... 2 Material and methods .......................................................................................................................................................... 3 Systematics .......................................................................................................................................................................... 3 Polypedilum subgenus Tripedilum Kieffer .......................................................................................................................
    [Show full text]
  • Genomanalyse Von Prodiamesa Olivacea
    Genomanalyse von Prodiamesa olivacea Dissertation zur Erlangung des Grades Doktor der Naturwissenschaften (Dr. rer. nat.) am Fachbereich Biologie der Johannes Gutenberg-Universität in Mainz Sarah Brunck geb. 08.08.1987 in Mainz Mainz, 2016 Dekan: 1. Berichterstatter: 2. Berichterstatter: Tag der mündlichen Prüfung: ii Inhaltsverzeichnis Inhaltsverzeichnis ................................................................................................................................ iii 1 Einleitung ........................................................................................................................................... 1 1.1 Die Familie der Chironomiden ................................................................................................. 1 1.1.1 Die Gattung Chironomus ..................................................................................................... 3 1.1.2 Die Gattung Prodiamesa ....................................................................................................... 6 1.2 Die Struktur von Insekten-Genomen am Beispiel der Chironomiden ............................... 9 1.2.1 Hochrepetitive DNA-Sequenzen ..................................................................................... 11 1.2.2 Mittelrepetitive DNA-Sequenzen bzw. Gen-Familien ................................................. 13 1.2.3 Gene und genregulatorische Sequenzen ........................................................................ 17 1.3 Zielsetzung ...............................................................................................................................
    [Show full text]
  • Chironominae 8.1
    CHIRONOMINAE 8.1 SUBFAMILY CHIRONOMINAE 8 DIAGNOSIS: Antennae 4-8 segmented, rarely reduced. Labrum with S I simple, palmate or plumose; S II simple, apically fringed or plumose; S III simple; S IV normal or sometimes on pedicel. Labral lamellae usually well developed, but reduced or absent in some taxa. Mentum usually with 8-16 well sclerotized teeth; sometimes central teeth or entire mentum pale or poorly sclerotized; rarely teeth fewer than 8 or modified as seta-like projections. Ventromental plates well developed and usually striate, but striae reduced or vestigial in some taxa; beard absent. Prementum without dense brushes of setae. Body usually with anterior and posterior parapods and procerci well developed; setal fringe not present, but sometimes with bifurcate pectinate setae. Penultimate segment sometimes with 1-2 pairs of ventral tubules; antepenultimate segment sometimes with lateral tubules. Anal tubules usually present, reduced in brackish water and marine taxa. NOTESTES: Usually the most abundant subfamily (in terms of individuals and taxa) found on the Coastal Plain of the Southeast. Found in fresh, brackish and salt water (at least one truly marine genus). Most larvae build silken tubes in or on substrate; some mine in plants, dead wood or sediments; some are free- living; some build transportable cases. Many larvae feed by spinning silk catch-nets, allowing them to fill with detritus, etc., and then ingesting the net; some taxa are grazers; some are predacious. Larvae of several taxa (especially Chironomus) have haemoglobin that gives them a red color and the ability to live in low oxygen conditions. With only one exception (Skutzia), at the generic level the larvae of all described (as adults) southeastern Chironominae are known.
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • UNIVERSITÀ DEGLI STUDI DI MILANO Approfondimento Delle
    UNIVERSITÀ DEGLI STUDI DI MILANO Dipartimento di Protezione dei Sistemi Agroalimentare e Urbano e valorizzazione delle biodiversità Scuola di dottorato in Terra, Ambiente e Biodiversità DOTTORATO DI RICERCA IN SCIENZE NATURALISTICHE E AMBIENTALI CICLO XXIII Approfondimento delle conoscenze sull'ecologia dei Ditteri Chironomidi nelle acque interne Italiane TUTOR: PROF. BRUNO ROSSARO CO-TUTOR: DOTT.SSA VALERIA LENCIONI COORDINATORE DEL DOTTORATO: PROF. ANDREA TINTORI CANDIDATA: DOTT.SSA VALENTINA GRAZIOLI (…) la motivazione su cui si fonda questo comportamento non va ricercata nell’appetenza verso un’unica azione finale che costituisce lo scopo e che soddisfa la pulsione, ma deriva da un’altra fonte, cui spetta la singolare capacità di attivare molte, o addirittura tutte le coordinazioni ereditarie dell’animale. Questo tipo di acquisizione del sapere (…) viene chiamato comportamento esplorativo o di curiosità.(…).L’elemento qualitativamente nuovo consiste nel fatto che la motivazione è fornita dal processo di apprendimento stesso, e non dall’esecuzione dell’azione finale. Con questo passo apparentemente così piccolo si manifesta un processo cognitivo di tipo del tutto nuovo, che è fondamentalmente identico alla ricerca umana, e che conduce, senza che intervengano modificazioni essenziali, allo studio scientifico della natura. K. Lorenz INDICE 1. PREFAZIONE ................................................................................................... 5 2. SCOPO DELLA TESI ......................................................................................
    [Show full text]
  • Biological Monitoring of Surface Waters in New York State, 2019
    NYSDEC SOP #208-19 Title: Stream Biomonitoring Rev: 1.2 Date: 03/29/19 Page 1 of 188 New York State Department of Environmental Conservation Division of Water Standard Operating Procedure: Biological Monitoring of Surface Waters in New York State March 2019 Note: Division of Water (DOW) SOP revisions from year 2016 forward will only capture the current year parties involved with drafting/revising/approving the SOP on the cover page. The dated signatures of those parties will be captured here as well. The historical log of all SOP updates and revisions (past & present) will immediately follow the cover page. NYSDEC SOP 208-19 Stream Biomonitoring Rev. 1.2 Date: 03/29/2019 Page 3 of 188 SOP #208 Update Log 1 Prepared/ Revision Revised by Approved by Number Date Summary of Changes DOW Staff Rose Ann Garry 7/25/2007 Alexander J. Smith Rose Ann Garry 11/25/2009 Alexander J. Smith Jason Fagel 1.0 3/29/2012 Alexander J. Smith Jason Fagel 2.0 4/18/2014 • Definition of a reference site clarified (Sect. 8.2.3) • WAVE results added as a factor Alexander J. Smith Jason Fagel 3.0 4/1/2016 in site selection (Sect. 8.2.2 & 8.2.6) • HMA details added (Sect. 8.10) • Nonsubstantive changes 2 • Disinfection procedures (Sect. 8) • Headwater (Sect. 9.4.1 & 10.2.7) assessment methods added • Benthic multiplate method added (Sect, 9.4.3) Brian Duffy Rose Ann Garry 1.0 5/01/2018 • Lake (Sect. 9.4.5 & Sect. 10.) assessment methods added • Detail on biological impairment sampling (Sect.
    [Show full text]
  • Comments on Some Species in Tribe Chironomini
    Comments on some species in tribe Chironomini Henk Vallenduuk Prof. Gerbrandystraat 10, 5463BK Veghel, Netherlands. E-mail: [email protected] During the work of identifying Chironomini collected at various localities in the Netherlands, I made some observations in species interpretation that I think are useful to share with the readers of the Chironomus Newsletter on Chironomidae Research. I hope that in particular ecologists and other users of larval identi- fication keys will find the below comments helpful. Reinterpretation of some species in Chironomus Chironomus macani I obtained males and females from single-reared larvae. Peter Langton identified them as Chironomus (Chaetolabis) macani Freeman, 1948 and confirmed that the male imagines are conspecific with the holo- type of Chironomus (Chaetolabis) macani, held in the Natural History Museum in London, but not with those of Prof. Wolfgang Wülker presently kept in the Zoologische Staatssammlung, München. The Wül- ker’s specimens thus do not belong to the true C. macani and should be renamed (Langton & Vallenduuk 2013). The larvae of both species are morphologically very similar but can be differentiated. Chironomus dorsalis Chironomus (Lobochironomus) longipes Staeger, 1839 was listed as a junior synonym of Chironomus (Lo- bochironomus) dorsalis Meigen, 1818 by Spies & Sæther (2004). However, the name Chironomus (Chi- ronomus) dorsalis Meigen, 1818 has also been used (e.g. Strenzke 1959). Chironomus dorsalis Meigen sensu Strenzke is a misidentification and synonymous withC. alpestris Goetghebuer, 1934 (Sæther & Spies 2013). I reared single larvae of C. dorsalis Meigen and C. alpestris Goetghebuer. It appears that the imago of C. longipes described by Shilova (1980) as Einfeldia does not match with C.
    [Show full text]
  • Ohio EPA Macroinvertebrate Taxonomic Level December 2019 1 Table 1. Current Taxonomic Keys and the Level of Taxonomy Routinely U
    Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Table 1. Current taxonomic keys and the level of taxonomy routinely used by the Ohio EPA in streams and rivers for various macroinvertebrate taxonomic classifications. Genera that are reasonably considered to be monotypic in Ohio are also listed. Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Species Pennak 1989, Thorp & Rogers 2016 Porifera If no gemmules are present identify to family (Spongillidae). Genus Thorp & Rogers 2016 Cnidaria monotypic genera: Cordylophora caspia and Craspedacusta sowerbii Platyhelminthes Class (Turbellaria) Thorp & Rogers 2016 Nemertea Phylum (Nemertea) Thorp & Rogers 2016 Phylum (Nematomorpha) Thorp & Rogers 2016 Nematomorpha Paragordius varius monotypic genus Thorp & Rogers 2016 Genus Thorp & Rogers 2016 Ectoprocta monotypic genera: Cristatella mucedo, Hyalinella punctata, Lophopodella carteri, Paludicella articulata, Pectinatella magnifica, Pottsiella erecta Entoprocta Urnatella gracilis monotypic genus Thorp & Rogers 2016 Polychaeta Class (Polychaeta) Thorp & Rogers 2016 Annelida Oligochaeta Subclass (Oligochaeta) Thorp & Rogers 2016 Hirudinida Species Klemm 1982, Klemm et al. 2015 Anostraca Species Thorp & Rogers 2016 Species (Lynceus Laevicaudata Thorp & Rogers 2016 brachyurus) Spinicaudata Genus Thorp & Rogers 2016 Williams 1972, Thorp & Rogers Isopoda Genus 2016 Holsinger 1972, Thorp & Rogers Amphipoda Genus 2016 Gammaridae: Gammarus Species Holsinger 1972 Crustacea monotypic genera: Apocorophium lacustre, Echinogammarus ischnus, Synurella dentata Species (Taphromysis Mysida Thorp & Rogers 2016 louisianae) Crocker & Barr 1968; Jezerinac 1993, 1995; Jezerinac & Thoma 1984; Taylor 2000; Thoma et al. Cambaridae Species 2005; Thoma & Stocker 2009; Crandall & De Grave 2017; Glon et al. 2018 Species (Palaemon Pennak 1989, Palaemonidae kadiakensis) Thorp & Rogers 2016 1 Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Informal grouping of the Arachnida Hydrachnidia Smith 2001 water mites Genus Morse et al.
    [Show full text]
  • A Guide for the Identification of Two Subfamilies of Larval Chironomidae
    Envlronment Canada Environnement Canada Fisheries Service des pêches .1 and Marine Service et des sciences de la mer L .' 1 '; ( 1 l r A Guide for the Identification of Two Subfamil ies of Larval Chironomidae: ,1"'--- The Chironominae and Tanypodlnae . : - - . ) / Found .in Benthic Studies Jin the / r~---.-_ c L___ r - - '" - .Ç"'''''-. Winnipeg River in the Vicinity ot Pine Falls, Manitoba in 1971 and 1972 by P. L. Stewart J.S. Loch Technical Report Series No. CEN/T-73-12 Resource Management Branch Central Region DEPARTMÈNT OF THE ENViRONMENT FISHERIES AND MARINE SERViCE Fisheries Operations Directorate Central Region Technical Reports Series No. CEN/T-73-12 A guide for the identification of two subfami lies of larva l Chironomidae~ the Chironominae and Tanypodinae found in benthic studies in the Winnipeg Riv~r in the vicinity of Pine Falls, Manitoba, in 1971 and 1972. by: P.L. Stewart qnd J.S. Loch ERRATA Page13: The caption for Figure 5A should read: Mentum and ventromental plates..•... instead of: submentum and ventromental plates..•.. Page 14: The caption for Figure 5B should read: Mentum and ventromental plates . instead of: submentum and ventromental plates.... DEPARTMENT OF THE ENVIRONMENT FISHERIES AND MARINE SERVICE Fisheries Operations Directorate Central Region Technical Report Series No: CEN/T-73-12 A GUIDE FOR THE IDENTIFICATION OF IWO SUBF.AMILIES OF LARVM.... CHIRONOMIDAE: THE CHIRONOMINAE AND TANYPODINAE FOUND IN BENTHIC STUDIES IN THE WINNIPEG RIVER IN THE vrCINITY OF PINE FM....LS, MANITOBA IN 1971 and 1972 by P. L. Stewart and J. S. Loch Resource Management Branch Fisheries Operations Directorate Central Region, Winnipeg November 1973 i ABSTRACT Identifying characteristics of the genera of two subfamilies of larvae of the midge family, C~onomldae (Vlpt~a), the C~ono­ mlnae and the Tanypodlnae, are presented with illustrations for the purpose of simplifying identification of these two groups by novice and more experienced personnel involved in assessment of benthic faunal composition.
    [Show full text]
  • Checklist of the Family Chironomidae (Diptera) of Finland
    A peer-reviewed open-access journal ZooKeys 441: 63–90 (2014)Checklist of the family Chironomidae (Diptera) of Finland 63 doi: 10.3897/zookeys.441.7461 CHECKLIST www.zookeys.org Launched to accelerate biodiversity research Checklist of the family Chironomidae (Diptera) of Finland Lauri Paasivirta1 1 Ruuhikoskenkatu 17 B 5, FI-24240 Salo, Finland Corresponding author: Lauri Paasivirta ([email protected]) Academic editor: J. Kahanpää | Received 10 March 2014 | Accepted 26 August 2014 | Published 19 September 2014 http://zoobank.org/F3343ED1-AE2C-43B4-9BA1-029B5EC32763 Citation: Paasivirta L (2014) Checklist of the family Chironomidae (Diptera) of Finland. In: Kahanpää J, Salmela J (Eds) Checklist of the Diptera of Finland. ZooKeys 441: 63–90. doi: 10.3897/zookeys.441.7461 Abstract A checklist of the family Chironomidae (Diptera) recorded from Finland is presented. Keywords Finland, Chironomidae, species list, biodiversity, faunistics Introduction There are supposedly at least 15 000 species of chironomid midges in the world (Armitage et al. 1995, but see Pape et al. 2011) making it the largest family among the aquatic insects. The European chironomid fauna consists of 1262 species (Sæther and Spies 2013). In Finland, 780 species can be found, of which 37 are still undescribed (Paasivirta 2012). The species checklist written by B. Lindeberg on 23.10.1979 (Hackman 1980) included 409 chironomid species. Twenty of those species have been removed from the checklist due to various reasons. The total number of species increased in the 1980s to 570, mainly due to the identification work by me and J. Tuiskunen (Bergman and Jansson 1983, Tuiskunen and Lindeberg 1986).
    [Show full text]
  • Table of Contents 2
    Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) List of Freshwater Macroinvertebrate Taxa from California and Adjacent States including Standard Taxonomic Effort Levels 1 March 2011 Austin Brady Richards and D. Christopher Rogers Table of Contents 2 1.0 Introduction 4 1.1 Acknowledgments 5 2.0 Standard Taxonomic Effort 5 2.1 Rules for Developing a Standard Taxonomic Effort Document 5 2.2 Changes from the Previous Version 6 2.3 The SAFIT Standard Taxonomic List 6 3.0 Methods and Materials 7 3.1 Habitat information 7 3.2 Geographic Scope 7 3.3 Abbreviations used in the STE List 8 3.4 Life Stage Terminology 8 4.0 Rare, Threatened and Endangered Species 8 5.0 Literature Cited 9 Appendix I. The SAFIT Standard Taxonomic Effort List 10 Phylum Silicea 11 Phylum Cnidaria 12 Phylum Platyhelminthes 14 Phylum Nemertea 15 Phylum Nemata 16 Phylum Nematomorpha 17 Phylum Entoprocta 18 Phylum Ectoprocta 19 Phylum Mollusca 20 Phylum Annelida 32 Class Hirudinea Class Branchiobdella Class Polychaeta Class Oligochaeta Phylum Arthropoda Subphylum Chelicerata, Subclass Acari 35 Subphylum Crustacea 47 Subphylum Hexapoda Class Collembola 69 Class Insecta Order Ephemeroptera 71 Order Odonata 95 Order Plecoptera 112 Order Hemiptera 126 Order Megaloptera 139 Order Neuroptera 141 Order Trichoptera 143 Order Lepidoptera 165 2 Order Coleoptera 167 Order Diptera 219 3 1.0 Introduction The Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) is charged through its charter to develop standardized levels for the taxonomic identification of aquatic macroinvertebrates in support of bioassessment. This document defines the standard levels of taxonomic effort (STE) for bioassessment data compatible with the Surface Water Ambient Monitoring Program (SWAMP) bioassessment protocols (Ode, 2007) or similar procedures.
    [Show full text]
  • 1 the Effect of Hydrological Restoration on Nutrient Concentrations
    The effect of hydrological restoration on nutrient concentrations, macroinvertebrate communities, and amphibian populations in Lake Erie coastal wetlands Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Elizabeth Ann Berg Graduate Program in Environment and Natural Resources The Ohio State University 2019 Thesis Committee Dr. Lauren M. Pintor, Advisor Dr. S. Mažeika P. Sullivan Dr. William E. Peterman 1 Copyrighted by Elizabeth Ann Berg 2019 2 Abstract Historically, coastal wetlands along the western Lake Erie basin supported important ecosystem functions including water quality improvement and biodiversity support. Most remaining coastal wetlands have been diked, severing the hydrologic connection to Lake Erie and its tributaries and acting as barriers to the exchange of water, nutrients, and biota. Concern over harmful algal blooms has led to large-scale coastal wetland restoration initiatives in the western Lake Erie basin. In particular, stakeholders have collaborated to hydrologically reconnect approximately 2,387 acres of protected, diked wetlands in Ottawa National Wildlife Refuge (ONWR). Restoring wetland connectivity has the potential to reduce inputs from the Maumee Area of Concern and reduce amphibian habitat fragmentation. Additionally, wetland restoration is expected to improve macroinvertebrate habitat and food resources in the long-term. However, hydrologic connection to Lake Erie and an impaired watershed may expose biota to new stressors such as nutrient enrichment and invasion of non-native species. In this study, I examined whether hydrologic wetland restoration of coastal wetlands in the western Lake Erie basin had an effect on nutrient concentrations, macroinvertebrate communities, and amphibian populations.
    [Show full text]