Investigation and Subsequent Manipulation of The

Total Page:16

File Type:pdf, Size:1020Kb

Investigation and Subsequent Manipulation of The Investigation and subsequent manipulation of the intestinal microbiota of pigs, with a view to optimising feed efficiency By Ursula Mary McCormack (B.Ag.Sc) A thesis submitted for the degree of Doctor of Philosophy Waterford Institute of Technology Research Supervisors Dr. Gillian E. Gardiner Dr. Peadar G. Lawlor Submitted to Waterford Institute of Technology September 2017 Declaration No element of the work described in this thesis has been previously submitted for a degree at this or any other institution. The work in this thesis has been performed entirely by the author. Signature: ____________________________ Date: ___________________________ i Table of Contents Declaration ..................................................................................................................... i Table of Tables ............................................................................................................. xi Table of Figures .......................................................................................................... xiii List of abbreviations ................................................................................................... xvi Abstract ............................................................................................................................. 1 1. Literature Review .......................................................................................................... 2 1.1 Introduction ............................................................................................................. 3 1.2. Feed efficiency measures ....................................................................................... 4 1.3. Factors affecting feed efficiency in pigs ................................................................ 6 1.3.1 Breed/genetics .................................................................................................. 6 1.3.2. Diet .................................................................................................................. 7 1.3.3. Feeding to match requirements ....................................................................... 8 1.3.4. Management and microenvironment............................................................... 9 1.3.5. Health status .................................................................................................. 11 1.4. Benefits of improving feed efficiency in pigs ...................................................... 12 1.4.1. Lower production costs ................................................................................. 12 1.4.2. Improved carcass quality .............................................................................. 12 1.4.3. Reduced environmental impact ..................................................................... 13 1.5. Potential biomarkers for feed efficiency .............................................................. 13 1.5.1. Immune markers for feed efficiency ............................................................. 13 1.5.2. Serum metabolites ......................................................................................... 16 ii 1.5.3. Salivary cortisol ............................................................................................ 17 1.5.4. Gut morphology ............................................................................................ 17 1.6. The intestinal microbiota of pigs .......................................................................... 19 1.6.1. Establishment, composition and diversity of the porcine intestinal microbiota ................................................................................................................................. 19 1.6.2. Role of the intestinal microbiota in pigs ....................................................... 24 1.6.3. Potential impact of the intestinal microbiota on feed efficiency in pigs ....... 25 1.6.4. Analysing the intestinal microbiota .............................................................. 27 1.7. Manipulating the intestinal microbiota, with a view to optimising feed efficiency in pigs .......................................................................................................................... 31 1.7.1. Feed additives, with a focus on prebiotics .................................................... 31 1.7.2 Inoculation of live bacteria............................................................................. 36 1.8. Conclusions .......................................................................................................... 42 1.9. Overall objectives of the research ........................................................................ 43 2. Exploring a possible link between the intestinal microbiota and feed efficiency in pigs .................................................................................................................................. 44 2.1. Abstract ................................................................................................................ 45 2.2. Importance ............................................................................................................ 46 2.3. Introduction .......................................................................................................... 47 2.4. Materials and Methods ......................................................................................... 50 2.4.1. Ethical approval ............................................................................................ 50 2.4.2. Animal management and sample collection ................................................. 50 2.4.3. Salivary cortisol analysis .............................................................................. 53 iii 2.4.4. Histological analysis of ileal tissue ............................................................... 53 2.4.5. 16S rRNA gene amplicon sequencing of faecal and intestinal microbiota ... 53 2.4.6. Prediction of microbial function ................................................................... 54 2.4.7. Total bacterial quantification using quantitative PCR .................................. 54 2.4.8. Volatile fatty acid analyses of faecal and intestinal digesta samples ............ 55 2.4.9. Statistical analysis ......................................................................................... 55 2.5. Results .................................................................................................................. 58 2.5.1. Growth performance of pigs ranked by residual feed intake ........................ 58 2.5.2. Salivary cortisol and ileal histology in pigs ranked by residual feed intake . 58 2.5.3. Microbial load and diversity in pigs ranked by residual feed intake ............ 59 2.5.4. Intestinal microbiota composition in pigs ranked by residual feed intake .... 59 2.5.5. Intestinal microbiota correlations with RFI value ......................................... 62 2.5.6. Predictive functional analysis of the intestinal microbiota of pigs ranked by residual feed intake ................................................................................................. 63 2.5.7. Volatile fatty acid concentrations in the faeces and digesta of pigs ranked by residual feed intake ................................................................................................. 64 2.5.8. Correlations between microbial composition and physiological traits in pigs ranked by residual feed intake ................................................................................ 64 2.6. Discussion ............................................................................................................ 65 2.7. Conclusion ............................................................................................................ 71 2.8. Tables and Figures ................................................................................................ 72 2.9. Supplementary Information .................................................................................. 80 iv 3. Porcine feed efficiency (FE)-associated intestinal microbiota and physiological traits: finding consistent cross-locational biomarkers for residual feed intake (RFI) ............... 93 3.1. Abstract ................................................................................................................ 94 3.2. Introduction .......................................................................................................... 96 3.3. Materials and methods .......................................................................................... 98 3.3.1. Ethical approval ............................................................................................ 98 3.3.2. Animal management, performance records and sampling ............................ 98 3.3.3. Salivary cortisol analysis ............................................................................ 100 3.3.5. Immunological analyses .............................................................................. 101 3.3.8. Microbiota profiling .................................................................................... 104 3.3.9. Microbial function prediction ..................................................................... 104 3.3.10. Volatile fatty acid concentrations in faeces and digesta ........................... 105 3.3.11. Statistical analyses ...................................................................................
Recommended publications
  • Integrating Taxonomic, Functional, and Strain-Level Profiling of Diverse
    TOOLS AND RESOURCES Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3 Francesco Beghini1†, Lauren J McIver2†, Aitor Blanco-Mı´guez1, Leonard Dubois1, Francesco Asnicar1, Sagun Maharjan2,3, Ana Mailyan2,3, Paolo Manghi1, Matthias Scholz4, Andrew Maltez Thomas1, Mireia Valles-Colomer1, George Weingart2,3, Yancong Zhang2,3, Moreno Zolfo1, Curtis Huttenhower2,3*, Eric A Franzosa2,3*, Nicola Segata1,5* 1Department CIBIO, University of Trento, Trento, Italy; 2Harvard T.H. Chan School of Public Health, Boston, United States; 3The Broad Institute of MIT and Harvard, Cambridge, United States; 4Department of Food Quality and Nutrition, Research and Innovation Center, Edmund Mach Foundation, San Michele all’Adige, Italy; 5IEO, European Institute of Oncology IRCCS, Milan, Italy Abstract Culture-independent analyses of microbial communities have progressed dramatically in the last decade, particularly due to advances in methods for biological profiling via shotgun metagenomics. Opportunities for improvement continue to accelerate, with greater access to multi-omics, microbial reference genomes, and strain-level diversity. To leverage these, we present bioBakery 3, a set of integrated, improved methods for taxonomic, strain-level, functional, and *For correspondence: phylogenetic profiling of metagenomes newly developed to build on the largest set of reference [email protected] (CH); sequences now available. Compared to current alternatives, MetaPhlAn 3 increases the accuracy of [email protected] (EAF); taxonomic profiling, and HUMAnN 3 improves that of functional potential and activity. These [email protected] (NS) methods detected novel disease-microbiome links in applications to CRC (1262 metagenomes) and †These authors contributed IBD (1635 metagenomes and 817 metatranscriptomes).
    [Show full text]
  • Oral Microbiome Composition Reflects Prospective Risk for Esophageal Cancers
    Cancer Prevention and Epidemiology Research Oral Microbiome Composition Reflects Prospective Risk for Esophageal Cancers Brandilyn A. Peters1, Jing Wu1,2, Zhiheng Pei2,3,4, Liying Yang5, Mark P. Purdue6, Neal D. Freedman6, Eric J. Jacobs7, Susan M. Gapstur7, Richard B. Hayes1,2, and Jiyoung Ahn1,2 Abstract Bacteria may play a role in esophageal adenocarcinoma (EAC) conditional logistic regression adjusting for BMI, smoking, and and esophageal squamous cell carcinoma (ESCC), although alcohol. We found the periodontal pathogen Tannerella forsythia evidence is limited to cross-sectional studies. In this study, we to be associated with higher risk of EAC. Furthermore, we found examined the relationship of oral microbiota with EAC and ESCC that depletion of the commensal genus Neisseria and the species risk in a prospective study nested in two cohorts. Oral bacteria Streptococcus pneumoniae was associated with lower EAC risk. were assessed using 16S rRNA gene sequencing in prediagnostic Bacterial biosynthesis of carotenoids was also associated with mouthwash samples from n ¼ 81/160 EAC and n ¼ 25/50 ESCC protection against EAC. Finally, the abundance of the periodontal cases/matched controls. Findings were largely consistent across pathogen Porphyromonas gingivalis trended with higher risk of ESCC. both cohorts. Metagenome content was predicted using PiCRUST. Overall, our findings have potential implications for the early We examined associations between centered log-ratio trans- detection and prevention of EAC and ESCC. Cancer Res; 77(23); formed taxon or functional pathway abundances and risk using 6777–87. Ó2017 AACR. Introduction intake, and smoking for EAC, and alcohol drinking, low fruit/ vegetable intake, and smoking for ESCC (4), but the etiology Esophageal cancer is the eighth most common cancer and sixth of these diseases cannot be fully explained by these factors.
    [Show full text]
  • Genome Diversity of Spore-Forming Firmicutes MICHAEL Y
    Genome Diversity of Spore-Forming Firmicutes MICHAEL Y. GALPERIN National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 ABSTRACT Formation of heat-resistant endospores is a specific Vibrio subtilis (and also Vibrio bacillus), Ferdinand Cohn property of the members of the phylum Firmicutes (low-G+C assigned it to the genus Bacillus and family Bacillaceae, Gram-positive bacteria). It is found in representatives of four specifically noting the existence of heat-sensitive vegeta- different classes of Firmicutes, Bacilli, Clostridia, Erysipelotrichia, tive cells and heat-resistant endospores (see reference 1). and Negativicutes, which all encode similar sets of core sporulation fi proteins. Each of these classes also includes non-spore-forming Soon after that, Robert Koch identi ed Bacillus anthracis organisms that sometimes belong to the same genus or even as the causative agent of anthrax in cattle and the species as their spore-forming relatives. This chapter reviews the endospores as a means of the propagation of this orga- diversity of the members of phylum Firmicutes, its current taxon- nism among its hosts. In subsequent studies, the ability to omy, and the status of genome-sequencing projects for various form endospores, the specific purple staining by crystal subgroups within the phylum. It also discusses the evolution of the violet-iodine (Gram-positive staining, reflecting the pres- Firmicutes from their apparently spore-forming common ancestor ence of a thick peptidoglycan layer and the absence of and the independent loss of sporulation genes in several different lineages (staphylococci, streptococci, listeria, lactobacilli, an outer membrane), and the relatively low (typically ruminococci) in the course of their adaptation to the saprophytic less than 50%) molar fraction of guanine and cytosine lifestyle in a nutrient-rich environment.
    [Show full text]
  • WO 2014/121298 A2 7 August 2014 (07.08.2014) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/121298 A2 7 August 2014 (07.08.2014) P O P C T (51) International Patent Classification: VULIC, Marin; c/o Seres Health, Inc., 161 First Street, A61K 39/02 (2006.01) Suite 1A, Cambridge, MA 02142 (US). (21) International Application Number: (74) Agents: HUBL, Susan, T. et al; Fenwick & West LLP, PCT/US2014/014738 Silicon Valley Center, 801 California Street, Mountain View, CA 94041 (US). (22) International Filing Date: 4 February 2014 (04.02.2014) (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, English (25) Filing Language: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (26) Publication Language: English BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (30) Priority Data: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 61/760,584 4 February 2013 (04.02.2013) US KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 61/760,585 4 February 2013 (04.02.2013) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 61/760,574 4 February 2013 (04.02.2013) us OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 61/760,606 4 February 2013 (04.02.2013) us SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, 61/926,918 13 January 2014 (13.01.2014) us TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (71) Applicant: SERES HEALTH, INC.
    [Show full text]
  • The Gut Microbiome in Atherosclerotic Cardiovascular Disease Yangqing Peng Et Al
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2017 The gut microbiome in atherosclerotic cardiovascular disease Yangqing Peng et al Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Peng, Yangqing and et al, ,"The gut microbiome in atherosclerotic cardiovascular disease." Nature Communications.8,. (2017). https://digitalcommons.wustl.edu/open_access_pubs/6294 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. ARTICLE DOI: 10.1038/s41467-017-00900-1 OPEN The gut microbiome in atherosclerotic cardiovascular disease Zhuye Jie1,2,3, Huihua Xia1,2, Shi-Long Zhong4,5, Qiang Feng1,2,6,7,17, Shenghui Li1, Suisha Liang1,2, Huanzi Zhong 1,2,3,7, Zhipeng Liu1,8, Yuan Gao1,2, Hui Zhao1, Dongya Zhang1, Zheng Su1, Zhiwei Fang1, Zhou Lan1, Junhua Li 1,2,3,9, Liang Xiao1,2,6, Jun Li1, Ruijun Li10, Xiaoping Li1,2, Fei Li1,2,8, Huahui Ren1, Yan Huang1, Yangqing Peng1,18, Guanglei Li1, Bo Wen 1,2, Bo Dong1, Ji-Yan Chen4, Qing-Shan Geng4, Zhi-Wei Zhang4, Huanming Yang1,2,11, Jian Wang1,2,11, Jun Wang1,12,19, Xuan Zhang 13, Lise Madsen 1,2,7,14, Susanne Brix 15, Guang Ning16, Xun Xu1,2, Xin Liu 1,2, Yong Hou 1,2, Huijue Jia 1,2,3,12, Kunlun He10 & Karsten Kristiansen1,2,7 The gut microbiota has been linked to cardiovascular diseases.
    [Show full text]
  • ( 12 ) United States Patent
    US010398154B2 (12 ) United States Patent ( 10 ) Patent No. : US 10 , 398 , 154 B2 Embree et al. ( 45 ) Date of Patent: * Sep . 3 , 2019 (54 ) MICROBIAL COMPOSITIONS AND ( 58 ) Field of Classification Search METHODS OF USE FOR IMPROVING MILK None PRODUCTION See application file for complete search history . (71 ) Applicant: ASCUS BIOSCIENCES , INC ., San Diego , CA (US ) (56 ) References Cited ( 72 ) Inventors: Mallory Embree, San Diego , CA (US ) ; U . S . PATENT DOCUMENTS Luke Picking , San Diego , CA ( US ) ; 3 , 484 , 243 A 12 / 1969 Anderson et al . Grant Gogul , Cardiff , CA (US ) ; Janna 4 ,559 , 298 A 12 / 1985 Fahy Tarasova , San Diego , CA (US ) (Continued ) (73 ) Assignee : Ascus Biosciences , Inc. , San Diego , FOREIGN PATENT DOCUMENTS CA (US ) CN 104814278 A 8 / 2015 ( * ) Notice : Subject to any disclaimer , the term of this EP 0553444 B1 3 / 1998 patent is extended or adjusted under 35 U .S . C . 154 (b ) by 0 days. (Continued ) This patent is subject to a terminal dis OTHER PUBLICATIONS claimer . Borling , J , Master' s thesis, 2010 . * (21 ) Appl. No .: 16 / 029, 398 ( Continued ) ( 22 ) Filed : Jul. 6 , 2018 Primary Examiner - David W Berke- Schlessel (65 ) Prior Publication Data ( 74 ) Attorney , Agent, or Firm — Cooley LLP US 2018 /0325966 A1 Nov . 15 , 2018 ( 57 ) ABSTRACT Related U . S . Application Data The disclosure relates to isolated microorganisms — includ (63 ) Continuation of application No. ing novel strains of the microorganisms - microbial consor PCT/ US2014 /012573 , filed on Jan . 6 , 2017 . tia , and compositions comprising the same . Furthermore , the disclosure teaches methods of utilizing the described micro (Continued ) organisms, microbial consortia , and compositions compris (51 ) Int.
    [Show full text]
  • CGM-18-001 Perseus Report Update Bacterial Taxonomy Final Errata
    report Update of the bacterial taxonomy in the classification lists of COGEM July 2018 COGEM Report CGM 2018-04 Patrick L.J. RÜDELSHEIM & Pascale VAN ROOIJ PERSEUS BVBA Ordering information COGEM report No CGM 2018-04 E-mail: [email protected] Phone: +31-30-274 2777 Postal address: Netherlands Commission on Genetic Modification (COGEM), P.O. Box 578, 3720 AN Bilthoven, The Netherlands Internet Download as pdf-file: http://www.cogem.net → publications → research reports When ordering this report (free of charge), please mention title and number. Advisory Committee The authors gratefully acknowledge the members of the Advisory Committee for the valuable discussions and patience. Chair: Prof. dr. J.P.M. van Putten (Chair of the Medical Veterinary subcommittee of COGEM, Utrecht University) Members: Prof. dr. J.E. Degener (Member of the Medical Veterinary subcommittee of COGEM, University Medical Centre Groningen) Prof. dr. ir. J.D. van Elsas (Member of the Agriculture subcommittee of COGEM, University of Groningen) Dr. Lisette van der Knaap (COGEM-secretariat) Astrid Schulting (COGEM-secretariat) Disclaimer This report was commissioned by COGEM. The contents of this publication are the sole responsibility of the authors and may in no way be taken to represent the views of COGEM. Dit rapport is samengesteld in opdracht van de COGEM. De meningen die in het rapport worden weergegeven, zijn die van de auteurs en weerspiegelen niet noodzakelijkerwijs de mening van de COGEM. 2 | 24 Foreword COGEM advises the Dutch government on classifications of bacteria, and publishes listings of pathogenic and non-pathogenic bacteria that are updated regularly. These lists of bacteria originate from 2011, when COGEM petitioned a research project to evaluate the classifications of bacteria in the former GMO regulation and to supplement this list with bacteria that have been classified by other governmental organizations.
    [Show full text]
  • Effect of Proton Pump Inhibitor on Microbial Community, Function, and Kinetics in Anaerobic Digestion with Ammonia Stress
    Bioresource Technology 319 (2021) 124118 Contents lists available at ScienceDirect Bioresource Technology journal homepage: www.elsevier.com/locate/biortech Effect of proton pump inhibitor on microbial community, function, and kinetics in anaerobic digestion with ammonia stress Dawei Yu a,b,c,d, Qingqing Zhang a,b,e, Bram De Jaegher d, Jibao Liu a,b,c, Qianwen Sui a,b,c, Xiang Zheng e,*, Yuansong Wei a,b,c,* a State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China b Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China c University of Chinese Academy of Sciences, Beijing 100049, China d BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, Ghent 9000, Belgium e School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China HIGHLIGHTS GRAPHICAL ABSTRACT • The proton pump inhibitor mitigated ammonia inhibition by the proton mechanism. • Metabolic pathways of acetate compared at different dosages of proton pump inhibitor. • Gompertz and Gaussian processes modeled deterministic kinetic and random effect. • The proton pump mechanism of ammonia inhibition was refined with metagenomics. • PPI dose showed potential in investi­ gating molecular mechanism of ammonia inhibition. ARTICLE INFO ABSTRACT Keywords: The proton pump is a convincing mechanism for ammonia inhibition in anaerobic digestion, which explained Methane how the ammonia accumulated intercellularly due to diffusion of free ammonia. Proton pump inhibitor (PPI) was Ammonia dosed for mitigating the accumulation in anaerobic digestion with ammonia stress, with respect to kinetics.
    [Show full text]
  • Contents Topic 1. Introduction to Microbiology. the Subject and Tasks
    Contents Topic 1. Introduction to microbiology. The subject and tasks of microbiology. A short historical essay………………………………………………………………5 Topic 2. Systematics and nomenclature of microorganisms……………………. 10 Topic 3. General characteristics of prokaryotic cells. Gram’s method ………...45 Topic 4. Principles of health protection and safety rules in the microbiological laboratory. Design, equipment, and working regimen of a microbiological laboratory………………………………………………………………………….162 Topic 5. Physiology of bacteria, fungi, viruses, mycoplasmas, rickettsia……...185 TOPIC 1. INTRODUCTION TO MICROBIOLOGY. THE SUBJECT AND TASKS OF MICROBIOLOGY. A SHORT HISTORICAL ESSAY. Contents 1. Subject, tasks and achievements of modern microbiology. 2. The role of microorganisms in human life. 3. Differentiation of microbiology in the industry. 4. Communication of microbiology with other sciences. 5. Periods in the development of microbiology. 6. The contribution of domestic scientists in the development of microbiology. 7. The value of microbiology in the system of training veterinarians. 8. Methods of studying microorganisms. Microbiology is a science, which study most shallow living creatures - microorganisms. Before inventing of microscope humanity was in dark about their existence. But during the centuries people could make use of processes vital activity of microbes for its needs. They could prepare a koumiss, alcohol, wine, vinegar, bread, and other products. During many centuries the nature of fermentations remained incomprehensible. Microbiology learns morphology, physiology, genetics and microorganisms systematization, their ecology and the other life forms. Specific Classes of Microorganisms Algae Protozoa Fungi (yeasts and molds) Bacteria Rickettsiae Viruses Prions The Microorganisms are extraordinarily widely spread in nature. They literally ubiquitous forward us from birth to our death. Daily, hourly we eat up thousands and thousands of microbes together with air, water, food.
    [Show full text]
  • Antimicrobial Activity of Streptococcus Salivarius K12 on Bacteria Involved
    a r c h i v e s o f o r a l b i o l o g y 5 7 ( 2 0 1 2 ) 1 0 4 1 – 1 0 4 7 Available online at www.sciencedirect.com journal homepage: http://www.elsevier.com/locate/aob Antimicrobial activity of Streptococcus salivarius K12 on bacteria involved in oral malodour a a a, a b a L. Masdea , E.M. Kulik , I. Hauser-Gerspach *, A.M. Ramseier , A. Filippi , T. Waltimo a Institute of Preventive Dentistry and Oral Microbiology, School of Dental Medicine, University of Basel, Switzerland b Department of Oral Surgery, Oral Radiology and Oral Medicine and the Centre of Dental Traumatology, School of Dental Medicine, University of Basel, Switzerland a r t i c l e i n f o a b s t r a c t Article history: Objective: To investigate the antimicrobial activity of the bacteriocin-producing strain Accepted 11 February 2012 Streptococcus salivarius K12 against several bacteria involved in halitosis. Design: The inhibitory activity of S. salivarius K12 against Solobacterium moorei CCUG39336, Keywords: four clinical S. moorei isolates, Atopobium parvulum ATCC33793 and Eubacterium sulci ATCC35585 was examined by a deferred antagonism test. Eubacterium saburreum ATCC33271 Streptococcus salivarius K12 Halitosis and Parvimonas micra ATCC33270, which have been tested in previous studies, served as positive controls, and the Gram-negative strain Bacteroides fragilis ZIB2800 served as a Solobacterium moorei negative control. Additionally, the occurrence of resistance in S. moorei CCUG39336 to S. Deferred antagonism test Bacteriocin salivarius K12 was analysed by either direct plating or by passage of S.
    [Show full text]
  • Characterization of an Anaerobic Population Digesting a Model Substrate for Maize in the Presence of Trace Metals
    Chemosphere 80 (2010) 829–836 Contents lists available at ScienceDirect Chemosphere journal homepage: www.elsevier.com/locate/chemosphere Characterization of an anaerobic population digesting a model substrate for maize in the presence of trace metals Herbert Pobeheim, Bernhard Munk, Henry Müller, Gabriele Berg, Georg M. Guebitz * Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria article info abstract Article history: The influence of a defined trace metal solution and additionally Ni2+ on anaerobic digestion of biomass Received 1 December 2009 was investigated. A novel synthetic model substrate was designed consisting of cellulose, starch and urea Received in revised form 6 June 2010 as carbon and nitrogen source in a ratio mimicking the basic composition of maize silage. Two indepen- Accepted 7 June 2010 dent batch fermentations were carried out over 21 d with the synthetic model substrate in the presence Available online 7 July 2010 of the trace metal solution. Particularly an increase in nickel concentrations (17 and 34 lM) enhanced methane formation by up to 20%. This increased activity was also corroborated by fluorescence micros- Keywords: copy measurements based on cofactor F . The eubacterial and methanogenic population was character- Anaerobic digestion 420 ized with the single strand conformational polymorphism analysis and the amplified 16S rDNA Biogas Cellulose restriction analysis of 16S rRNA genes amplified by different primer systems. Nearly the half of the ana- Nickel lyzed bacteria were identified as Firmicutes while 70% in this phylum belonged to the class of Clostridiales SSCP and 30% to the class of Bacilli. Bacteroides and uncultured bacteria represented each a quarter of the ana- lyzed community.
    [Show full text]
  • Thi Na Utaliblat in Un Minune Talk
    THI NA UTALIBLATUS010064900B2 IN UN MINUNE TALK (12 ) United States Patent ( 10 ) Patent No. : US 10 , 064 ,900 B2 Von Maltzahn et al . ( 45 ) Date of Patent: * Sep . 4 , 2018 ( 54 ) METHODS OF POPULATING A (51 ) Int. CI. GASTROINTESTINAL TRACT A61K 35 / 741 (2015 . 01 ) A61K 9 / 00 ( 2006 .01 ) (71 ) Applicant: Seres Therapeutics, Inc. , Cambridge , (Continued ) MA (US ) (52 ) U . S . CI. CPC .. A61K 35 / 741 ( 2013 .01 ) ; A61K 9 /0053 ( 72 ) Inventors : Geoffrey Von Maltzahn , Boston , MA ( 2013. 01 ); A61K 9 /48 ( 2013 . 01 ) ; (US ) ; Matthew R . Henn , Somerville , (Continued ) MA (US ) ; David N . Cook , Brooklyn , (58 ) Field of Classification Search NY (US ) ; David Arthur Berry , None Brookline, MA (US ) ; Noubar B . See application file for complete search history . Afeyan , Lexington , MA (US ) ; Brian Goodman , Boston , MA (US ) ; ( 56 ) References Cited Mary - Jane Lombardo McKenzie , Arlington , MA (US ); Marin Vulic , U . S . PATENT DOCUMENTS Boston , MA (US ) 3 ,009 ,864 A 11/ 1961 Gordon - Aldterton et al. 3 ,228 ,838 A 1 / 1966 Rinfret (73 ) Assignee : Seres Therapeutics , Inc ., Cambridge , ( Continued ) MA (US ) FOREIGN PATENT DOCUMENTS ( * ) Notice : Subject to any disclaimer , the term of this patent is extended or adjusted under 35 CN 102131928 A 7 /2011 EA 006847 B1 4 / 2006 U .S . C . 154 (b ) by 0 days. (Continued ) This patent is subject to a terminal dis claimer. OTHER PUBLICATIONS ( 21) Appl . No. : 14 / 765 , 810 Aas, J ., Gessert, C . E ., and Bakken , J. S . ( 2003) . Recurrent Clostridium difficile colitis : case series involving 18 patients treated ( 22 ) PCT Filed : Feb . 4 , 2014 with donor stool administered via a nasogastric tube .
    [Show full text]