Macroinvertebrate Communities and Habitat Characteristics in the Northern and Southern Colorado Plateau Networks Pilot Protocol Implementation

Total Page:16

File Type:pdf, Size:1020Kb

Macroinvertebrate Communities and Habitat Characteristics in the Northern and Southern Colorado Plateau Networks Pilot Protocol Implementation National Park Service U.S. Department of the Interior Natural Resource Program Center Macroinvertebrate Communities and Habitat Characteristics in the Northern and Southern Colorado Plateau Networks Pilot Protocol Implementation Natural Resource Technical Report NPS/NCPN/NRTR—2010/320 ON THE COVER Clockwise from bottom left: Coyote Gulch, Glen Canyon National Recreation Area (USGS/Anne Brasher); Intermittent stream (USGS/Anne Brasher); Coyote Gulch, Glen Canyon National Recreation Area (USGS/Anne Brasher); Caddisfl y larvae of the genus Neophylax (USGS/Steve Fend); Adult damselfi les (USGS/Terry Short). Macroinvertebrate Communities and Habitat Characteristics in the Northern and Southern Colorado Plateau Networks Pilot Protocol Implementation Natural Resource Technical Report NPS/NCPN/NRTR—2010/320 Authors Anne M. D. Brasher Christine M. Albano Rebecca N. Close Quinn H. Cannon Matthew P. Miller U.S. Geological Survey Utah Water Science Center 121 West 200 South Moab, Utah 84532 Editing and Design Alice Wondrak Biel Northern Colorado Plateau Network National Park Service P.O. Box 848 Moab, UT 84532 May 2010 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The National Park Service, Natural Resource Program Center publishes a range of reports that ad- dress natural resource topics of interest and applicability to a broad audience in the National Park Ser- vice and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Technical Report Series is used to disseminate results of scientifi c studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service mission. The series provides contributors with a forum for displaying com- prehensive data that are often deleted from journals because of page limitations. All manuscripts in the series receive the appropriate level of peer review to ensure that the informa- tion is scientifi cally credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. This report received formal peer review by subject- matter experts who were not directly involved in the collection, analysis, or reporting of the data, and whose background and expertise put them on par technically and scientifi cally with the authors of the information. Views, statements, fi ndings, conclusions, recommendations, and data in this report are those of the author(s) and do not necessarily refl ect views and policies of the National Park Service, U.S. Depart- ment of the Interior. Mention of trade names or commercial products does not constitute endorse- ment or recommendation for use by the National Park Service. This report is available from the Northern Colorado Plateau Network website, http://www.nature.nps.gov/im/units/NCPN, as well as at the Natural Resource Publications Management web site, http://www.nature.nps.gov/publications/NRPM. Please cite this publication as: Brasher, A. M. D., C. M. Albano, R. N. Close, Q. H. Cannon, and M. P. Miller. 2010. Macroinvertebrate communities and habitat characteristics in the Northern and Southern Colorado Plateau networks: pilot protocol implementation. Natural Resource Technical Report NPS/NCPN/NRTR—2010/320. National Park Service, Fort Collins, Colorado. NPS 960/102085, May 2010 ii Macroinvertebrate Communities and Habitat Characteristics in the NCPN and SCPN: Pilot Protocol Implementation Contents Figures ....................................................................................................................................v Tables ....................................................................................................................................vii Photos ....................................................................................................................................ix Acronyms ...............................................................................................................................xi Abstract ...............................................................................................................................xiii Acknowledgements ............................................................................................................. xv 1 Introduction .......................................................................................................................1 2 Methods ..............................................................................................................................3 2.1 Sampling locations and timing .............................................................................................. 3 2.2 Reach layout for habitat assessment .................................................................................... 3 2.3 Habitat characterization ........................................................................................................ 5 2.4 Sample collection ................................................................................................................... 7 2.5 Spatial and temporal variation among samples .................................................................. 9 2.6 Metrics selection .................................................................................................................. 10 2.7 Habitat characteristics and macroinvertebrates ............................................................... 11 3 Results ...............................................................................................................................13 3.1 Habitat characterization ...................................................................................................... 13 3.2 Macroinvertebrate abundance and richness ...................................................................... 13 3.3 Comparison of quantitative and qualitative samples ........................................................ 21 3.4 Spatial and temporal variation among macroinvertebrate samples ................................ 25 3.5 Macroinvertebrate metrics .................................................................................................. 34 3.6 Habitat characteristics and macroinvertebrates ................................................................ 35 4 Discussion .........................................................................................................................39 4.1 Habitat characterization ..................................................................................................... 39 4.2 Sampling methodology ....................................................................................................... 40 4.3 Macroinvertebrate community structure ........................................................................... 41 4.4 Comparison of quantitative and qualitative samples ........................................................ 41 4.5 Spatial and temporal variation in macroinvertebrate community structure ................... 43 4.6 Metrics................................................................................................................................... 43 4.7 Habitat characteristics and macroinvertebrates ................................................................ 44 4.8 Summary ............................................................................................................................... 44 5 References ........................................................................................................................47 Appendices ...........................................................................................................................49 Appendix A. Park Sampling Locations ....................................................................................... 49 Appendix B. Estimates of Time to Complete Various Fieldwork Components ....................... 57 Appendix C. Habitat Data Collected by State and Federal Agencies in the Colorado Plateau .................................................................................................................................. 59 Appendix D. Summary Statistics for Habitat Data at Three Spatial Scales: Reach, Transect, and Microhabitat .................................................................................................................. 61 Appendix E. Macroinvertebrate Data Collected by State and Federal Agencies in the Colorado Plateau .................................................................................................................. 65 Appendix F. Macroinvertebrates in Quantitative Samples ....................................................... 67 Contents iii Appendix G. Macroinvertebrates in Qualitative Samples ........................................................ 83 Appendix H. Within and Across-stream Sensitivity Analysis .................................................... 99 Appendix I. Calculated Metrics for Quantitative and Qualitative Macroinvertebrate Samples Collected at Eight Study Sites ............................................................................. 103 iv Macroinvertebrate Communities and Habitat Characteristics in the NCPN and SCPN: Pilot Protocol Implementation Figures Figure 2-1. National parks of the Northern and Southern Colorado Plateau networks. ..................................4 Figure 2-2. Reach
Recommended publications
  • ARTHROPOD COMMUNITIES and PASSERINE DIET: EFFECTS of SHRUB EXPANSION in WESTERN ALASKA by Molly Tankersley Mcdermott, B.A./B.S
    Arthropod communities and passerine diet: effects of shrub expansion in Western Alaska Item Type Thesis Authors McDermott, Molly Tankersley Download date 26/09/2021 06:13:39 Link to Item http://hdl.handle.net/11122/7893 ARTHROPOD COMMUNITIES AND PASSERINE DIET: EFFECTS OF SHRUB EXPANSION IN WESTERN ALASKA By Molly Tankersley McDermott, B.A./B.S. A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences University of Alaska Fairbanks August 2017 APPROVED: Pat Doak, Committee Chair Greg Breed, Committee Member Colleen Handel, Committee Member Christa Mulder, Committee Member Kris Hundertmark, Chair Department o f Biology and Wildlife Paul Layer, Dean College o f Natural Science and Mathematics Michael Castellini, Dean of the Graduate School ABSTRACT Across the Arctic, taller woody shrubs, particularly willow (Salix spp.), birch (Betula spp.), and alder (Alnus spp.), have been expanding rapidly onto tundra. Changes in vegetation structure can alter the physical habitat structure, thermal environment, and food available to arthropods, which play an important role in the structure and functioning of Arctic ecosystems. Not only do they provide key ecosystem services such as pollination and nutrient cycling, they are an essential food source for migratory birds. In this study I examined the relationships between the abundance, diversity, and community composition of arthropods and the height and cover of several shrub species across a tundra-shrub gradient in northwestern Alaska. To characterize nestling diet of common passerines that occupy this gradient, I used next-generation sequencing of fecal matter. Willow cover was strongly and consistently associated with abundance and biomass of arthropods and significant shifts in arthropod community composition and diversity.
    [Show full text]
  • On the Taxonomic State of Water Mite Taxa (Acari: Hydrachnidia) Described from the Palaearctic, Part 3, Hygrobatoidea and Arrenuroidea with New Faunistic Data
    Zootaxa 3981 (4): 542–552 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3981.4.5 http://zoobank.org/urn:lsid:zoobank.org:pub:861CEBBE-5277-4E4C-B3DF-8850BEDD2A23 On the taxonomic state of water mite taxa (Acari: Hydrachnidia) described from the Palaearctic, part 3, Hygrobatoidea and Arrenuroidea with new faunistic data HARRY SMIT1, REINHARD GERECKE2, VLADIMIR PEŠIĆ3 & TERENCE GLEDHILL4 1Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands. E-mail: [email protected] 2Biesingerstr. 11, 72070 Tübingen, Germany. E-mail: [email protected] 3Department of Biology, University of Montenegro, Cetinjski put b.b., 81000 Podgorica, Montenegro. E-mail: [email protected] 4Freshwater Biological Association, The Ferry House, Far Sawrey, Ambleside, Cumbria LA22 0LP, United Kingdom. E-mail: [email protected] Abstract Following revision of material from museum collections and recent field work, new taxonomic and faunistic data are given for several representatives of the water mite superfamilies Hygrobatoidea and Arrenuroidea. Ten new synonyms are established: Family Limnesiidae: Limnesia martianezi Lundblad, 1962 = L. arevaloi arevaloi K. Viets, 1918; Limnesia jaczewskii Biesiadka, 1977 = Limnesia connata Koenike, 1895. Family Hygrobatidae: Hygro- bates properus Láska, 1954 = H. trigonicus Koenike, 1895. Family Unionicolidae: Unionicola finisbelli Ramazzotti, 1947 = U. inusitata Koenike, 1914. Family Pionidae: Tiphys koenikei (Barrois & Moniez, 1887) = Forelia variegator (Koch, 1837); Piona falcigera Koenike, 1905, P. bre h m i Walter, 1910, P. trisetica bituberosa K. Viets, 1930 and P. dentipes Lun- dblad, 1962 = P. alpicola (Neuman, 1880).
    [Show full text]
  • Research Report110
    ~ ~ WISCONSIN DEPARTMENT OF NATURAL RESOURCES A Survey of Rare and Endangered Mayflies of Selected RESEARCH Rivers of Wisconsin by Richard A. Lillie REPORT110 Bureau of Research, Monona December 1995 ~ Abstract The mayfly fauna of 25 rivers and streams in Wisconsin were surveyed during 1991-93 to document the temporal and spatial occurrence patterns of two state endangered mayflies, Acantha­ metropus pecatonica and Anepeorus simplex. Both species are candidates under review for addition to the federal List of Endang­ ered and Threatened Wildlife. Based on previous records of occur­ rence in Wisconsin, sampling was conducted during the period May-July using a combination of sampling methods, including dredges, air-lift pumps, kick-nets, and hand-picking of substrates. No specimens of Anepeorus simplex were collected. Three specimens (nymphs or larvae) of Acanthametropus pecatonica were found in the Black River, one nymph was collected from the lower Wisconsin River, and a partial exuviae was collected from the Chippewa River. Homoeoneuria ammophila was recorded from Wisconsin waters for the first time from the Black River and Sugar River. New site distribution records for the following Wiscon­ sin special concern species include: Macdunnoa persimplex, Metretopus borealis, Paracloeodes minutus, Parameletus chelifer, Pentagenia vittigera, Cercobrachys sp., and Pseudiron centra/is. Collection of many of the aforementioned species from large rivers appears to be dependent upon sampling sand-bottomed substrates at frequent intervals, as several species were relatively abundant during only very short time spans. Most species were associated with sand substrates in water < 2 m deep. Acantha­ metropus pecatonica and Anepeorus simplex should continue to be listed as endangered for state purposes and receive a biological rarity ranking of critically imperiled (S1 ranking), and both species should be considered as candidates proposed for listing as endangered or threatened as defined by the Endangered Species Act.
    [Show full text]
  • Dear Colleagues
    NEW RECORDS OF CHIRONOMIDAE (DIPTERA) FROM CONTINENTAL FRANCE Joel Moubayed-Breil Applied ecology, 10 rue des Fenouils, 34070-Montpellier, France, Email: [email protected] Abstract Material recently collected in Continental France has allowed me to generate a list of 83 taxa of chironomids, including 37 new records to the fauna of France. According to published data on the chironomid fauna of France 718 chironomid species are hitherto known from the French territories. The nomenclature and taxonomy of the species listed are based on the last version of the Chironomidae data in Fauna Europaea, on recent revisions of genera and other recent publications relevant to taxonomy and nomenclature. Introduction French territories represent almost the largest Figure 1. Major biogeographic regions and subregions variety of aquatic ecosystems in Europe with of France respect to both physiographic and hydrographic aspects. According to literature on the chironomid fauna of France, some regions still are better Sites and methodology sampled then others, and the best sampled areas The identification of slide mounted specimens are: The northern and southern parts of the Alps was aided by recent taxonomic revisions and keys (regions 5a and 5b in figure 1); western, central to adults or pupal exuviae (Reiss and Säwedal and eastern parts of the Pyrenees (regions 6, 7, 8), 1981; Tuiskunen 1986; Serra-Tosio 1989; Sæther and South-Central France, including inland and 1990; Soponis 1990; Langton 1991; Sæther and coastal rivers (regions 9a and 9b). The remaining Wang 1995; Kyerematen and Sæther 2000; regions located in the North, the Middle and the Michiels and Spies 2002; Vårdal et al.
    [Show full text]
  • New State Records of Aquatic Insects for Ohio, U.S.A
    Volume 121, Number 1, January and February 2010 75 NEW STATE RECORDS OF AQUATIC INSECTS FOR OHIO, U.S.A. (EPHEMEROPTERA, PLECOPTERA, TRICHOPTERA, COLEOPTERA)1 Michael J. Bolton2 ABSTRACT: Biomonitoring of Ohio streams by the Ohio Environmental Protection Agency has found new state records for the Ephemeroptera (mayflies): Baetis brunneicolor McDunnough, Iswaeon anoka (Daggy), Paracloeodes fleeki McCafferty and Lenat, Plauditus cestus (Provonsha and McCafferty), and Rhithrogena manifesta Eaton; the Plecoptera (stoneflies): Pteronarcys cf. biloba Newman; the Trichop- tera (caddisflies): Brachycentrus numerosus (Say) and Psilotreta rufa (Hagen); and the Coleoptera (bee- tles): Gyretes sinuatus LeConte, Dicranopselaphus variegatus Horn, and Microcylloepus pusillus (Le Conte). Additional records are given for the mayfly Paracloeodes minutus (Daggy). KEY WORDS: Ohio, state record, Ephemeroptera, Plecoptera, Trichoptera, Coleoptera The Ohio Environmental Protection Agency conducts biological and water qual- ity studies of Ohio streams to ascertain the condition of the aquatic resource. One component of these studies is an evaluation of the macroinvertebrate communities. As a result of this sampling, species of aquatic insects in the Ephemeroptera (may- flies), Plecoptera (stoneflies), Trichoptera (caddisflies), and Coleoptera (beetles) orders have been collected that have never been reported from Ohio. Randolph and McCafferty (1998) compiled the first state list of mayflies for Ohio. Gaufin (1956) produced a state list of stoneflies for Ohio with additions by Tkac and Foote (1978), Robertson (1979), and Fishbeck (1987). Listing of species distributions by state in Stewart and Stark (2002) and Stark and Armitage (2000, 2004) incorporated Ohio records found in the various revisionary publications. Huryn and Foote (1983) pro- duced the first comprehensive state list of caddisflies which was amended by Mac Lean and MacLean (1984), Usis and MacLean (1986), Garono and MacLean (1988), Usis and Foote (1989), and Keiper and Bartolotta (2003).
    [Show full text]
  • Chironominae 8.1
    CHIRONOMINAE 8.1 SUBFAMILY CHIRONOMINAE 8 DIAGNOSIS: Antennae 4-8 segmented, rarely reduced. Labrum with S I simple, palmate or plumose; S II simple, apically fringed or plumose; S III simple; S IV normal or sometimes on pedicel. Labral lamellae usually well developed, but reduced or absent in some taxa. Mentum usually with 8-16 well sclerotized teeth; sometimes central teeth or entire mentum pale or poorly sclerotized; rarely teeth fewer than 8 or modified as seta-like projections. Ventromental plates well developed and usually striate, but striae reduced or vestigial in some taxa; beard absent. Prementum without dense brushes of setae. Body usually with anterior and posterior parapods and procerci well developed; setal fringe not present, but sometimes with bifurcate pectinate setae. Penultimate segment sometimes with 1-2 pairs of ventral tubules; antepenultimate segment sometimes with lateral tubules. Anal tubules usually present, reduced in brackish water and marine taxa. NOTESTES: Usually the most abundant subfamily (in terms of individuals and taxa) found on the Coastal Plain of the Southeast. Found in fresh, brackish and salt water (at least one truly marine genus). Most larvae build silken tubes in or on substrate; some mine in plants, dead wood or sediments; some are free- living; some build transportable cases. Many larvae feed by spinning silk catch-nets, allowing them to fill with detritus, etc., and then ingesting the net; some taxa are grazers; some are predacious. Larvae of several taxa (especially Chironomus) have haemoglobin that gives them a red color and the ability to live in low oxygen conditions. With only one exception (Skutzia), at the generic level the larvae of all described (as adults) southeastern Chironominae are known.
    [Show full text]
  • Austroconops Wirth and Lee, a Lower Cretaceous Genus of Biting Midges
    PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, NY 10024 Number 3449, 67 pp., 26 ®gures, 6 tables August 23, 2004 Austroconops Wirth and Lee, a Lower Cretaceous Genus of Biting Midges Yet Living in Western Australia: a New Species, First Description of the Immatures and Discussion of Their Biology and Phylogeny (Diptera: Ceratopogonidae) ART BORKENT1 AND DOUGLAS A. CRAIG2 ABSTRACT The eggs and all four larval instars of Austroconops mcmillani Wirth and Lee and A. annettae Borkent, new species, are described. The pupa of A. mcmillani is also described. Life cycles and details of behavior of each life stage are reported, including feeding by the aquatic larvae on microscopic organisms in very wet soil/detritus, larval locomotion, female adult biting habits on humans and kangaroos, and male adult swarming. Austroconops an- nettae Borkent, new species, is attributed to the ®rst author. Cladistic analysis shows that the two extant Austroconops Wirth and Lee species are sister species. Increasingly older fossil species of Austroconops represent increasingly earlier line- ages. Among extant lineages, Austroconops is the sister group of Leptoconops Skuse, and together they form the sister group of all other Ceratopogonidae. Dasyhelea Kieffer is the sister group of Forcipomyia Meigen 1 Atrichopogon Kieffer, and together they form the sister group of the Ceratopogoninae. Forcipomyia has no synapomorphies and may be paraphyletic in relation to Atrichopogon. Austroconops is morphologically conservative (possesses many plesiomorphic features) in each life stage and this allows for interpretation of a number of features within Ceratopogonidae and other Culicomorpha. A new interpretation of Cretaceous fossil lineages shows that Austroconops, Leptoconops, Minyohelea Borkent, Jordanoconops 1 Royal British Columbia Museum, American Museum of Natural History, and Instituto Nacional de Biodiversidad.
    [Show full text]
  • Check List 4(2): 92–97, 2008
    Check List 4(2): 92–97, 2008. ISSN: 1809-127X NOTES ON GEOGRAPHIC DISTRIBUTION Insecta, Ephemeroptera, Baetidae: Range extensions and new state records from Kansas, U.S.A. W. Patrick McCafferty 1 Luke M. Jacobus 2 1 Department of Entomology, Purdue University. West Lafayette, Indiana 47907 USA. E-mail: [email protected] 2 Department of Biology, Indiana University. Bloomington, Indiana 47405 USA. The mayfly (Ephemeroptera) fauna of the U.S.A. other central lowland prairie states as well state of Kansas is relatively poorly documented (McCafferty et al. 2001; 2003; Guenther and (McCafferty 2001). With respect to small minnow McCafferty 2005). Some additionally common mayflies (family Baetidae), only 16 species have species will be evident from the new data we been documented with published records from present herein. Kansas. Those involve Acentrella turbida (McDunnough, 1924); Acerpenna pygmaea Our examination of additional unidentified (Hagen, 1861); Apobaetis Etowah (Traver, 1935); material of Kansas Baetidae housed in the Snow A. lakota McCafferty, 2000; Baetis flavistriga Museum, University of Kansas, Lawrence, McDunnough, 1921; B. intercalaris McDunnough, Kansas, and collected mainly by the State 1921; Callibaetis fluctuans (Walsh, 1862); C. Biological Survey of Kansas, has led to the pictus Eaton, 1871; Centroptilum album discovery of 19 additional species of Baetidae in McDunnough, 1926; C. bifurcatum McDunnough, Kansas, resulting in a new total of 35 species of 1924; Fallceon quilleri (Dodds, 1923); Baetidae now known from the state. The records Paracloeodes minutus (Daggy, 1945); P. given alphabetically below also represent the first dardanum (McDunnough, 1923); P. ephippiatum Kansas records of the genera Camelobaetidius, (Traver, 1935); P.
    [Show full text]
  • Biological Monitoring of Surface Waters in New York State, 2019
    NYSDEC SOP #208-19 Title: Stream Biomonitoring Rev: 1.2 Date: 03/29/19 Page 1 of 188 New York State Department of Environmental Conservation Division of Water Standard Operating Procedure: Biological Monitoring of Surface Waters in New York State March 2019 Note: Division of Water (DOW) SOP revisions from year 2016 forward will only capture the current year parties involved with drafting/revising/approving the SOP on the cover page. The dated signatures of those parties will be captured here as well. The historical log of all SOP updates and revisions (past & present) will immediately follow the cover page. NYSDEC SOP 208-19 Stream Biomonitoring Rev. 1.2 Date: 03/29/2019 Page 3 of 188 SOP #208 Update Log 1 Prepared/ Revision Revised by Approved by Number Date Summary of Changes DOW Staff Rose Ann Garry 7/25/2007 Alexander J. Smith Rose Ann Garry 11/25/2009 Alexander J. Smith Jason Fagel 1.0 3/29/2012 Alexander J. Smith Jason Fagel 2.0 4/18/2014 • Definition of a reference site clarified (Sect. 8.2.3) • WAVE results added as a factor Alexander J. Smith Jason Fagel 3.0 4/1/2016 in site selection (Sect. 8.2.2 & 8.2.6) • HMA details added (Sect. 8.10) • Nonsubstantive changes 2 • Disinfection procedures (Sect. 8) • Headwater (Sect. 9.4.1 & 10.2.7) assessment methods added • Benthic multiplate method added (Sect, 9.4.3) Brian Duffy Rose Ann Garry 1.0 5/01/2018 • Lake (Sect. 9.4.5 & Sect. 10.) assessment methods added • Detail on biological impairment sampling (Sect.
    [Show full text]
  • Midge (DIPTERA: CHIRONOMIDAE and CERATOPOGONIDAE) Community Response to Canal Discharge Into Everglades National Park, Florida
    2008 Proceedings of the 16th International Chironomid Symposium 39 MIDGE (DIPTERA: CHIRONOMIDAE AND CERATOPOGONIDAE) COMMUNITY RESPONSE to CANAL DISCHARGE Into EVERGLADES NatIONAL PARK, FLORIDA By RICHA R D E. JACOBS E N 1 With 3 figures and 2 tables ABSTRACT: Quantitative samples of chironomid and ceratopogonid midge pupal exuviae were collected along 4 nutrient gradients in Everglades National Park (ENP in order to determine midge community response to nutrient enrichment and identify possible indicators of water quality. Community abundance, species richness, and Shannon-Wiener diversity showed no consistent relationship with nutrient gradients. Eight species were significantly sensitive to sources of enrichment; 7 of these species were also sensitive to nutrient enrichment in Water Conservation Area 2A (WCA-2A) studied in 2001. Seven species were significantly tolerant to, and more abundant with enrichment, but none of these species were significantly tolerant to enrichment in WCA-2A. This discrepancy in tolerant species probably reflects differences in species responses to low gradients in ENP versus the much steeper gradient in WCA-2A. RESUMO: Com o objectivo de determinar a resposta das comunidades de mosquitos ao enriquecimento de nutrientes e identificar eventuais indicadores de qualidade da água, foram colhidas amostras quantitativas de exúvias de pupas de quironomídeos e ceratopogonídeos ao longo de 4 gradientes de nutrientes provenientes de efluentes de canais, no Parque Nacional de Everglades (PNE). A abundância da comunidade, riqueza específica e o índice de diversidade de Shannon-Wiener, não revelaram uma relação consistente com a proximidade relativa aos efluentes dos canais. Oito espécies demonstraram ser significativamente mais sensíveis aos efluentes dos canais; Destas, 7 foram igualmente sensíveis ao enriquecimento de nutrientes na Área de Conservação da Água 2A (ACA-2A) estudada em 2001.
    [Show full text]
  • TT Fifth National Report to the CBD FINAL.Pdf
    5th National Report of Trinidad and Tobago to the CBD Acknowledgements The completion of this report was made possible through inputs from the following persons, organizations and institutions: Technical Support Unit –Ms. Candice Clarence (EMA); Project team leaders – Ms. Hyacinth Armstrong- Vaughn (IUCN); Ms. Maria Pia Hernandez (IUCN); Local coordinator for preparation of T&T’s 5th National Report – Ms. Keisha Garcia; Technical Consultants – Mr. Shane Ballah; Mr. Guillermo Chan (IUCN); Mr. Jose Courrau (IUCN); Ms. Renee Gift; Ms. Nakita Poon Kong; Mr. Naitram Ramnanan (CABI); National Oversight Committee – Ms. Candace Amoroso (EPPD, Ministry of Planning and Development); Ms. Xiomara Chin (EMA); Ms. Lara Ferreira (Fisheries Division); Dr. Rahanna Juman (IMA); Ms. Danielle Lewis-Clarke (EMA); Ms. Pat McGaw (COPE); Mr. Hayden Romano (EMA); Mr. David Shim (SusTrust); Ms. Patricia Turpin (Environment Tobago); Stakeholder consultation participants - Ms. Sabriyah Abdullah-Muhammad (Environment Tobago); Ms. Rachael Amoroso (IMA); Dr. Yasmin Baksh-Comeau (National Herbarium); Ms. Albada Beekham (Ministry of Agriculture, Land and Fisheries); Mr. Marc Benjai (Fisheries Division); Ms. Sarah Bharath (UWI); Mr. Bertrand Bhikarry (Environment Tobago); Ms. Neila Bobb-Prescott (FAO); Ms. Casey-Marie Boucher (THA Plant Protection); Ms. Nikki Braithwaite (Ministry of Trade and Industry); Mr. Louis W. Farrell (Agriculture Division); Ms. Anastasia Gordon (EPPD); Mr. Carlos Hazel (THA Finance); Mr. Attish Kanhai (IMA); Mr. Kenneth Kerr (Met Services); Mr. Giancarlo Lalsingh (SOS); Ms. Shanesse Lovelace (THA); Ms. Kamlyn Melville-Pantin (THA DNRE); Mr. Dayreon Mitchell (THA); Ms. Siddiqua Mondol (Ministry of Tourism); Dr. Michael Oatham (UWI); Mr. Kerry Pariag (TCPD); Ms. Ruth Redman (THA Fisheries Division); Ms. Gillian Stanislaus (EMA); Ms.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]