A Review of the Genus Tanytarsus Van Der Wulp, 1874 (Insecta, Diptera, Chironomidae) from the Neotropical Region

Total Page:16

File Type:pdf, Size:1020Kb

A Review of the Genus Tanytarsus Van Der Wulp, 1874 (Insecta, Diptera, Chironomidae) from the Neotropical Region A review of the genus Tanytarsus van der Wulp, 1874 (Insecta, Diptera, Chironomidae) from the Neotropical Region Angela Manzolillo Sanseverino München 2006 A review of the genus Tanytarsus van der Wulp, 1874 (Insecta, Diptera, Chironomidae) from the Neotropical Region Dissertation zur Erlangung des Doktorgrades der Fakultät für Biologie der Ludwig-Maximilians-Universität München Durchgeführt an der Zoologischen Staatssammlung München vorgelegt von Angela Manzolillo Sanseverino aus Rio de Janeiro, Brasilien München, Oktober 2005 Erstgutachter: Prof. Dr. Ernst Josef Fittkau Zweitgutachter: Prof. Dr. Klaus Schönitzer Abgabetag: 20.10.2005 Tag der mündlichen Prüfung: 23.2.2006 Hinweis Hiermit erkläre ich, dass die nomenklatorisch relevanten Handlungen in dieser Arbeit im Sinne von Artikel 8 des Internationales Kodes für Zoologische Nomenklatur als unpubliziert zu gelten haben (ICZN 1999). Sie werden ausschließlich durch die entsprechenden Publikationen verfügbar gemacht. Disclaimer I herewith declare that the nomenclaturally relevant acts in this thesis have to be regarded as unpublished according to article 8 of the International Code of Zoological Nomenclature (ICZN 1999), and will only become availabe by the referring publications. iii CONTENTS 1. Introduction ........................................................................................................................ 1-5 1.1. The family Chironomidae ................................................................................................. 1 1.2. The genus Tanytarsus van der Wulp, 1874 ...................................................................... 3 2. Purpose ................................................................................................................................... 6 3. Material and Methods ........................................................................................................... 8 4. Results and Discussions ................................................................................................ 10-222 4.1. Imaginal and pupal morphology of Neotropical Tanytarsus: considerations on diagnostic characters, descriptions and measurements ....................................................................... 10 4.2. List of species ................................................................................................................... 26 4.3. Descriptions and discussions ............................................................................................ 28 Tanytarsus branquini Fittkau & Reiss, 1973 ......................................................................... 28 Tanytarsus cuieirensis Fittkau & Reiss, 1973 ....................................................................... 32 Tanytarsus cururui Fittkau & Reiss, 1973 ............................................................................. 38 Tanytarsus riopreto Fittkau & Reiss, 1973 ............................................................................ 42 Discussion about Tanytarsus branquini, Tanytarsus cuieirensis, Tanytarsus cururui and Tanytarsus riopreto, with comments on the Neotropical Tanytarsus riopreto species group ................................................................................................................................................ 46 Tanytarsus clivosus Reiss, 1972 ............................................................................................ 49 Tanytarsus hamatus Reiss, 1972 ............................................................................................ 56 Discussion about Tanytarsus clivosus and Tanytarsus hamatus, including some comments on the European Tanytarsus chinyensis and the Neotropical Tanytarsus riopreto species groups ................................................................................................................................................. 63 Tanytarsus capitatus Sublette & Sasa, 1994 .......................................................................... 67 Tanytarsus guatemalensis Sublette & Sasa, 1994 ................................................................. 71 Tanytarsus pandus Sublette & Sasa, 1994 ............................................................................. 74 Tanytarsus hastatus Sublette & Sasa, 1994 ........................................................................... 80 Tanytarsus limneticus Sublette, 1964 .................................................................................... 88 Tanytarsus rhabdomantis (Trivinho-Strixino & Strixino, 1991) ........................................... 95 Nimbocera patagonica Reiss, 1972 ....................................................................................... 99 Discussion about Nimbocera patagonica, Tanytarsus limneticus and Tanytarsus rhabdomantis ....................................................................................................................... 107 iv Should Nimbocera be considered a non-valid genus? ......................................................... 109 Tanytarsus marauia Sanseverino, Wiedenbrug & Fittkau, 2002 ........................................ 111 Tanytarsus revolta Sanseverino, Wiedenbrug & Fittkau, 2002 ........................................... 115 Tanytarsus waika Sanseverino, Wiedenbrug & Fittkau, 2002 ............................................ 118 Tanytarsus xingu Sanseverino, Wiedenbrug & Fittkau, 2002 ............................................. 122 Discussion about Tanytarsus marauia, Tanytarsus revolta, Tanytarsus waika and Tanytarsus xingu, members of the marauia species group .................................................................... 126 Tanytarsus amazonicus spec. nov. ....................................................................................... 127 Tanytarsus friburgensis spec. nov. ...................................................................................... 134 Tanytarsus digitatus spec. nov. ............................................................................................ 138 Tanytarsus jacaretingensis spec. nov. ................................................................................. 142 Tanytarsus monospinosus Ekrem & Reiss, 1999 ................................................................. 147 Tanytarsus tumultuarius Ekrem & Reiss, 1999 ................................................................... 149 Tanytarsus rinihuensis Reiss, 1972 ..................................................................................... 151 Tanytarsus pseudorinihuensis spec. nov. ............................................................................. 159 Tanytarsus pararinihuensis spec. nov. ................................................................................ 163 Tanytarsus ligulatus Reiss, 1972 ......................................................................................... 167 Tanytarsus cf. ligulatus Reiss, 1972 .................................................................................... 175 Tanytarsus paraligulatus Reiss, 1972 .................................................................................. 179 Tanytarsus fastigatus Reiss, 1972 ........................................................................................ 183 Tanytarsus reissi Paggi, 1992 .............................................................................................. 190 Tanytarsus impar Trivinho-Strixino & Strixino, 2004 ........................................................ 194 Tanytarsus magnus Trivinho-Strixino & Strixino, 2004 ..................................................... 195 Tanytarsus curvicristatus Contreras-Lichtenberg, 1988 ...................................................... 198 Discussion concerning the placement of Tanytarsus curvicristatus in the genus Tanytarsus and some comments on the European Tanytarsus signatus van der Wulp and the Australian Tanytarsus liepae Glover ..................................................................................................... 201 Caladomyia alata (Paggi, 1992) comb. nov. ....................................................................... 205 Caladomyia tuberculata (Reiss, 1972) comb. nov. ............................................................. 209 Caladomyia tuberculata (Reiss) and Caladomyia alata (Paggi): some morphological considerations and discussion about their placement in the genus Caladomyia ................. 213 5. Keys .............................................................................................................................. 220-230 5.1. Key to adult males ........................................................................................................ 220 v 5.2. Key to pupae ................................................................................................................ 227 6. Final Discussion .................................................................................................................. 231 7. Abstract ............................................................................................................................... 250 8. Acknowledgements ............................................................................................................ 252 9. References ........................................................................................................................... 253 10. Appendix ...................................................................................................................
Recommended publications
  • Macroinvertebrate Communities and Habitat Characteristics in the Northern and Southern Colorado Plateau Networks Pilot Protocol Implementation
    National Park Service U.S. Department of the Interior Natural Resource Program Center Macroinvertebrate Communities and Habitat Characteristics in the Northern and Southern Colorado Plateau Networks Pilot Protocol Implementation Natural Resource Technical Report NPS/NCPN/NRTR—2010/320 ON THE COVER Clockwise from bottom left: Coyote Gulch, Glen Canyon National Recreation Area (USGS/Anne Brasher); Intermittent stream (USGS/Anne Brasher); Coyote Gulch, Glen Canyon National Recreation Area (USGS/Anne Brasher); Caddisfl y larvae of the genus Neophylax (USGS/Steve Fend); Adult damselfi les (USGS/Terry Short). Macroinvertebrate Communities and Habitat Characteristics in the Northern and Southern Colorado Plateau Networks Pilot Protocol Implementation Natural Resource Technical Report NPS/NCPN/NRTR—2010/320 Authors Anne M. D. Brasher Christine M. Albano Rebecca N. Close Quinn H. Cannon Matthew P. Miller U.S. Geological Survey Utah Water Science Center 121 West 200 South Moab, Utah 84532 Editing and Design Alice Wondrak Biel Northern Colorado Plateau Network National Park Service P.O. Box 848 Moab, UT 84532 May 2010 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The National Park Service, Natural Resource Program Center publishes a range of reports that ad- dress natural resource topics of interest and applicability to a broad audience in the National Park Ser- vice and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Technical Report Series is used to disseminate results of scientifi c studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service mission.
    [Show full text]
  • Data Quality, Performance, and Uncertainty in Taxonomic Identification for Biological Assessments
    J. N. Am. Benthol. Soc., 2008, 27(4):906–919 Ó 2008 by The North American Benthological Society DOI: 10.1899/07-175.1 Published online: 28 October 2008 Data quality, performance, and uncertainty in taxonomic identification for biological assessments 1 2 James B. Stribling AND Kristen L. Pavlik Tetra Tech, Inc., 400 Red Brook Blvd., Suite 200, Owings Mills, Maryland 21117-5159 USA Susan M. Holdsworth3 Office of Wetlands, Oceans, and Watersheds, US Environmental Protection Agency, 1200 Pennsylvania Ave., NW, Mail Code 4503T, Washington, DC 20460 USA Erik W. Leppo4 Tetra Tech, Inc., 400 Red Brook Blvd., Suite 200, Owings Mills, Maryland 21117-5159 USA Abstract. Taxonomic identifications are central to biological assessment; thus, documenting and reporting uncertainty associated with identifications is critical. The presumption that comparable results would be obtained, regardless of which or how many taxonomists were used to identify samples, lies at the core of any assessment. As part of a national survey of streams, 741 benthic macroinvertebrate samples were collected throughout the eastern USA, subsampled in laboratories to ;500 organisms/sample, and sent to taxonomists for identification and enumeration. Primary identifications were done by 25 taxonomists in 8 laboratories. For each laboratory, ;10% of the samples were randomly selected for quality control (QC) reidentification and sent to an independent taxonomist in a separate laboratory (total n ¼ 74), and the 2 sets of results were compared directly. The results of the sample-based comparisons were summarized as % taxonomic disagreement (PTD) and % difference in enumeration (PDE). Across the set of QC samples, mean values of PTD and PDE were ;21 and 2.6%, respectively.
    [Show full text]
  • Chironominae 8.1
    CHIRONOMINAE 8.1 SUBFAMILY CHIRONOMINAE 8 DIAGNOSIS: Antennae 4-8 segmented, rarely reduced. Labrum with S I simple, palmate or plumose; S II simple, apically fringed or plumose; S III simple; S IV normal or sometimes on pedicel. Labral lamellae usually well developed, but reduced or absent in some taxa. Mentum usually with 8-16 well sclerotized teeth; sometimes central teeth or entire mentum pale or poorly sclerotized; rarely teeth fewer than 8 or modified as seta-like projections. Ventromental plates well developed and usually striate, but striae reduced or vestigial in some taxa; beard absent. Prementum without dense brushes of setae. Body usually with anterior and posterior parapods and procerci well developed; setal fringe not present, but sometimes with bifurcate pectinate setae. Penultimate segment sometimes with 1-2 pairs of ventral tubules; antepenultimate segment sometimes with lateral tubules. Anal tubules usually present, reduced in brackish water and marine taxa. NOTESTES: Usually the most abundant subfamily (in terms of individuals and taxa) found on the Coastal Plain of the Southeast. Found in fresh, brackish and salt water (at least one truly marine genus). Most larvae build silken tubes in or on substrate; some mine in plants, dead wood or sediments; some are free- living; some build transportable cases. Many larvae feed by spinning silk catch-nets, allowing them to fill with detritus, etc., and then ingesting the net; some taxa are grazers; some are predacious. Larvae of several taxa (especially Chironomus) have haemoglobin that gives them a red color and the ability to live in low oxygen conditions. With only one exception (Skutzia), at the generic level the larvae of all described (as adults) southeastern Chironominae are known.
    [Show full text]
  • Diptera: Corethrellidae) Author(S): Priyanka De Silva and Ximena E
    First Report of the Mating Behavior of a Species of Frog-Biting Midge (Diptera: Corethrellidae) Author(s): Priyanka De Silva and Ximena E. Bernal Source: Florida Entomologist, 96(4):1522-1529. 2013. Published By: Florida Entomological Society DOI: http://dx.doi.org/10.1653/024.096.0434 URL: http://www.bioone.org/doi/full/10.1653/024.096.0434 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. 1522 Florida Entomologist 96(4) December 2013 FIRST REPORT OF THE MATING BEHAVIOR OF A SPECIES OF FROG-BITING MIDGE (DIPTERA: CORETHRELLIDAE) PRIYANKA DE SILVA1,* AND XIMENA E. BERNAL1, 2 1Department of Biological Science, Texas Tech University, P.O. Box 43131, Lubbock, TX, 79409, USA 2Smithsonian Tropical Research Institute, Apartado 2072, Balboa, Republic of Panama *Corresponding author; E-mail: [email protected] ABSTRACT Swarming is a common mating behavior present throughout Diptera and, in particular, in species of lower flies (Nematocerous Diptera).
    [Show full text]
  • The International Response to Conflict and Genocide:Lessom from the Rwanda Experience
    The International Response to Conflict and Genocide: Lessons from the Rwanda Experience March 1996 Published by: Steering Committee of the Joint Evaluation of Emergency Assistance to Rwanda Editor: David Millwood Cover illustrations: Kiure F. Msangi Graphic design: Designgrafik, Copenhagen Prepress: Dansk Klich‚, Copenhagen Printing: Strandberg Grafisk, Odense ISBN: 87-7265-335-3 (Synthesis Report) ISBN: 87-7265-331-0 (1. Historical Perspective: Some Explanatory Factors) ISBN: 87-7265-332-9 (2. Early Warning and Conflict Management) ISBN: 87-7265-333-7 (3. Humanitarian Aid and Effects) ISBN: 87-7265-334-5 (4. Rebuilding Post-War Rwanda) This publication may be reproduced for free distribution and may be quoted provided the source - Joint Evaluation of Emergency Assistance to Rwanda - is mentioned. The report is printed on G-print Matt, a wood-free, medium-coated paper. G-print is manufactured without the use of chlorine and marked with the Nordic Swan, licence-no. 304 022. 2 The International Response to Conflict and Genocide: Lessons from the Rwanda Experience Study 2 Early Warning and Conflict Management by Howard Adelman York University Toronto, Canada Astri Suhrke Chr. Michelsen Institute Bergen, Norway with contributions by Bruce Jones London School of Economics, U.K. Joint Evaluation of Emergency Assistance to Rwanda 3 Contents Preface 5 Executive Summary 8 Acknowledgements 11 Introduction 12 Chapter 1: The Festering Refugee Problem 17 Chapter 2: Civil War, Civil Violence and International Response 20 (1 October 1990 - 4 August
    [Show full text]
  • Some Aspects of Ecology and Genetics of Chironomidae (Diptera) in Rice Field and the Effect of Selected Herbicides on Its Population
    SOME ASPECTS OF ECOLOGY AND GENETICS OF CHIRONOMIDAE (DIPTERA) IN RICE FIELD AND THE EFFECT OF SELECTED HERBICIDES ON ITS POPULATION By SALMAN ABDO ALI AL-SHAMI Thesis submitted in fulfillment of the requirements for the degree of Master August 2006 ACKNOWLEDGEMENTS First of all, Allah will help me to finish this study. My sincere gratitude to my supervisor, Associate Professor Dr. Che Salmah Md. Rawi and my co- supervisor Associate Professor Dr. Siti Azizah Mohd. Nor for their support, encouragement, guidance, suggestions and patience in providing invaluable ideas. To them, I express my heartfelt thanks. I would like to thank Universiti Sains Malaysia, Penang, Malaysia, for giving me the opportunity and providing me with all the necessary facilities that made my study possible. Special thanks to Ms. Madiziatul, Ms. Ruzainah, Ms. Emi, Ms. Kamila, Mr. Adnan, Ms. Yeap Beng-keok and Ms. Manorenjitha for their valuable help. I am also grateful to our entomology laboratory assistants Mr. Hadzri, Ms. Khatjah and Mr. Shahabuddin for their help in sampling and laboratory work. All the staff of Electronic Microscopy Unit, drivers Mr. Kalimuthu, Mr. Nurdin for their invaluable helps. I would like to thank all the staff of School of Biological Sciences, Universiti Sains Malaysia, who has helped me in one way or another either directly or indirectly in contributing to the smooth progress of my research activities throughout my study. My genuine thanks also go to the specialists, Prof. Saether, Prof Anderson, Dr. Mendes (Bergen University, Norway) and Prof. Xinhua Wang (Nankai University, China) for kindly identifying and verifying Chironomidae larvae and adult specimens.
    [Show full text]
  • IATSE and Labor Movement News
    FIRST QUARTER, 2012 NUMBER 635 FEATURES Report of the 10 General Executive Board January 30 - February 3, 2012, Atlanta, Georgia Work Connects Us All AFL-CIO Launches New 77 Campaign, New Website New IATSE-PAC Contest 79 for the “Stand up, Fight Back” Campaign INTERNATIONAL ALLIANCE OF THEATRICAL STAGE EMPLOYEES, MOVING PICTURE TECHNICIANS, ARTISTS AND ALLIED CRAFTS OF THE UNITED STATES, ITS TERRITORIES AND CANADA, AFL-CIO, CLC EXECUTIVE OFFICERS Matthew D. Loeb James B. Wood International President General Secretary–Treasurer Thomas C. Short Michael W. Proscia International General Secretary– President Emeritus Treasurer Emeritus Edward C. Powell International Vice President Emeritus Timothy F. Magee Brian J. Lawlor 1st Vice President 7th Vice President 900 Pallister Ave. 1430 Broadway, 20th Floor Detroit, MI 48202 New York, NY 10018 DEPARTMENTS Michael Barnes Michael F. Miller, Jr. 2nd Vice President 8th Vice President 2401 South Swanson Street 10045 Riverside Drive Philadelphia, PA 19148 Toluca Lake, CA 91602 4 President’s 74 Local News & Views J. Walter Cahill John T. Beckman, Jr. 3rd Vice President 9th Vice President Newsletter 5010 Rugby Avenue 1611 S. Broadway, #110 80 On Location Bethesda, MD 20814 St Louis, MO 63104 Thom Davis Daniel DiTolla 5 General Secretary- 4th Vice President 10th Vice President 2520 West Olive Avenue 1430 Broadway, 20th Floor Treasurer’s Message 82 Safety Zone Burbank, CA 91505 New York, NY 10018 Anthony M. DePaulo John Ford 5th Vice President 11th Vice President 6 IATSE and Labor 83 On the Show Floor 1430 Broadway, 20th Floor 326 West 48th Street New York, NY 10018 New York, NY 10036 Movement News Damian Petti John M.
    [Show full text]
  • John H. Epler 461 Tiger Hammock Road, Crawfordville, Florida, 32327
    CHIRONOMUS Journal of Chironomidae Research No. 30, 2017: 4-18. Current Research. AN ANNOTATED PRELIMINARY LIST OF THE CHIRONOMIDAE (DIPTERA) OF ZURQUÍ, COSTA RICA John H. Epler 461 Tiger Hammock Road, Crawfordville, Florida, 32327, U.S.A. Email: [email protected] Abstract to October 2013. The 150 by 266 m site, at an el- evation of ~1600 m, is mostly cloud forest, with An annotated list of the species of Chironomidae adjacent small pastures; the site has one permanent found at a four-hectare site, mostly cloud forest, in and one temporary stream, located in heavily for- Costa Rica is presented. A total of 137 species, 98 ested ravines. of them undescribed, in 63 genera (17 apparently new), were found. Collecting methods included two malaise traps run continuously and additional traps run three days Introduction each month: three additional malaise traps, several The tropics have long been known as areas of great emergence traps (over leaf litter; over dry branch- biodiversity (e.g. Erwin 1982), but our knowledge es; over vegetation; over stagnant water; over run- of many insect groups there remains poor. The two ning water), CDC light traps, bucket light traps, volume “Manual of Central American Diptera” yellow pan traps, flight intercept traps and mercury (Brown et al. 2009, 2010) provided the first modern vapor light traps. Some specimens were collected tools to analyze the diversity of one of the largest by sweeping and by hand. orders of insects, the Diptera (two-winged flies) of Samples were sorted and prepared by technicians the northern portion of the Neotropics; Spies et al.
    [Show full text]
  • Spatial and Temporal Distribution of Aquatic Insects in the Dicle (Tigris) River Basin, Turkey, with New Records
    Turkish Journal of Zoology Turk J Zool (2017) 41: 102-112 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1512-56 Spatial and temporal distribution of aquatic insects in the Dicle (Tigris) River Basin, Turkey, with new records Fatma ÇETİNKAYA, Aysel BEKLEYEN* Department of Biology, Faculty of Science, Dicle University, Diyarbakır, Turkey Received: 21.12.2015 Accepted/Published Online: 01.06.2016 Final Version: 25.01.2017 Abstract: We investigated insects of the Dicle (Tigris) River Basin in terms of their composition and spatiotemporal distribution. Larvae, pupae, pupal exuviae, and nymphs of insects were obtained from samples collected by a plankton net monthly during a 1-year period in 2008 and 2009 at seven different sites of the Dicle (Tigris) River Basin. A total of 35 taxa from the orders Trichoptera (1 taxon), Ephemeroptera (3 taxa), and Diptera (31 taxa) were identified. Chironomidae (Diptera) was the most diverse group and was represented by three major subfamilies, namely Tanypodinae (2 taxa), Orthocladiinae (19 taxa), and Chironominae (7 taxa). Among these species, Nanocladius (Nanocladius) spiniplenus Saether, 1977 is a new record for Turkey as well as for western Asia. In addition, the Psychomyia larvae found for the first time in the Dicle (Tigris) River Basin (Turkey) were described. Both taxa have been illustrated to warrant validation. Taxa number varied spatially from 6 to 14 and temporally from 2 to 12 during the sampling period. Along the river, Cricotopus bicinctus and Orthocladius (S.) holsatus were the most common taxa. Key words: Diptera, Ephemeroptera, Trichoptera, Insecta, Dicle (Tigris) River 1.
    [Show full text]
  • Ohio EPA Macroinvertebrate Taxonomic Level December 2019 1 Table 1. Current Taxonomic Keys and the Level of Taxonomy Routinely U
    Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Table 1. Current taxonomic keys and the level of taxonomy routinely used by the Ohio EPA in streams and rivers for various macroinvertebrate taxonomic classifications. Genera that are reasonably considered to be monotypic in Ohio are also listed. Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Species Pennak 1989, Thorp & Rogers 2016 Porifera If no gemmules are present identify to family (Spongillidae). Genus Thorp & Rogers 2016 Cnidaria monotypic genera: Cordylophora caspia and Craspedacusta sowerbii Platyhelminthes Class (Turbellaria) Thorp & Rogers 2016 Nemertea Phylum (Nemertea) Thorp & Rogers 2016 Phylum (Nematomorpha) Thorp & Rogers 2016 Nematomorpha Paragordius varius monotypic genus Thorp & Rogers 2016 Genus Thorp & Rogers 2016 Ectoprocta monotypic genera: Cristatella mucedo, Hyalinella punctata, Lophopodella carteri, Paludicella articulata, Pectinatella magnifica, Pottsiella erecta Entoprocta Urnatella gracilis monotypic genus Thorp & Rogers 2016 Polychaeta Class (Polychaeta) Thorp & Rogers 2016 Annelida Oligochaeta Subclass (Oligochaeta) Thorp & Rogers 2016 Hirudinida Species Klemm 1982, Klemm et al. 2015 Anostraca Species Thorp & Rogers 2016 Species (Lynceus Laevicaudata Thorp & Rogers 2016 brachyurus) Spinicaudata Genus Thorp & Rogers 2016 Williams 1972, Thorp & Rogers Isopoda Genus 2016 Holsinger 1972, Thorp & Rogers Amphipoda Genus 2016 Gammaridae: Gammarus Species Holsinger 1972 Crustacea monotypic genera: Apocorophium lacustre, Echinogammarus ischnus, Synurella dentata Species (Taphromysis Mysida Thorp & Rogers 2016 louisianae) Crocker & Barr 1968; Jezerinac 1993, 1995; Jezerinac & Thoma 1984; Taylor 2000; Thoma et al. Cambaridae Species 2005; Thoma & Stocker 2009; Crandall & De Grave 2017; Glon et al. 2018 Species (Palaemon Pennak 1989, Palaemonidae kadiakensis) Thorp & Rogers 2016 1 Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Informal grouping of the Arachnida Hydrachnidia Smith 2001 water mites Genus Morse et al.
    [Show full text]
  • Checklist of the Family Chironomidae (Diptera) of Finland
    A peer-reviewed open-access journal ZooKeys 441: 63–90 (2014)Checklist of the family Chironomidae (Diptera) of Finland 63 doi: 10.3897/zookeys.441.7461 CHECKLIST www.zookeys.org Launched to accelerate biodiversity research Checklist of the family Chironomidae (Diptera) of Finland Lauri Paasivirta1 1 Ruuhikoskenkatu 17 B 5, FI-24240 Salo, Finland Corresponding author: Lauri Paasivirta ([email protected]) Academic editor: J. Kahanpää | Received 10 March 2014 | Accepted 26 August 2014 | Published 19 September 2014 http://zoobank.org/F3343ED1-AE2C-43B4-9BA1-029B5EC32763 Citation: Paasivirta L (2014) Checklist of the family Chironomidae (Diptera) of Finland. In: Kahanpää J, Salmela J (Eds) Checklist of the Diptera of Finland. ZooKeys 441: 63–90. doi: 10.3897/zookeys.441.7461 Abstract A checklist of the family Chironomidae (Diptera) recorded from Finland is presented. Keywords Finland, Chironomidae, species list, biodiversity, faunistics Introduction There are supposedly at least 15 000 species of chironomid midges in the world (Armitage et al. 1995, but see Pape et al. 2011) making it the largest family among the aquatic insects. The European chironomid fauna consists of 1262 species (Sæther and Spies 2013). In Finland, 780 species can be found, of which 37 are still undescribed (Paasivirta 2012). The species checklist written by B. Lindeberg on 23.10.1979 (Hackman 1980) included 409 chironomid species. Twenty of those species have been removed from the checklist due to various reasons. The total number of species increased in the 1980s to 570, mainly due to the identification work by me and J. Tuiskunen (Bergman and Jansson 1983, Tuiskunen and Lindeberg 1986).
    [Show full text]
  • Short Communication
    Biota Neotropica 21(3): e20201140, 2021 www.scielo.br/bn ISSN 1676-0611 (online edition) Short Communication Phoretic association between Hisonotus chromodontus (Loricariidae: Hypoptopomatinae) and Ichthyocladius sp. (Diptera: Chironomidae) larvae in Amazonian streams Andressa Cristina Costa1,2 , Fábio Martins de Almeida² , João Otávio Santos Silva2,3 , Talles Romeu Colaço-Fernandes2 & Lucélia Nobre Carvalho1,2* 1Universidade Federal de Mato Grosso, Programa de Pós-Graduação em Ciências Ambientais, Campus Universitário de Sinop, Sinop, MT, Brasil. 2Universidade Federal de Mato Grosso, Instituto de Ciências Naturais, Humanas e Sociais, Laboratório de Ictiologia Tropical, Campus Universitário de Sinop, Sinop, MT, Brasil. 3Universidade Estadual de Maringá, Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura, Laboratório de Ictioparasitologia, Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Maringá, PR, Brasil. *Corresponding author: [email protected] COSTA, A.C., ALMEIDA, F.M., SILVA, J.O.S., COLAÇO-FERNANDES, T.R., CARVALHO, L.N. Phoretic association between Hisonotus chromodontus (Loricariidae: Hypoptopomatinae) and Ichthyocladius sp. (Diptera: Chironomidae) larvae in Amazonian streams. Biota Neotropica 21(3): e20201140. https://doi.org/10.1590/1676-0611-BN-2020-1140 Abstract: Larvae of non-biting midges in the family Chironomidae can be found in association with several species of fish in the family Loricariidae. In this study, we describe the first record of phoretic interaction between larvae of Ichthyocladius sp. and the fish Hisonotus chromodontus in streams in the Amazon basin. Between July 2010 and March 2019, fish were collected from three streams of the Teles Pires River basin in the state of Mato Grosso, Brazil. We investigated the attachment site of chironomid larvae on the body of fish and the frequency of attachment.
    [Show full text]