Arbitrage Opportunities with a Delta-Gamma Neutral Strategy in the Brazilian Options Market

Total Page:16

File Type:pdf, Size:1020Kb

Arbitrage Opportunities with a Delta-Gamma Neutral Strategy in the Brazilian Options Market FUNDAÇÃO GETÚLIO VARGAS ESCOLA DE PÓS-GRADUAÇÃO EM ECONOMIA Lucas Duarte Processi Arbitrage Opportunities with a Delta-Gamma Neutral Strategy in the Brazilian Options Market Rio de Janeiro 2017 Lucas Duarte Processi Arbitrage Opportunities with a Delta-Gamma Neutral Strategy in the Brazilian Options Market Dissertação para obtenção do grau de mestre apresentada à Escola de Pós- Graduação em Economia Área de concentração: Finanças Orientador: André de Castro Silva Co-orientador: João Marco Braga da Cu- nha Rio de Janeiro 2017 Ficha catalográfica elaborada pela Biblioteca Mario Henrique Simonsen/FGV Processi, Lucas Duarte Arbitrage opportunities with a delta-gamma neutral strategy in the Brazilian options market / Lucas Duarte Processi. – 2017. 45 f. Dissertação (mestrado) - Fundação Getulio Vargas, Escola de Pós- Graduação em Economia. Orientador: André de Castro Silva. Coorientador: João Marco Braga da Cunha. Inclui bibliografia. 1.Finanças. 2. Mercado de opções. 3. Arbitragem. I. Silva, André de Castro. II. Cunha, João Marco Braga da. III. Fundação Getulio Vargas. Escola de Pós-Graduação em Economia. IV. Título. CDD – 332 Agradecimentos Ao meu orientador e ao meu co-orientador pelas valiosas contribuições para este trabalho. À minha família pela compreensão e suporte. À minha amada esposa pelo imenso apoio e incentivo nas incontáveis horas de estudo e pesquisa. Abstract We investigate arbitrage opportunities in the Brazilian options market. Our research consists in backtesting several delta-gamma neutral portfolios of options traded in B3 exchange to assess the possibility of obtaining systematic excess returns. Returns sum up to 400% of the daily interbank rate in Brazil (CDI), a rate viewed as risk-free. However, with bootstrap analysis, we find evidence consistent with the absence of arbitrage opportunities in the Brazilian options market. This approach is different from other studies because the analysis is taken on several optionson different underlying assets, which gives us the opportunity to investigate factors that influence the magnitude of excess returns. Europeanness is the most relevant factor found. Keywords: Options, Arbitrage, Brazilian Option Market, Delta Gamma Neutral Strategy List of Figures 1 Monthly Trade Volume in Brazilian Options Market................4 2 Cumulative Percentage of Volume Traded by Maturity...............5 3 Risk-Free Yield Curves.................................6 4 Brazilian Stock Market Index – IBOVESPA.....................7 5 Physical Volatilies Estimated with Univariate GARCH(1,1) processes.......9 6 Examples of Volatility Smiles/Skews......................... 12 7 Delta-Gamma Neutral Strategy Performance..................... 24 8 Histogram of Returns.................................. 26 9 Rolling Strategy Returns – 1-year Investment.................... 26 10 Rolling Strategy Volatility – 1-year Investment................... 27 11 Rolling Sharpe Ratio – 1-year Investment...................... 27 12 Rolling Accuracy Ratio – 1-year Investment..................... 28 13 Actual Returns vs. Expected Returns........................ 29 14 Bootstrap Confidence Intervals for Mean Return.................. 29 15 Sensitivity Analysis on Brokerage Fees........................ 30 vi List of Tables 1 B3 Stock Type Codes.................................3 2 Traded Options by Europeanness and Type in B3’s database...........4 3 Data Sources for Calculating Implicit Volatilities.................. 11 4 OLS Estimates of Volatility Convergence Models.................. 16 5 Wald-Test Statistics – Volatility Convergence Model................ 17 6 Daily Returns Summary Statistics.......................... 25 7 Returns GARCH(1,1) Model............................. 30 8 Arbitrage Determinants Regression.......................... 32 vii Contents 1 Introduction 1 2 Data and Methodology3 2.1 Data...........................................3 2.2 Volatilities........................................6 2.2.1 Physical Volatilities..............................6 2.2.2 Implicit Volatilities...............................8 3 Volatility Convergence Models 13 3.1 Simple Convergence Model............................... 13 3.1.1 Model Specification............................... 13 3.1.2 Estimation and Results............................ 15 3.2 Generalized Convergence Model............................ 15 3.2.1 Model Specification............................... 15 3.2.2 Estimation and Results............................ 17 4 Delta-Gamma Neutral Strategy 18 4.1 Strategy Description.................................. 18 4.1.1 Delta-Gamma Neutrality........................... 19 4.1.2 Optimization Problem............................. 20 4.2 Results.......................................... 23 4.3 Discussion........................................ 28 4.4 Arbitrage Determinants................................ 31 5 Conclusion 34 Bibliography 35 viii Chapter 1 Introduction We investigate arbitrage opportunities in the Brazilian options market. We first test the presence of short-term mean-reversion in implied volatilities of all option stocks traded in B3 - Brazilian Stocks, Options and Futures Exchange - from January/2009 to December/2016. We find that they mean-revert to a long-term level that is a quadratic function of moneyness and maturity. Our research consists in backtesting several delta-gamma neutral portfolios of options traded in B3 exchange to assess the possibility of obtaining systematic excess returns. These portfolios are constructed with the constraint of having the first and second derivatives with respect to the underlying asset equal to zero. This means that they could profit from volatility mean-reversion without being affected by underlying stock short-term movements. Contradicting the results of Araújo and Ribeiro(2016), we do not find evidence of arbitrage opportunities in the Brazilian options market when transaction costs are considered. We impose brokerage costs of 0.045%, the highest fee charged on intraday option trades, according to B3’s standard brokerage fee tables. Returns sum up to 400% of the daily interbank rate in Brazil (CDI), a rate viewed as risk-free, and the strategy achieves an annualized Sharpe ratio of 0.20. However, with bootstrap analysis, we find evidence consistent with the absence of arbitrage opportunities in the Brazilian options market. This result is robust to both unconditional and GARCH-conditional variance tests. The t-statistics of these two tests are respectively 1.50 and 2.07. This approach is different from other studies because the analysis is taken on several options on different underlying assets, which gives us the opportunity to investigate factors that influence the magnitude of arbitrage opportunities. After running LASSO OLS penalized linear regressions to estimate the relevance of several candidate factors, we conclude that Europeanness is the most important factor that drive returns in our delta-gamma neutral strategy. These results are in line with with Fama(1970)’s efficient market hypothesis, which implies 1 that one cannot obtain systematic excess returns by executing an active trading strategy. Even if a trader can access information in a faster or more complete manner, additional returns should not compensate the costs of obtaining that information. Because there is no possibility of using information - even from other markets - more efficiently than the market, there can beno arbitrage opportunities in an efficient market. Since the 70’s, several studies tested the empirical validity of the efficient market hypothesis in many different markets. US options market was analyzed in the seminal worksof Fischer Black (1972) and Chiras and Manaster(1978). Other tests were more recently conducted by Noh et al. (1993) e Harvey and Whaley(1992) and suggested the existence of market inefficiencies in US options market. In particular, Kat(1996), Ibáñez(2009), Goltz and Ni Lai(2009) and Mastinsek (2012) use delta or delta-gamma neutral portfolios to assess empirical properties of returns in options market. In the Brazilian options market, Fuchs(2001) tested market efficiency using a delta-gamma neutral strategy with options on Telemar (a major telecommunications company in Brazil), concluding that the market is unable to value these instruments adequately, making possible to obtain systematic excess returns even when trade costs are considered. More recently, Araújo and Ribeiro(2016) obtained similar conclusions with delta-gamma neutral portfolios with Petrobras’ options using intraday data, with a backtest that performed 1600% of CDI. However, none of these studies conduct a multiple underlying analysis and the timespan of their data is too short to derive general conclusions about the Brazilian options market. Our research intends to derive a broader, yet simpler, view of implied volatilities in the Brazil- ian options market and assess the possibility of exploiting their mean-reversion characteristic to obtain systematic excess returns. 2 Chapter 2 Data and Methodology 2.1 Data Our primary data source for implementing delta-gamma neutral strategies is B3 daily options database.1 It contains information on all options and futures traded in B3, in particular stock options. We read daily prices and option characteristics such as strike price, type of contract, underlying stock and maturity for stock calls (field CD_BDI = 78) and stock puts (CD_BDI = 82) from january/2009 to december/2016. More than 4 billion Brazilian Reals (BRL) worth of options (1.3 billion US
Recommended publications
  • More on Market-Making and Delta-Hedging
    More on Market-Making and Delta-Hedging What do market makers do to delta-hedge? • Recall that the delta-hedging strategy consists of selling one option, and buying a certain number ∆ shares • An example of Delta hedging for 2 days (daily rebalancing and mark-to-market): Day 0: Share price = $40, call price is $2.7804, and ∆ = 0.5824 Sell call written on 100 shares for $278.04, and buy 58.24 shares. Net investment: (58.24 × $40)$278.04 = $2051.56 At 8%, overnight financing charge is $0.45 = $2051.56 × (e−0.08/365 − 1) Day 1: If share price = $40.5, call price is $3.0621, and ∆ = 0.6142 Overnight profit/loss: $29.12 $28.17 $0.45 = $0.50(mark-to-market) Buy 3.18 additional shares for $128.79 to rebalance Day 2: If share price = $39.25, call price is $2.3282 • Overnight profit/loss: $76.78 + $73.39 $0.48 = $3.87(mark-to-market) What do market makers do to delta-hedge? • Recall that the delta-hedging strategy consists of selling one option, and buying a certain number ∆ shares • An example of Delta hedging for 2 days (daily rebalancing and mark-to-market): Day 0: Share price = $40, call price is $2.7804, and ∆ = 0.5824 Sell call written on 100 shares for $278.04, and buy 58.24 shares. Net investment: (58.24 × $40)$278.04 = $2051.56 At 8%, overnight financing charge is $0.45 = $2051.56 × (e−0.08/365 − 1) Day 1: If share price = $40.5, call price is $3.0621, and ∆ = 0.6142 Overnight profit/loss: $29.12 $28.17 $0.45 = $0.50(mark-to-market) Buy 3.18 additional shares for $128.79 to rebalance Day 2: If share price = $39.25, call price is $2.3282 • Overnight profit/loss: $76.78 + $73.39 $0.48 = $3.87(mark-to-market) What do market makers do to delta-hedge? • Recall that the delta-hedging strategy consists of selling one option, and buying a certain number ∆ shares • An example of Delta hedging for 2 days (daily rebalancing and mark-to-market): Day 0: Share price = $40, call price is $2.7804, and ∆ = 0.5824 Sell call written on 100 shares for $278.04, and buy 58.24 shares.
    [Show full text]
  • Optimal Convergence Trade Strategies*
    Optimal Convergence Trade Strategies∗ Jun Liu† Allan Timmermann‡ UC San Diego and SAIF UC San Diego and CREATES October4,2012 Abstract Convergence trades exploit temporary mispricing by simultaneously buying relatively un- derpriced assets and selling short relatively overpriced assets. This paper studies optimal con- vergence trades under both recurring and non-recurring arbitrage opportunities represented by continuing and ‘stopped’ cointegrated price processes and considers both fixed and stochastic (Poisson) horizons. We demonstrate that conventional long-short delta neutral strategies are generally suboptimal and show that it can be optimal to simultaneously go long (or short) in two mispriced assets. We also find that the optimal portfolio holdings critically depend on whether the risky asset position is liquidated when prices converge. Our theoretical results are illustrated using parameters estimated on pairs of Chinese bank shares that are traded on both the Hong Kong and China stock exchanges. We find that the optimal convergence trade strategy can yield economically large gains compared to a delta neutral strategy. Key words: convergence trades; risky arbitrage; delta neutrality; optimal portfolio choice ∗The paper was previously circulated under the title Optimal Arbitrage Strategies. We thank the Editor, Pietro Veronesi, and an anonymous referee for detailed and constructive comments on the paper. We also thank Alberto Jurij Plazzi, Jun Pan, seminar participants at the CREATES workshop on Dynamic Asset Allocation, Blackrock, Shanghai Advanced Institute of Finance, and Remin University of China for helpful discussions and comments. Antonio Gargano provided excellent research assistance. Timmermann acknowledges support from CREATES, funded by the Danish National Research Foundation. †UCSD and Shanghai Advanced Institute of Finance (SAIF).
    [Show full text]
  • Finance II (Dirección Financiera II) Apuntes Del Material Docente
    Finance II (Dirección Financiera II) Apuntes del Material Docente Szabolcs István Blazsek-Ayala Table of contents Fixed-income securities 1 Derivatives 27 A note on traditional return and log return 78 Financial statements, financial ratios 80 Company valuation 100 Coca-Cola DCF valuation 135 Bond characteristics A bond is a security that is issued in FIXED-INCOME connection with a borrowing arrangement. SECURITIES The borrower issues (i.e. sells) a bond to the lender for some amount of cash. The arrangement obliges the issuer to make specified payments to the bondholder on specified dates. Bond characteristics Bond characteristics A typical bond obliges the issuer to make When the bond matures, the issuer repays semiannual payments of interest to the the debt by paying the bondholder the bondholder for the life of the bond. bond’s par value (or face value ). These are called coupon payments . The coupon rate of the bond serves to Most bonds have coupons that investors determine the interest payment: would clip off and present to claim the The annual payment is the coupon rate interest payment. times the bond’s par value. Bond characteristics Example The contract between the issuer and the A bond with par value EUR1000 and coupon bondholder contains: rate of 8%. 1. Coupon rate The bondholder is then entitled to a payment of 8% of EUR1000, or EUR80 per year, for the 2. Maturity date stated life of the bond, 30 years. 3. Par value The EUR80 payment typically comes in two semiannual installments of EUR40 each. At the end of the 30-year life of the bond, the issuer also pays the EUR1000 value to the bondholder.
    [Show full text]
  • Value at Risk for Linear and Non-Linear Derivatives
    Value at Risk for Linear and Non-Linear Derivatives by Clemens U. Frei (Under the direction of John T. Scruggs) Abstract This paper examines the question whether standard parametric Value at Risk approaches, such as the delta-normal and the delta-gamma approach and their assumptions are appropriate for derivative positions such as forward and option contracts. The delta-normal and delta-gamma approaches are both methods based on a first-order or on a second-order Taylor series expansion. We will see that the delta-normal method is reliable for linear derivatives although it can lead to signif- icant approximation errors in the case of non-linearity. The delta-gamma method provides a better approximation because this method includes second order-effects. The main problem with delta-gamma methods is the estimation of the quantile of the profit and loss distribution. Empiric results by other authors suggest the use of a Cornish-Fisher expansion. The delta-gamma method when using a Cornish-Fisher expansion provides an approximation which is close to the results calculated by Monte Carlo Simulation methods but is computationally more efficient. Index words: Value at Risk, Variance-Covariance approach, Delta-Normal approach, Delta-Gamma approach, Market Risk, Derivatives, Taylor series expansion. Value at Risk for Linear and Non-Linear Derivatives by Clemens U. Frei Vordiplom, University of Bielefeld, Germany, 2000 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree Master of Arts Athens, Georgia 2003 °c 2003 Clemens U. Frei All Rights Reserved Value at Risk for Linear and Non-Linear Derivatives by Clemens U.
    [Show full text]
  • The Performance of Smile-Implied Delta Hedging
    The Institute have the financial support of l’Autorité des marchés financiers and the Ministère des Finances du Québec Technical note TN 17-01 The Performance of Smile-Implied Delta Hedging January 2017 This technical note has been written by Lina Attie, HEC Montreal Under the supervision of Pascal François, HEC Montreal Opinion expressed in this publication are solely those of the author(s). Furthermore Canadian Derivatives Institute is not taking any responsibility regarding damage or financial consequences in regard with information used in this technical note. The Performance of Smile-Implied Delta Hedging Lina Attie Under the supervision of Pascal François January 2017 1 Introduction Delta hedging is an important subject in financial engineering and more specifically risk management. By definition, delta hedging is the practice of neutralizing risks of adverse movements in an option’s underlying stock price. Multiple types of risks arise on financial markets and the need for hedging is vast in order to reduce potential losses. Delta hedging is one of the most popular hedging methods for option sellers. So far, there has been a lot of theoretical work done on the subject. However, there has been very little discussion and research involving real market data. Hence, this subject has been chosen to shed some light on the practical aspect of delta hedging. More specifically, we focus on smile-implied delta hedging since it represents more accurately what actually happens on financial markets as opposed to the Black-Scholes model that assumes the option’s volatility to be constant. In theory, delta hedging implies perfect hedging if the volatility associated with the option is non stochastic, there are no transaction costs and the hedging is done continuously.
    [Show full text]
  • The Greek Letters
    The Greek Letters Chapter 17 1 Example (Page 365) l A bank has sold for $300,000 a European call option on 100,000 shares of a non-dividend-paying stock (the price of the option per share, “textbook style”, is therefore $3.00). l S0 = 49, K = 50, r = 5%, s = 20%, T = 20 weeks, µ = 13% l (Note that even though the price of the option does not depend on µ, we list it here because it can impact the effectiveness of the hedge) l The Black-Scholes-Merton value of the option is $240,000 (or $2.40 for an option on one share of the underlying stock). l How does the bank hedge its risk? 2 Naked & Covered Positions l Naked position: l One strategy is to simply do nothing: taking no action and remaining exposed to the option risk. l In this example, since the firm wrote/sold the call option, it hopes that the stock remains below the strike price ($50) so that the option doesn’t get exercised by the other party and the firm keeps the premium (price of the call it received originally) in full. l But if the stock rises to, say, $60, the firm loses (60-50)x100,000: a loss of $1,000,000 is much more than the $300,000 received before. l Covered position: l The firm can instead buy 100,000 shares today in anticipation of having to deliver them in the future if the stock rises. l If the stock declines, however, the option is not exercised but the stock position is hurt: if the stock goes down to $40, the loss is (49-40)x100,000 = $900,000.
    [Show full text]
  • Delta Gamma Hedging and the Black-Scholes Partial Differential Equation (PDE)
    JOURNAL OF ECONOMICS AND FINANCE EDUCATION • Volume 11 • Number 2 • Winter 2012 Delta Gamma Hedging and the Black-Scholes Partial Differential Equation (PDE) Sudhakar Raju1 Abstract The objective of this paper is to examine the notion of delta-gamma hedging using simple stylized examples. Even though the delta-gamma hedging concept is among the most challenging concepts in derivatives, standard textbook exposition of delta-gamma hedging usually does not proceed beyond a perfunctory mathematical presentation. Issues such as contrasting call delta hedging with put delta hedging, gamma properties of call versus put delta hedges, etc., are usually not treated in sufficient detail. This paper examines these issues and then places them within the context of a fundamental result in derivatives theory - the Black-Scholes partial differential equation. Many of these concepts are presented using Excel and a simple diagrammatic framework that reinforces the underlying mathematical intuition. Introduction The notion of delta hedging is a fundamental idea in derivatives portfolio management. The simplest notion of delta hedging refers to a strategy whereby the risk of a long or short stock position is offset by taking an offsetting option position in the underlying stock. The nature and extent of the option position is dictated by the underlying sensitivity of the option’s value to a movement in the underlying stock price (i.e. option delta). Since the delta of an option is a local first order measure, delta hedging protects portfolios only against small movements in the underlying stock price. For larger movements in the underlying price, effective risk management requires the use of both first order and second order hedging or delta-gamma hedging.
    [Show full text]
  • Managed Futures: Portfolio Diversification Opportunities
    Managed Futures: Portfolio Diversification Opportunities Potential for enhanced returns and lowered overall volatility. RISK DISCLOSURE STATEMENT TRADING FUTURES AND OPTIONS INVOLVES SUBSTANTIAL RISK OF LOSS AND IS NOT SUITABLE FOR ALL INVESTORS. THERE ARE NO GUARANTEES OF PROFIT NO MATTER WHO IS MANAGING YOUR MONEY. PAST PERFORMANCE IS NOT NECESSARILY INDICATIVE OF FUTURE RESULTS. THE RISK OF LOSS IN TRADING COMMODITY INTERESTS CAN BE SUBSTANTIAL. YOU SHOULD THEREFORE CAREFULLY CONSIDER WHETHER SUCH TRADING IS SUITABLE FOR YOU IN LIGHT OF YOUR FINANCIAL CONDITION. IN CONSIDERING WHETHER TO TRADE OR TO AUTHORIZE SOMEONE ELSE TO TRADE FOR YOU, YOU SHOULD BE AWARE OF THE FOLLOWING: IF YOU PURCHASE A COMMODITY OPTION YOU MAY SUSTAIN A TOTAL LOSS OF THE PREMIUM AND OF ALL TRANSACTION COSTS. IF YOU PURCHASE OR SELL A COMMODITY FUTURES CONTRACT OR SELL A COMMODITY OPTION YOU MAY SUSTAIN A TOTAL LOSS OF THE INITIAL MARGIN FUNDS OR SECURITY DEPOSIT AND ANY ADDITIONAL FUNDS THAT YOU DEPOSIT WITH YOUR BROKER TO ESTABLISH OR MAINTAIN YOUR POSITION. IF THE MARKET MOVES AGAINST YOUR POSITION, YOU MAY BE CALLED UPON BY YOUR BROKER TO DEPOSIT A SUBSTANTIAL AMOUNT OF ADDITIONAL MARGIN FUNDS, ON SHORT NOTICE, IN ORDER TO MAINTAIN YOUR POSITION. IF YOU DO NOT PROVIDE THE REQUESTED FUNDS WITHIN THE PRESCRIBED TIME, YOUR POSITION MAY BE LIQUIDATED AT A LOSS, AND YOU WILL BE LIABLE FOR ANY RESULTING DEFICIT IN YOUR ACCOUNT. UNDER CERTAIN MARKET CONDITIONS, YOU MAY FIND IT DIFFICULT OR IMPOSSIBLE TO LIQUIDATE A POSITION. THIS CAN OCCUR, FOR EXAMPLE, WHEN THE MARKET MAKES A ‘‘LIMIT MOVE.’’ THE PLACEMENT OF CONTINGENT ORDERS BY YOU OR YOUR TRADING ADVISOR, SUCH AS A ‘‘STOP-LOSS’’ OR ‘‘STOP-LIMIT’’ ORDER, WILL NOT NECESSARILY LIMIT YOUR LOSSES TO THE INTENDED AMOUNTS, SINCE MARKET CONDITIONS MAY MAKE IT IMPOSSIBLE TO EXECUTE SUCH ORDERS.
    [Show full text]
  • Multi Lecture 10: Multi Period Model Period Model Options
    Fin 501:Asset Pricing I Lecture 10: Multi -period Model Options – BlackBlack--ScholesScholes--MertonMerton model Prof. Markus K. Brunnermeier 1 Fin 501:Asset Pricing I Binomial Option Pricing • Consider a European call option maturing at time T wihith strike K: CT=max(ST‐K0)K,0), no cash flows in between • NtNot able to sttilltatically replica te this payoff using jtjust the stock and risk‐free bond • Need to dynamically hedge – required stock position changes for each period until maturity – static hedge for forward, using put‐call parity • Replication strategy depends on specified random process of stock price – need to know how price evolves over time. Binomial (Cox‐Ross‐Rubinstein) model is canonical Fin 501:Asset Pricing I Assumptions • Assumptions: – Stoc k whic h pays no div iden d – Over each period of time, stock price moves from S to either uS or dS, i.i.d. over time, so that final distribution of ST is binomial uS S dS – Suppose length of period is h and risk‐free rate is given by R = erh – No arbitrage: u > R > d – Note: simplistic model, but as we will see, with enough periods begins to look more realistic Fin 501:Asset Pricing I A One‐Period Binomial Tree • Example of a single‐period model – S=50, u = 2, d= 0.5, R=1.25 100 50 25 – What is value of a European call option with K=50? – Option payoff: max(ST‐K,0) 50 C = ? 0 – Use replication to price Fin 501:Asset Pricing I Single‐period replication • Consider a long position of ∆ in the stock and B dollars in bond • Payoff from portfolio: ∆uS+RB=100 ∆+1.25B ∆ S+B=50 ∆+B ∆dS+RB=25 ∆+1.25B • Define Cu as option payoff in up state and Cd as option payoff in down state (Cu=50,Cd=0 here) • Replicating strategy must match payoffs: Cu=∆uS+RB Cd=∆dS+RB Fin 501:Asset Pricing I Single‐period replication • Solving these equations yields: C − C Δ = u d S(u − d) uC − dC B = d u R(u − d) • In previous example, ∆=2/3 and B=‐13.33 , so the option value is C = ∆S+B = 20 • Interpretation of ∆: sensitivity of call price to a change in the stock price.
    [Show full text]
  • The Black-Scholes Model
    IEOR E4706: Foundations of Financial Engineering c 2016 by Martin Haugh The Black-Scholes Model In these notes we will use It^o'sLemma and a replicating argument to derive the famous Black-Scholes formula for European options. We will also discuss the weaknesses of the Black-Scholes model and geometric Brownian motion, and this leads us directly to the concept of the volatility surface which we will discuss in some detail. We will also derive and study the Black-Scholes Greeks and discuss how they are used in practice to hedge option portfolios. 1 The Black-Scholes Model We are now able to derive the Black-Scholes PDE for a call-option on a non-dividend paying stock with strike K and maturity T . We assume that the stock price follows a geometric Brownian motion so that dSt = µSt dt + σSt dWt (1) where Wt is a standard Brownian motion. We also assume that interest rates are constant so that 1 unit of currency invested in the cash account at time 0 will be worth Bt := exp(rt) at time t. We will denote by C(S; t) the value of the call option at time t. By It^o'slemma we know that @C @C 1 @2C @C dC(S; t) = µS + + σ2S2 dt + σS dW (2) t @S @t 2 @S2 t @S t Let us now consider a self-financing trading strategy where at each time t we hold xt units of the cash account and yt units of the stock. Then Pt, the time t value of this strategy satisfies Pt = xtBt + ytSt: (3) We will choose xt and yt in such a way that the strategy replicates the value of the option.
    [Show full text]
  • Euronext Tcs Trading Manual - Optiq®
    Document title EURONEXT TCS TRADING MANUAL - OPTIQ® Date Published: 22 June 2018 Entry into force: 25 June 2018 Number of pages Author 14 Euronext TCS Trading Manual TABLE OF CONTENTS 1. INTRODUCTION.............................................................................................................................................. 3 1.1 TERMS & ABBREVIATIONS .................................................................................................................................... 3 1.2 GENERAL FEATURES OF TCS ................................................................................................................................. 4 1.2.1 OPENING HOURS .......................................................................................................................................... 4 1.2.2 “IN-SESSION” AND “OUT-SESSION” (“After hours”) STATUS ........................................................................ 4 1.2.3 EXCEPTIONS LINKED TO THE STATUS OF THE SECURITY IN THE EURONEXT OPTIQ® SYSTEM ..................... 4 1.2.4 TRADE REJECTION ......................................................................................................................................... 5 1.2.5 TRADE CANCELLATION ................................................................................................................................. 5 1.2.6 MIFID II RELATED DATA INSTRUCTIONS ....................................................................................................... 5 2. TRADE TYPES SUPPORTED
    [Show full text]
  • Institutional Finance Lecture 10: Dynamic Arbitrage to Replicate Non‐Linear Payoffs
    Institutional Finance Lecture 10: Dynamic Arbitrage to Replicate non‐linear Payoffs Markus K. Brunnermeier Preceptor: Dong Beom Choi Princeton University 1 BINOMIAL OPTION PRICING Consider a European call option maturing at time T wiihth strike K: CT=max(ST‐KK0),0), no cash flows in between Is there a way to statically replicate this payoff? • Not using just the stock and risk‐free bdbond – required stock position changes for each period until maturity (as we will see) • Need to dynamically hedge –compare with static hedge such as hedging a forward, or hedge using put‐call parity Replication strategy depends on specified random process of stock price – need to know how price evolves over time. Binomial (Cox‐Rubinstein‐Ross) model is canonical ASSUMPTIONS Assumptions: • Stock which pays no divid end • Over each period of time, stock price moves from S to either uS or dS, i.i.d. over time, so that final distribution of ST is binomial uS S dS • Suppose length of period is h and risk‐free rate is given by R = erh • No arbitrage: u > R > d • Note: simplistic model, but as we will see, with enough periods begins to look more realistic A ONE‐PERIOD BINOMIAL TREE Example of a single‐period model • S=50, u = 2, d= 0.5, R=1.25 100 50 25 • What is value of a European call option with K=50? • Option payoff: max(ST‐K,0) 50 C = ? 0 • Use replication to price SINGLE‐PERIOD REPLICATION Consider a long position of ∆ in the stock and B ddllollars in bbdond Payoff from portfolio: ∆uS+RB=100 ∆+1.25B ∆ S+B=50 ∆+B ∆dS+RB=25 ∆+1.25B Define Cu as option payoff in up state and Cd as option payoff in down state (Cu=50,Cd=0 here) RliiReplicating strategy must match payoffs: Cu=∆uS+RB Cd=∆dS+RB SINGLE‐PERIOD REPLICATION Solving these equations yields: C − C Δ = u d S(u − d) uC − dC B = d u R(u − d) In previous example, ∆=2/3 and B=‐13.33 , so the option value is C = ∆SSB+B = 20 Interpretation of ∆: sensitivity of call price to a change in the stock price.
    [Show full text]