Exhibit 4 APPENDIX E Benthic Assessment Report

Total Page:16

File Type:pdf, Size:1020Kb

Exhibit 4 APPENDIX E Benthic Assessment Report Exhibit 4 APPENDIX E Benthic Assessment Report Vermont Green Line Devco, LLC Exhibit 4: Environmental Effects Vermont Green Line Project Article VII Application Benthic Macroinvertebrate Sample Analysis Report Vermont Green Line Project Lake Champlain Vermont and New York PREPARED FOR: TRC Companies, Inc. 124 Grove Street Franklin, Massachusetts 02038 PREPARED BY: ESS Group, Inc. 10 Hemingway Drive, 2nd Floor East Providence, Rhode Island 02915 Project No. T332-000 Revised January 19, 2016 www.essgroup.com BENTHIC MACROINVERTEBRATE SAMPLE ANALYSIS REPORT Vermont Green Line Project Vermont and New York Prepared For: TRC Companies, Inc. 124 Grove Street Franklin, Massachusetts 02038 Prepared By: ESS Group, Inc. 10 Hemingway Drive, 2nd Floor East Providence, Rhode Island 02915 Project No. T332-000 Revised January 19, 2016 © 2016 ESS Group, Inc. – This document or any part may not be reproduced or transmitted in any form or by any means, electronic, or mechanical, including photocopying, microfilming, and recording without the express written consent of ESS Group, Inc. All rights reserved. TABLE OF CONTENTS SECTION PAGE 1.0 INTRODUCTION ..................................................................................................................................... 1 2.0 METHODS .............................................................................................................................................. 1 2.1 Laboratory Analysis .......................................................................................................................... 1 2.2 Data Analysis .................................................................................................................................... 2 3.0 RESULTS ................................................................................................................................................ 2 3.1 Taxa Richness .................................................................................................................................. 2 3.2 Macrofaunal Density ......................................................................................................................... 3 3.3 Macrofaunal Community Composition ............................................................................................. 3 3.4 Quality Assurance/Quality Control.................................................................................................... 7 3.5 Summary of Results ......................................................................................................................... 7 4.0 REFERENCES ........................................................................................................................................ 7 TABLES Table A Summary of Key Statistics from the Benthic Sample Analysis Table B Relative Abundance of Taxa Encountered Table C Most Widespread Taxa Encountered FIGURES Figure 1 Taxa Richness by Sample Figure 2 Total Macrofaunal Density by Sample Figure 3 Zebra Mussel Density by Sample Figure 4 Relative Abundance of Stylodrilus heringianus by Sample APPENDICES Appendix A Chains of Custody Appendix B List of Selected Taxonomic References Appendix C Benthic Sample Taxonomy and Enumeration Results © 2016 ESS Group, Inc. 1.0 INTRODUCTION On behalf of TRC Companies, Inc. (the Client), ESS Group, Inc. (ESS) analyzed 30 samples collected from benthic habitats within the Lake Champlain portion of the Vermont Green Line Project cable route. Benthic macroinvertebrates were the primary target of the analysis and are defined as organisms greater than 500 microns (μm) in length that either live on or in aquatic sediments, including mollusks, primitive (unsegmented) worms, annelids (segmented worms), crustaceans and insects. 2.0 METHODS 2.1 Laboratory Analysis ESS received a total of 30 samples from the Client, including 20 samples on November 20, 2015 and 10 samples on December 2, 2015 (Appendix A). All samples originated from Vermont and New York waters of Lake Champlain. Samples were collected with a 0.1 m2 modified Day grab sampler, then field-sieved and fixed on board the survey vessel. The sieve mesh size was 0.5-mm and 10% neutral buffered formalin was used as the field fixative solution. Upon receipt at the laboratory, benthic samples were logged and checked for adequate preservation. Prior to sorting, sample material from each sample was emptied in its entirety into a 0.5-mm mesh sieve. Tap water was gently run over the sieve to rinse away any additional fine sediment that was not removed during the field sieving process as well as to remove the formalin solution prior to the microscope work. Rinsed samples were preserved in 70% ethanol. Each benthic sample was sorted to remove benthic organisms from residual debris. Samples with a high volume of sample debris were sub-sampled. Sub-sampling was conducted using a randomized procedure, in which the material was first split into 32 equal fractions using a gridded tray. Each grid in the tray was assigned a unique number. Sample fractions (sub-samples) were then selected using a random number sheet and carefully removed from the tray and sorted in their entirety under a high-power dissecting microscope (up to 90X magnification) until a target of at least 100 organisms was retained. The unsorted and sorted fractions of each sample were retained separately and preserved in 70% ethanol. Samples with minimal material or with fewer than 100 organisms were sorted in their entirety (i.e., without sub-sampling). For quality assurance and control (QA/QC) purposes, a second qualified staff member (quality assurance officer) resorted 10% of the samples analyzed by each sorter to ensure organisms were being adequately retained. The quality assurance officer checked the sorted sample material for any remaining organisms and calculated an efficiency rating ( E ) using the following formula: n E = 100× a na + nb Where na is the number of individuals originally sorted and verified as identifiable organisms by the QC checker and nb is the number of organisms recovered by the QC checker. If the original sorter achieved E < 90% (i.e., less than 90% of the organisms in the sample removed), an additional sample sorted by that analyst was re-examined by the quality assurance officer. All sorted organisms were subsequently identified by a qualified taxonomist to the lowest practicable taxonomic level using a dissecting microscope with magnification up to 90X and readily available taxonomic keys. Oligochaetes and non-biting midges (Chironomidae) were mounted in CMC-10 mounting media using methods consistent with those outlined in Epler (2001). Identification of slide-mounted organisms was conducted under a compound microscope with magnification to 1,000X. The primary taxonomic references used for macroinvertebrate identification are listed in Appendix B. © 2016 ESS Group, Inc. Benthic Macroinvertebrate Sample Analysis Report – Vermont Green Line Project Revised January 19, 2016 Enumerations of macroinvertebrates identified from each sample were recorded directly in an electronic spreadsheet. Prior to data summary, species abundances for each sample were standardize to number of individuals per square meter, taking into account the sampling equipment dimensions and sub-sampling effort. 2.2 Data Analysis Measures of benthic macrofaunal diversity, abundance, and community composition were selected to describe existing conditions. The rationale behind selection of each measure follows. Diversity (Taxa Richness) Taxa richness is the number of different taxa that are found within a given area or community and is widely accepted as a robust assessment measure of diversity (Magurran 2003). For this study, taxa richness is defined as the total number of unique taxa found in a sample. Abundance (Macrofaunal Density) Macrofaunal density is an estimate of the number of individuals per unit area. The density of benthic organisms responds to disturbance as mitigated by the tolerance (or preference) of a given organism to the particular source of disturbance. Density may vary substantially over small areas or short periods of time and should therefore be interpreted cautiously. For this study, macrofaunal density is expressed as the number of organisms per square meter. Community Composition Community composition is a multivariate measure identifying the different benthic taxa present and respective abundances of each taxon. This descriptive measure uses information regarding the taxa present, providing detail to complement and help interpret summary metrics of diversity and abundance. 3.0 RESULTS Results of the benthic sample analysis, including taxa richness, density, and community composition are presented in the following sections. 3.1 Taxa Richness The total number of taxa identified from the samples examined was 36 (Table A). Taxa richness per sample ranged from 1 at multiple locations (B-10, B-12, B-14, B-18, B28, B-30, B-32, B-34, and B-39) to 19 taxa at B-1 (Figure 1 and Appendix C) with a mean taxa richness of 4 taxa per site (Table A). Table A. Summary of Key Statistics from the Benthic Sample Analysis Statistic Value Number of Samples 30 Mean Density per Square Meter (±1 SD) 848 ± 2084 Mean Taxa Richness (±1 SD) 4 ± 5 Total Number of Taxa 36 Number of Taxa Observed by Taxonomic Group Insects 19 Mollusks 7 Oligochaete Worms 5 Crustaceans 2 Other 3 Percent of Total Abundance by Taxonomic Group © 2016 ESS Group, Inc. Page 2 Benthic Macroinvertebrate Sample Analysis Report – Vermont
Recommended publications
  • Chironominae 8.1
    CHIRONOMINAE 8.1 SUBFAMILY CHIRONOMINAE 8 DIAGNOSIS: Antennae 4-8 segmented, rarely reduced. Labrum with S I simple, palmate or plumose; S II simple, apically fringed or plumose; S III simple; S IV normal or sometimes on pedicel. Labral lamellae usually well developed, but reduced or absent in some taxa. Mentum usually with 8-16 well sclerotized teeth; sometimes central teeth or entire mentum pale or poorly sclerotized; rarely teeth fewer than 8 or modified as seta-like projections. Ventromental plates well developed and usually striate, but striae reduced or vestigial in some taxa; beard absent. Prementum without dense brushes of setae. Body usually with anterior and posterior parapods and procerci well developed; setal fringe not present, but sometimes with bifurcate pectinate setae. Penultimate segment sometimes with 1-2 pairs of ventral tubules; antepenultimate segment sometimes with lateral tubules. Anal tubules usually present, reduced in brackish water and marine taxa. NOTESTES: Usually the most abundant subfamily (in terms of individuals and taxa) found on the Coastal Plain of the Southeast. Found in fresh, brackish and salt water (at least one truly marine genus). Most larvae build silken tubes in or on substrate; some mine in plants, dead wood or sediments; some are free- living; some build transportable cases. Many larvae feed by spinning silk catch-nets, allowing them to fill with detritus, etc., and then ingesting the net; some taxa are grazers; some are predacious. Larvae of several taxa (especially Chironomus) have haemoglobin that gives them a red color and the ability to live in low oxygen conditions. With only one exception (Skutzia), at the generic level the larvae of all described (as adults) southeastern Chironominae are known.
    [Show full text]
  • Some Aspects of Ecology and Genetics of Chironomidae (Diptera) in Rice Field and the Effect of Selected Herbicides on Its Population
    SOME ASPECTS OF ECOLOGY AND GENETICS OF CHIRONOMIDAE (DIPTERA) IN RICE FIELD AND THE EFFECT OF SELECTED HERBICIDES ON ITS POPULATION By SALMAN ABDO ALI AL-SHAMI Thesis submitted in fulfillment of the requirements for the degree of Master August 2006 ACKNOWLEDGEMENTS First of all, Allah will help me to finish this study. My sincere gratitude to my supervisor, Associate Professor Dr. Che Salmah Md. Rawi and my co- supervisor Associate Professor Dr. Siti Azizah Mohd. Nor for their support, encouragement, guidance, suggestions and patience in providing invaluable ideas. To them, I express my heartfelt thanks. I would like to thank Universiti Sains Malaysia, Penang, Malaysia, for giving me the opportunity and providing me with all the necessary facilities that made my study possible. Special thanks to Ms. Madiziatul, Ms. Ruzainah, Ms. Emi, Ms. Kamila, Mr. Adnan, Ms. Yeap Beng-keok and Ms. Manorenjitha for their valuable help. I am also grateful to our entomology laboratory assistants Mr. Hadzri, Ms. Khatjah and Mr. Shahabuddin for their help in sampling and laboratory work. All the staff of Electronic Microscopy Unit, drivers Mr. Kalimuthu, Mr. Nurdin for their invaluable helps. I would like to thank all the staff of School of Biological Sciences, Universiti Sains Malaysia, who has helped me in one way or another either directly or indirectly in contributing to the smooth progress of my research activities throughout my study. My genuine thanks also go to the specialists, Prof. Saether, Prof Anderson, Dr. Mendes (Bergen University, Norway) and Prof. Xinhua Wang (Nankai University, China) for kindly identifying and verifying Chironomidae larvae and adult specimens.
    [Show full text]
  • Ohio EPA Macroinvertebrate Taxonomic Level December 2019 1 Table 1. Current Taxonomic Keys and the Level of Taxonomy Routinely U
    Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Table 1. Current taxonomic keys and the level of taxonomy routinely used by the Ohio EPA in streams and rivers for various macroinvertebrate taxonomic classifications. Genera that are reasonably considered to be monotypic in Ohio are also listed. Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Species Pennak 1989, Thorp & Rogers 2016 Porifera If no gemmules are present identify to family (Spongillidae). Genus Thorp & Rogers 2016 Cnidaria monotypic genera: Cordylophora caspia and Craspedacusta sowerbii Platyhelminthes Class (Turbellaria) Thorp & Rogers 2016 Nemertea Phylum (Nemertea) Thorp & Rogers 2016 Phylum (Nematomorpha) Thorp & Rogers 2016 Nematomorpha Paragordius varius monotypic genus Thorp & Rogers 2016 Genus Thorp & Rogers 2016 Ectoprocta monotypic genera: Cristatella mucedo, Hyalinella punctata, Lophopodella carteri, Paludicella articulata, Pectinatella magnifica, Pottsiella erecta Entoprocta Urnatella gracilis monotypic genus Thorp & Rogers 2016 Polychaeta Class (Polychaeta) Thorp & Rogers 2016 Annelida Oligochaeta Subclass (Oligochaeta) Thorp & Rogers 2016 Hirudinida Species Klemm 1982, Klemm et al. 2015 Anostraca Species Thorp & Rogers 2016 Species (Lynceus Laevicaudata Thorp & Rogers 2016 brachyurus) Spinicaudata Genus Thorp & Rogers 2016 Williams 1972, Thorp & Rogers Isopoda Genus 2016 Holsinger 1972, Thorp & Rogers Amphipoda Genus 2016 Gammaridae: Gammarus Species Holsinger 1972 Crustacea monotypic genera: Apocorophium lacustre, Echinogammarus ischnus, Synurella dentata Species (Taphromysis Mysida Thorp & Rogers 2016 louisianae) Crocker & Barr 1968; Jezerinac 1993, 1995; Jezerinac & Thoma 1984; Taylor 2000; Thoma et al. Cambaridae Species 2005; Thoma & Stocker 2009; Crandall & De Grave 2017; Glon et al. 2018 Species (Palaemon Pennak 1989, Palaemonidae kadiakensis) Thorp & Rogers 2016 1 Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Informal grouping of the Arachnida Hydrachnidia Smith 2001 water mites Genus Morse et al.
    [Show full text]
  • Checklist of the Family Chironomidae (Diptera) of Finland
    A peer-reviewed open-access journal ZooKeys 441: 63–90 (2014)Checklist of the family Chironomidae (Diptera) of Finland 63 doi: 10.3897/zookeys.441.7461 CHECKLIST www.zookeys.org Launched to accelerate biodiversity research Checklist of the family Chironomidae (Diptera) of Finland Lauri Paasivirta1 1 Ruuhikoskenkatu 17 B 5, FI-24240 Salo, Finland Corresponding author: Lauri Paasivirta ([email protected]) Academic editor: J. Kahanpää | Received 10 March 2014 | Accepted 26 August 2014 | Published 19 September 2014 http://zoobank.org/F3343ED1-AE2C-43B4-9BA1-029B5EC32763 Citation: Paasivirta L (2014) Checklist of the family Chironomidae (Diptera) of Finland. In: Kahanpää J, Salmela J (Eds) Checklist of the Diptera of Finland. ZooKeys 441: 63–90. doi: 10.3897/zookeys.441.7461 Abstract A checklist of the family Chironomidae (Diptera) recorded from Finland is presented. Keywords Finland, Chironomidae, species list, biodiversity, faunistics Introduction There are supposedly at least 15 000 species of chironomid midges in the world (Armitage et al. 1995, but see Pape et al. 2011) making it the largest family among the aquatic insects. The European chironomid fauna consists of 1262 species (Sæther and Spies 2013). In Finland, 780 species can be found, of which 37 are still undescribed (Paasivirta 2012). The species checklist written by B. Lindeberg on 23.10.1979 (Hackman 1980) included 409 chironomid species. Twenty of those species have been removed from the checklist due to various reasons. The total number of species increased in the 1980s to 570, mainly due to the identification work by me and J. Tuiskunen (Bergman and Jansson 1983, Tuiskunen and Lindeberg 1986).
    [Show full text]
  • Table of Contents 2
    Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) List of Freshwater Macroinvertebrate Taxa from California and Adjacent States including Standard Taxonomic Effort Levels 1 March 2011 Austin Brady Richards and D. Christopher Rogers Table of Contents 2 1.0 Introduction 4 1.1 Acknowledgments 5 2.0 Standard Taxonomic Effort 5 2.1 Rules for Developing a Standard Taxonomic Effort Document 5 2.2 Changes from the Previous Version 6 2.3 The SAFIT Standard Taxonomic List 6 3.0 Methods and Materials 7 3.1 Habitat information 7 3.2 Geographic Scope 7 3.3 Abbreviations used in the STE List 8 3.4 Life Stage Terminology 8 4.0 Rare, Threatened and Endangered Species 8 5.0 Literature Cited 9 Appendix I. The SAFIT Standard Taxonomic Effort List 10 Phylum Silicea 11 Phylum Cnidaria 12 Phylum Platyhelminthes 14 Phylum Nemertea 15 Phylum Nemata 16 Phylum Nematomorpha 17 Phylum Entoprocta 18 Phylum Ectoprocta 19 Phylum Mollusca 20 Phylum Annelida 32 Class Hirudinea Class Branchiobdella Class Polychaeta Class Oligochaeta Phylum Arthropoda Subphylum Chelicerata, Subclass Acari 35 Subphylum Crustacea 47 Subphylum Hexapoda Class Collembola 69 Class Insecta Order Ephemeroptera 71 Order Odonata 95 Order Plecoptera 112 Order Hemiptera 126 Order Megaloptera 139 Order Neuroptera 141 Order Trichoptera 143 Order Lepidoptera 165 2 Order Coleoptera 167 Order Diptera 219 3 1.0 Introduction The Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) is charged through its charter to develop standardized levels for the taxonomic identification of aquatic macroinvertebrates in support of bioassessment. This document defines the standard levels of taxonomic effort (STE) for bioassessment data compatible with the Surface Water Ambient Monitoring Program (SWAMP) bioassessment protocols (Ode, 2007) or similar procedures.
    [Show full text]
  • Jackson & Nelson R2 Figs
    Fine tuning of vision-based prey-choice decisions by a predator that targets malaria vectors Running Head: PREY PREFERENCE OF A SPIDER THAT TARGETS MALARIA VECTORS Ximena J. NELSON1*, Robert R. JACKSON1,2 1School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand. 2International Centre of Insect Physiology and Ecology, Thomas Odhiambo Campus, P.0. Box 30 Mbita Point 40350, Kenya. *Email: [email protected] Phone: 64-3-3642987 extn. 4050 Fax: 64-3-3642590 Key words: foraging, mosquito, predation, prey preference, salticid, specialization ABSTRACT. Evarcha culicivora is a jumping spider (Salticidae) that has the distinction of being the only predator known to express an active preference for the vectors of human malaria (i.e., the mosquito genus Anopheles) and to feed indirectly on blood by choosing blood-carrying female mosquitoes as prey. Here we examine this predator’s preference profile in greater detail than has been achieved before. Lures (dead prey mounted in life-like posture) were made from two mosquitoes (Anopheles gambiae and Culex quinquefasciatus) and a non-biting midge (Clinotanypus claripennis). Testing protocols were simultaneous-presentation (two prey presented simultaneously), alternate-day (two prey, each presented singly but on alternate days) and alternative-prey (second prey presented while test spider feeding on first prey). Pre-trial fasts were 1, 7, 15 and 21 days. Findings from this combination of variables were used to estimate strengths of preferences. Besides confirming the preference of E. culicivora for blood meals and for Anopheles in particular, we provide the first evidence of a preference, independent of blood meals, for female instead of male mosquitoes.
    [Show full text]
  • This Table Contains a Taxonomic List of Benthic Invertebrates Collected from Streams in the Upper Mississippi River Basin Study
    This table contains a taxonomic list of benthic invertebrates collected from streams in the Upper Mississippi River Basin study unit as part of the USGS National Water Quality Assessemnt (NAWQA) Program. Invertebrates were collected from woody snags in selected streams from 1996-2004. Data Retreival occurred 26-JAN-06 11.10.25 AM from the USGS data warehouse (Taxonomic List Invert http://water.usgs.gov/nawqa/data). The data warehouse currently contains invertebrate data through 09/30/2002. Invertebrate taxa can include provisional and conditional identifications. For more information about invertebrate sample processing and taxonomic standards see, "Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory -- Processing, taxonomy, and quality control of benthic macroinvertebrate samples", at << http://nwql.usgs.gov/Public/pubs/OFR00-212.html >>. Data Retrieval Precaution: Extreme caution must be exercised when comparing taxonomic lists generated using different search criteria. This is because the number of samples represented by each taxa list will vary depending on the geographic criteria selected for the retrievals. In addition, species lists retrieved at different times using the same criteria may differ because: (1) the taxonomic nomenclature (names) were updated, and/or (2) new samples containing new taxa may Phylum Class Order Family Subfamily Tribe Genus Species Taxon Porifera Porifera Cnidaria Hydrozoa Hydroida Hydridae Hydridae Cnidaria Hydrozoa Hydroida Hydridae Hydra Hydra sp. Platyhelminthes Turbellaria Turbellaria Nematoda Nematoda Bryozoa Bryozoa Mollusca Gastropoda Gastropoda Mollusca Gastropoda Mesogastropoda Mesogastropoda Mollusca Gastropoda Mesogastropoda Viviparidae Campeloma Campeloma sp. Mollusca Gastropoda Mesogastropoda Viviparidae Viviparus Viviparus sp. Mollusca Gastropoda Mesogastropoda Hydrobiidae Hydrobiidae Mollusca Gastropoda Basommatophora Ancylidae Ancylidae Mollusca Gastropoda Basommatophora Ancylidae Ferrissia Ferrissia sp.
    [Show full text]
  • Cursory Examination of the Chironomidae of Arkansas (Diptera: Insecta) Anthony J
    Journal of the Arkansas Academy of Science Volume 20 Article 14 1966 Cursory Examination of the Chironomidae of Arkansas (Diptera: Insecta) Anthony J. Iovino University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Entomology Commons Recommended Citation Iovino, Anthony J. (1966) "Cursory Examination of the Chironomidae of Arkansas (Diptera: Insecta)," Journal of the Arkansas Academy of Science: Vol. 20 , Article 14. Available at: http://scholarworks.uark.edu/jaas/vol20/iss1/14 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Journal of the Arkansas Academy of Science, Vol. 20 [1966], Art. 14 68 Arkansas Academy of Science Proceedings, Vol. 20, 1966 A CURSORY EXAMINATION OF THE CHIRONOMIDAE OF ARKANSAS (DIPTERA: INSECTA) Anthony J. lovino1 University of Arkansas PREFACE It has been the policy of the Department of Entomology of the University of Arkansas to encourage work of a systematic nature, in order that the insect fauna of Arkansas be better known. In keeping with this policy, the species list herein is presented.
    [Show full text]
  • Effects of Hydrological Connectivity on the Benthos of a Large River (Lower Mississippi River, USA)
    University of Mississippi eGrove Electronic Theses and Dissertations Graduate School 1-1-2018 Effects of Hydrological Connectivity on the Benthos of a Large River (Lower Mississippi River, USA) Audrey B. Harrison University of Mississippi Follow this and additional works at: https://egrove.olemiss.edu/etd Part of the Biology Commons Recommended Citation Harrison, Audrey B., "Effects of Hydrological Connectivity on the Benthos of a Large River (Lower Mississippi River, USA)" (2018). Electronic Theses and Dissertations. 1352. https://egrove.olemiss.edu/etd/1352 This Dissertation is brought to you for free and open access by the Graduate School at eGrove. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more information, please contact [email protected]. EFFECTS OF HYDROLOGICAL CONNECTIVITY ON THE BENTHOS OF A LARGE RIVER (LOWER MISSISSIPPI RIVER, USA) A Dissertation presented in partial fulfillment of requirements for the degree of Doctor of Philosophy in the Department of Biological Sciences The University of Mississippi by AUDREY B. HARRISON May 2018 Copyright © 2018 by Audrey B. Harrison All rights reserved. ABSTRACT The effects of hydrological connectivity between the Mississippi River main channel and adjacent secondary channel and floodplain habitats on macroinvertebrate community structure, water chemistry, and sediment makeup and chemistry are analyzed. In river-floodplain systems, connectivity between the main channel and the surrounding floodplain is critical in maintaining ecosystem processes. Floodplains comprise a variety of aquatic habitat types, including frequently connected secondary channels and oxbows, as well as rarely connected backwater lakes and pools. Herein, the effects of connectivity on riverine and floodplain biota, as well as the impacts of connectivity on the physiochemical makeup of both the water and sediments in secondary channels are examined.
    [Show full text]
  • 94: Frank & Mccoy Intro. 1 INTRODUCTION to INSECT
    Behavioral Ecology Symposium ’94: Frank & McCoy Intro. 1 INTRODUCTION TO INSECT BEHAVIORAL ECOLOGY : THE GOOD, THE BAD, AND THE BEAUTIFUL: NON-INDIGENOUS SPECIES IN FLORIDA INVASIVE ADVENTIVE INSECTS AND OTHER ORGANISMS IN FLORIDA. J. H. FRANK1 AND E. D. MCCOY2 1Entomology & Nematology Department, University of Florida, Gainesville, FL 32611-0620 2Biology Department and Center for Urban Ecology, University of South Florida, Tampa, FL 33620-5150 ABSTRACT An excessive proportion of adventive (= “non-indigenous”) species in a community has been called “biological pollution.” Proportions of adventive species of fishes, am- phibia, reptiles, birds and mammals in southern Florida range from 16% to more than 42%. In Florida as a whole, the proportion of adventive plants is about 26%, but of in- sects is only about 8%. Almost all of the vertebrates were introduced as captive pets, but escaped or were released into the wild, and established breeding populations; few arrived as immigrants (= “of their own volition”). Almost all of the plants also were in- troduced, a few arrived as immigrants (as contaminants of shipments of seeds or other cargoes). In contrast, only 42 insect species (0.3%) were introduced (all for bio- logical control of pests, including weeds). The remainder (about 946 species, or 7.6%) arrived as undocumented immigrants, some of them as fly-ins, but many as contami- nants of cargoes. Most of the major insect pests of agriculture, horticulture, human- made structures, and the environment, arrived as hitchhikers (contaminants of, and stowaways in, cargoes, especially cargoes of plants). No adventive insect species caus- ing problems in Florida was introduced (deliberately) as far as is known.
    [Show full text]
  • Biodiversity and Phenology of the Epibenthic Macroinvertebrate Fauna in a First Order Mississippi Stream
    The University of Southern Mississippi The Aquila Digital Community Master's Theses Summer 8-2017 Biodiversity and Phenology of the Epibenthic Macroinvertebrate Fauna in a First Order Mississippi Stream Jamaal Bankhead University of Southern Mississippi Follow this and additional works at: https://aquila.usm.edu/masters_theses Recommended Citation Bankhead, Jamaal, "Biodiversity and Phenology of the Epibenthic Macroinvertebrate Fauna in a First Order Mississippi Stream" (2017). Master's Theses. 308. https://aquila.usm.edu/masters_theses/308 This Masters Thesis is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Master's Theses by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. BIODIVERSITY AND PHENOLOGY OF THE EPIBENTHIC MACROINVERTEBRATES FAUNA IN A FIRST ORDER MISSISSIPPI STREAM by Jamaal Lashwan Bankhead A Thesis Submitted to the Graduate School, the College of Science and Technology, and the Department of Biological Sciences at The University of Southern Mississippi in Partial Fulfillment of the Requirements for the Degree of Master of Science August 2017 BIODIVERSITY AND PHENOLOGY OF THE EPIBENTHIC MACROINVERTEBRATES FAUNA IN A FIRST ORDER MISSISSIPPI STREAM by Jamaal Lashwan Bankhead August 2017 Approved by: ________________________________________________ Dr. David C. Beckett, Committee Chair Professor, Biological Sciences ________________________________________________ Dr. Kevin Kuehn, Committee
    [Show full text]
  • Microsoft Outlook
    Joey Steil From: Leslie Jordan <[email protected]> Sent: Tuesday, September 25, 2018 1:13 PM To: Angela Ruberto Subject: Potential Environmental Beneficial Users of Surface Water in Your GSA Attachments: Paso Basin - County of San Luis Obispo Groundwater Sustainabilit_detail.xls; Field_Descriptions.xlsx; Freshwater_Species_Data_Sources.xls; FW_Paper_PLOSONE.pdf; FW_Paper_PLOSONE_S1.pdf; FW_Paper_PLOSONE_S2.pdf; FW_Paper_PLOSONE_S3.pdf; FW_Paper_PLOSONE_S4.pdf CALIFORNIA WATER | GROUNDWATER To: GSAs We write to provide a starting point for addressing environmental beneficial users of surface water, as required under the Sustainable Groundwater Management Act (SGMA). SGMA seeks to achieve sustainability, which is defined as the absence of several undesirable results, including “depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial users of surface water” (Water Code §10721). The Nature Conservancy (TNC) is a science-based, nonprofit organization with a mission to conserve the lands and waters on which all life depends. Like humans, plants and animals often rely on groundwater for survival, which is why TNC helped develop, and is now helping to implement, SGMA. Earlier this year, we launched the Groundwater Resource Hub, which is an online resource intended to help make it easier and cheaper to address environmental requirements under SGMA. As a first step in addressing when depletions might have an adverse impact, The Nature Conservancy recommends identifying the beneficial users of surface water, which include environmental users. This is a critical step, as it is impossible to define “significant and unreasonable adverse impacts” without knowing what is being impacted. To make this easy, we are providing this letter and the accompanying documents as the best available science on the freshwater species within the boundary of your groundwater sustainability agency (GSA).
    [Show full text]