Managed Futures: Portfolio Diversification Opportunities

Total Page:16

File Type:pdf, Size:1020Kb

Managed Futures: Portfolio Diversification Opportunities Managed Futures: Portfolio Diversification Opportunities Potential for enhanced returns and lowered overall volatility. RISK DISCLOSURE STATEMENT TRADING FUTURES AND OPTIONS INVOLVES SUBSTANTIAL RISK OF LOSS AND IS NOT SUITABLE FOR ALL INVESTORS. THERE ARE NO GUARANTEES OF PROFIT NO MATTER WHO IS MANAGING YOUR MONEY. PAST PERFORMANCE IS NOT NECESSARILY INDICATIVE OF FUTURE RESULTS. THE RISK OF LOSS IN TRADING COMMODITY INTERESTS CAN BE SUBSTANTIAL. YOU SHOULD THEREFORE CAREFULLY CONSIDER WHETHER SUCH TRADING IS SUITABLE FOR YOU IN LIGHT OF YOUR FINANCIAL CONDITION. IN CONSIDERING WHETHER TO TRADE OR TO AUTHORIZE SOMEONE ELSE TO TRADE FOR YOU, YOU SHOULD BE AWARE OF THE FOLLOWING: IF YOU PURCHASE A COMMODITY OPTION YOU MAY SUSTAIN A TOTAL LOSS OF THE PREMIUM AND OF ALL TRANSACTION COSTS. IF YOU PURCHASE OR SELL A COMMODITY FUTURES CONTRACT OR SELL A COMMODITY OPTION YOU MAY SUSTAIN A TOTAL LOSS OF THE INITIAL MARGIN FUNDS OR SECURITY DEPOSIT AND ANY ADDITIONAL FUNDS THAT YOU DEPOSIT WITH YOUR BROKER TO ESTABLISH OR MAINTAIN YOUR POSITION. IF THE MARKET MOVES AGAINST YOUR POSITION, YOU MAY BE CALLED UPON BY YOUR BROKER TO DEPOSIT A SUBSTANTIAL AMOUNT OF ADDITIONAL MARGIN FUNDS, ON SHORT NOTICE, IN ORDER TO MAINTAIN YOUR POSITION. IF YOU DO NOT PROVIDE THE REQUESTED FUNDS WITHIN THE PRESCRIBED TIME, YOUR POSITION MAY BE LIQUIDATED AT A LOSS, AND YOU WILL BE LIABLE FOR ANY RESULTING DEFICIT IN YOUR ACCOUNT. UNDER CERTAIN MARKET CONDITIONS, YOU MAY FIND IT DIFFICULT OR IMPOSSIBLE TO LIQUIDATE A POSITION. THIS CAN OCCUR, FOR EXAMPLE, WHEN THE MARKET MAKES A ‘‘LIMIT MOVE.’’ THE PLACEMENT OF CONTINGENT ORDERS BY YOU OR YOUR TRADING ADVISOR, SUCH AS A ‘‘STOP-LOSS’’ OR ‘‘STOP-LIMIT’’ ORDER, WILL NOT NECESSARILY LIMIT YOUR LOSSES TO THE INTENDED AMOUNTS, SINCE MARKET CONDITIONS MAY MAKE IT IMPOSSIBLE TO EXECUTE SUCH ORDERS. A ‘‘SPREAD’’ POSITION MAY NOT BE LESS RISKY THAN A SIMPLE ‘‘LONG’’ OR ‘‘SHORT’’ POSITION. THE HIGH DEGREE OF LEVERAGE THAT IS OFTEN OBTAINABLE IN COMMODITY INTEREST TRADING CAN WORK AGAINST YOU AS WELL AS FOR YOU. THE USE OF LEVERAGE CAN LEAD TO LARGE LOSSES AS WELL AS GAINS. IN SOME CASES, MANAGED COMMODITY ACCOUNTS ARE SUBJECT TO SUBSTANTIAL CHARGES FOR MANAGEMENT AND ADVISORY FEES. IT MAY BE NECESSARY FOR THOSE ACCOUNTS THAT ARE SUBJECT TO THESE CHARGES TO MAKE SUBSTANTIAL TRADING PROFITS TO AVOID DEPLETION OR EXHAUSTION OF THEIR ASSETS. THE CTA DISCLOSURE DOCUMENT CONTAINS A COMPLETE DESCRIPTION OF THE PRINCIPAL RISK FACTORS AND EACH FEE TO BE CHARGED TO YOUR ACCOUNT BY THE COMMODITY TRADING ADVISOR (“CTA”). A COMPLETE DISCUSSION OF FEES AND CHARGES ARE REPORTED IN THE CTA's DISCLOSURE DOCUMENT. SPECIFICALLY, ONE SHOULD RECOGNIZE THAT AN INTRODUCING BROKER MAY CHARGE A FRONT-END START UP FEE OF UP TO 3% OF THE INITIAL CONTRIBUTION. PLEASE NOTE THAT THIS CHARGE IS NOT REFLECTED IN THE PERFORMANCE OF THE COMMODITY TRADING ADVISOR AND COULD HAVE A SIGNIFICANT IMPACT ON THE CUSTOMERS ABILITY TO ACHIEVE SIMILAR RETURNS. MANAGED FUTURES MAY NOT NECESSARILY BE PROFITABLE UNDER ALL MARKET CONDITIONS AND ALSO MAY NOT NECESSARILY REDUCE VOLATILITY. THIS MATTER IS INTENDED AS A SOLICITATION. THIS MATERIAL MAY MENTION SERVICES WHICH RANK THE PERFORMANCE OF COMMODITY TRADING ADVISORS. PLEASE NOTE THAT THE RANKINGS APPLY ONLY TO THOSE CTAs WHO SUBMIT THEIR TRADING RESULTS. THE RANKINGS IN NO WAY PURPORT TO BE REPRESENTATIVE OF THE ENTIRE UNIVERSE OF COMMODITY TRADING ADVISORS. THE MATERIAL IN NO WAY IMPLIES THAT THESE RESULTS ARE OFFICIALLY SANCTIONED RESULTS OF THE COMMODITY INDUSTRY. BE ADVISED THAT AN INDIVIDUAL CANNOT INVEST IN THE INDEX ITSELF AND THE ACTUAL RATES OF RETURN FOR AN INDIVIDUAL PROGRAM MAY SIGNIFICANTLY DIFFER AND BE MORE VOLATILE THAN THE INDEX. As the world’s leading and most diverse derivatives marketplace, CME Group is where the world comes to manage risk. CME Group exchanges offer the widest range of global benchmark products across all major asset classes, including futures and options based on interest rates, equity indexes, foreign exchange, energy, agricultural commodities, metals, weather and real estate. CME Group brings buyers and sellers together through its CME Globex® electronic trading platform and its trading facilities in New York and Chicago. CME Group also operates CME Clearing, one of the largest central counterparty clearing services in the world, which provides clearing and settlement services for exchange-traded contracts, as well as for over-the- counter derivatives transactions through CME ClearPort®. These products and services ensure that businesses everywhere can substantially mitigate counterparty credit risk in both listed and over-the-counter derivatives markets. Futures trading is not suitable for all investors, and involves the risk of loss. Futures are a leveraged investment, and because only a percentage of a contract’s value is required to trade, it is possible to lose more than the amount of money deposited for a futures position. Therefore, traders should only use funds that they can afford to lose without affecting their lifestyles. And only a portion of those funds should be devoted to any one trade because they cannot expect to profit on every trade. All orders are entirely at your risk, and it will be your responsibility to monitor these orders. There are limitations to the protection given by stop loss orders, therefore we give no assurance that limit or stop loss orders will be executed, even if the limit price is met, in full or at all. CME Group Managed Futures: Portfolio Diversification Opportunities WHAT ARE MANAGED FUTURES? The term managed futures describes a diverse INVESTMENT UNIVERSE subset of active hedge fund strategies that trade liquid, transparent, centrally-cleared exchange-traded products, and deep interbank TRADITIONAL ASSET CLASSES ALTERNATIVE INVESTMENTS foreign exchange markets. Managers in this sector are called commodity trading advisors Cash Hedge Funds Bonds Managed Futures (CTAs) and their strategies are largely Equities Private Equity focused on financial futures markets with Real Estate Credit Derivatives additional allocations to energy, metals and agricultural markets. Managed futures are an alternative investment in their own right, separate from traditional investments such as stocks and bonds. MANAGED FUTURES GROWTH IN ASSETS UNDER MANAGEMENT Since 2008, assets under management for the managed futures industry have grown 55% For the purposes of this booklet, managed futures do not include Managed futures have been used successfully by investment management professionals for futures accounts where futures are used in risk-management programs or hedge funds. Those funds may be used to dynamically more than 30 years. Institutional investors looking to maximize portfolio exposure continue to adjust the duration of a bond portfolio or to hedge the currency exposure of a foreign equity portfolio. increase their use of managed futures as an integral component of a well-diversified portfolio. With the ability to go both long and short, managed futures are highly flexible financial instruments with the potential to profit from rising and falling markets. Moreover, managed futures funds have limited correlation to traditional asset classes, enabling them to provide the opportunity for enhanced returns and lower overall volatility. Growth over the past decade in managed futures has been substantial. In 2002, it was estimated that more than $45 billion was under management by managed futures trading advisors which increased to $334 billion by the end of the second quarter in 2012. 1 cmegroup.com BENEFITS OF MANAGED FUTURES By their very nature, managed futures provide a diversified The benefits of managed futures within a investment opportunity. Trading advisors can participate in more well-balanced portfolio include: than 150 global markets; from grains and gold to currencies 1. Potential to lower overall portfolio risk and stock indices. Many funds further diversify by using several 2. Opportunity to enhance overall portfolio returns trading advisors with different trading approaches. 3. Broad diversification opportunities In this example below, the overall risk (as measured by maximum 4. Opportunity to profit in a variety of economic drawdowns) is reduced from -63.6% to -35.9% and the return environments increases from 6.51% to 19.78%. This is mainly due to the lack of correlation and, in some cases, negative correlation between 5. Limited losses due to a combination of flexibility come of the portfolio components in the diversified portfolio. and discipline There is even negative correlation between stocks and managed futures in this example, as the two markets move independently from each other. COMPARISON OF A STOCKS ONLY VS. DIVERSIFIED PORTFOLIO ANNUAL RETURNS AND MAX. DRAWDOWNS 20% 19.78% 20% 10% 33.3% Managed Futures Dow Jones 0% 6.51% –10% STOCKS DIVERSIFIED PORTFOLIO –20% DIVERSIFIED ONLY PORTFOLIO OCKS –30% ONLY ST –40% 33.3% 33.3% 40% 40% Nikkei 225 MSCI World Stocks Bonds –35.9% –50% Correlation: Correlation: –63.6% Dow Jones – Nikkei 225: 0.467 Stocks – Managed Futures: –0.018 Dow Jones – MSCI World: 0.843 Managed Futures – Bonds: 0.052 Annual Return MSCI World – Nikkei 225: 0.686 Bonds – Stocks: 0.201 Max. Drawdown Based on a period from 1/80 to 3/12. Managed Futures Barclay CTA Index, Bonds BarCap US Agg Total Return Value Unhedged, Stocks MSCI World Index.Source: Bloomberg/CME Group The Barclay CTA Index is a leading industry benchmark of representative performance of commodity trading advisors. There are currently 602 programs included in the calculation of the Barclay CTA Index for the year 2012, which is unweighted and rebalanced at the beginning of each year. To qualify for inclusion in the CTA Index, an advisor must have four years of prior performance history. Additional programs introduced by qualified advisors are not added to the Index until after their second year. These restrictions, which offset the high turnover rates of trading advisors as well as their artificially high short-term performance records, ensure the accuracy and reliability of the Barclay CTA Index.
Recommended publications
  • More on Market-Making and Delta-Hedging
    More on Market-Making and Delta-Hedging What do market makers do to delta-hedge? • Recall that the delta-hedging strategy consists of selling one option, and buying a certain number ∆ shares • An example of Delta hedging for 2 days (daily rebalancing and mark-to-market): Day 0: Share price = $40, call price is $2.7804, and ∆ = 0.5824 Sell call written on 100 shares for $278.04, and buy 58.24 shares. Net investment: (58.24 × $40)$278.04 = $2051.56 At 8%, overnight financing charge is $0.45 = $2051.56 × (e−0.08/365 − 1) Day 1: If share price = $40.5, call price is $3.0621, and ∆ = 0.6142 Overnight profit/loss: $29.12 $28.17 $0.45 = $0.50(mark-to-market) Buy 3.18 additional shares for $128.79 to rebalance Day 2: If share price = $39.25, call price is $2.3282 • Overnight profit/loss: $76.78 + $73.39 $0.48 = $3.87(mark-to-market) What do market makers do to delta-hedge? • Recall that the delta-hedging strategy consists of selling one option, and buying a certain number ∆ shares • An example of Delta hedging for 2 days (daily rebalancing and mark-to-market): Day 0: Share price = $40, call price is $2.7804, and ∆ = 0.5824 Sell call written on 100 shares for $278.04, and buy 58.24 shares. Net investment: (58.24 × $40)$278.04 = $2051.56 At 8%, overnight financing charge is $0.45 = $2051.56 × (e−0.08/365 − 1) Day 1: If share price = $40.5, call price is $3.0621, and ∆ = 0.6142 Overnight profit/loss: $29.12 $28.17 $0.45 = $0.50(mark-to-market) Buy 3.18 additional shares for $128.79 to rebalance Day 2: If share price = $39.25, call price is $2.3282 • Overnight profit/loss: $76.78 + $73.39 $0.48 = $3.87(mark-to-market) What do market makers do to delta-hedge? • Recall that the delta-hedging strategy consists of selling one option, and buying a certain number ∆ shares • An example of Delta hedging for 2 days (daily rebalancing and mark-to-market): Day 0: Share price = $40, call price is $2.7804, and ∆ = 0.5824 Sell call written on 100 shares for $278.04, and buy 58.24 shares.
    [Show full text]
  • Arbitrage Opportunities with a Delta-Gamma Neutral Strategy in the Brazilian Options Market
    FUNDAÇÃO GETÚLIO VARGAS ESCOLA DE PÓS-GRADUAÇÃO EM ECONOMIA Lucas Duarte Processi Arbitrage Opportunities with a Delta-Gamma Neutral Strategy in the Brazilian Options Market Rio de Janeiro 2017 Lucas Duarte Processi Arbitrage Opportunities with a Delta-Gamma Neutral Strategy in the Brazilian Options Market Dissertação para obtenção do grau de mestre apresentada à Escola de Pós- Graduação em Economia Área de concentração: Finanças Orientador: André de Castro Silva Co-orientador: João Marco Braga da Cu- nha Rio de Janeiro 2017 Ficha catalográfica elaborada pela Biblioteca Mario Henrique Simonsen/FGV Processi, Lucas Duarte Arbitrage opportunities with a delta-gamma neutral strategy in the Brazilian options market / Lucas Duarte Processi. – 2017. 45 f. Dissertação (mestrado) - Fundação Getulio Vargas, Escola de Pós- Graduação em Economia. Orientador: André de Castro Silva. Coorientador: João Marco Braga da Cunha. Inclui bibliografia. 1.Finanças. 2. Mercado de opções. 3. Arbitragem. I. Silva, André de Castro. II. Cunha, João Marco Braga da. III. Fundação Getulio Vargas. Escola de Pós-Graduação em Economia. IV. Título. CDD – 332 Agradecimentos Ao meu orientador e ao meu co-orientador pelas valiosas contribuições para este trabalho. À minha família pela compreensão e suporte. À minha amada esposa pelo imenso apoio e incentivo nas incontáveis horas de estudo e pesquisa. Abstract We investigate arbitrage opportunities in the Brazilian options market. Our research consists in backtesting several delta-gamma neutral portfolios of options traded in B3 exchange to assess the possibility of obtaining systematic excess returns. Returns sum up to 400% of the daily interbank rate in Brazil (CDI), a rate viewed as risk-free.
    [Show full text]
  • Optimal Convergence Trade Strategies*
    Optimal Convergence Trade Strategies∗ Jun Liu† Allan Timmermann‡ UC San Diego and SAIF UC San Diego and CREATES October4,2012 Abstract Convergence trades exploit temporary mispricing by simultaneously buying relatively un- derpriced assets and selling short relatively overpriced assets. This paper studies optimal con- vergence trades under both recurring and non-recurring arbitrage opportunities represented by continuing and ‘stopped’ cointegrated price processes and considers both fixed and stochastic (Poisson) horizons. We demonstrate that conventional long-short delta neutral strategies are generally suboptimal and show that it can be optimal to simultaneously go long (or short) in two mispriced assets. We also find that the optimal portfolio holdings critically depend on whether the risky asset position is liquidated when prices converge. Our theoretical results are illustrated using parameters estimated on pairs of Chinese bank shares that are traded on both the Hong Kong and China stock exchanges. We find that the optimal convergence trade strategy can yield economically large gains compared to a delta neutral strategy. Key words: convergence trades; risky arbitrage; delta neutrality; optimal portfolio choice ∗The paper was previously circulated under the title Optimal Arbitrage Strategies. We thank the Editor, Pietro Veronesi, and an anonymous referee for detailed and constructive comments on the paper. We also thank Alberto Jurij Plazzi, Jun Pan, seminar participants at the CREATES workshop on Dynamic Asset Allocation, Blackrock, Shanghai Advanced Institute of Finance, and Remin University of China for helpful discussions and comments. Antonio Gargano provided excellent research assistance. Timmermann acknowledges support from CREATES, funded by the Danish National Research Foundation. †UCSD and Shanghai Advanced Institute of Finance (SAIF).
    [Show full text]
  • Finance II (Dirección Financiera II) Apuntes Del Material Docente
    Finance II (Dirección Financiera II) Apuntes del Material Docente Szabolcs István Blazsek-Ayala Table of contents Fixed-income securities 1 Derivatives 27 A note on traditional return and log return 78 Financial statements, financial ratios 80 Company valuation 100 Coca-Cola DCF valuation 135 Bond characteristics A bond is a security that is issued in FIXED-INCOME connection with a borrowing arrangement. SECURITIES The borrower issues (i.e. sells) a bond to the lender for some amount of cash. The arrangement obliges the issuer to make specified payments to the bondholder on specified dates. Bond characteristics Bond characteristics A typical bond obliges the issuer to make When the bond matures, the issuer repays semiannual payments of interest to the the debt by paying the bondholder the bondholder for the life of the bond. bond’s par value (or face value ). These are called coupon payments . The coupon rate of the bond serves to Most bonds have coupons that investors determine the interest payment: would clip off and present to claim the The annual payment is the coupon rate interest payment. times the bond’s par value. Bond characteristics Example The contract between the issuer and the A bond with par value EUR1000 and coupon bondholder contains: rate of 8%. 1. Coupon rate The bondholder is then entitled to a payment of 8% of EUR1000, or EUR80 per year, for the 2. Maturity date stated life of the bond, 30 years. 3. Par value The EUR80 payment typically comes in two semiannual installments of EUR40 each. At the end of the 30-year life of the bond, the issuer also pays the EUR1000 value to the bondholder.
    [Show full text]
  • Value at Risk for Linear and Non-Linear Derivatives
    Value at Risk for Linear and Non-Linear Derivatives by Clemens U. Frei (Under the direction of John T. Scruggs) Abstract This paper examines the question whether standard parametric Value at Risk approaches, such as the delta-normal and the delta-gamma approach and their assumptions are appropriate for derivative positions such as forward and option contracts. The delta-normal and delta-gamma approaches are both methods based on a first-order or on a second-order Taylor series expansion. We will see that the delta-normal method is reliable for linear derivatives although it can lead to signif- icant approximation errors in the case of non-linearity. The delta-gamma method provides a better approximation because this method includes second order-effects. The main problem with delta-gamma methods is the estimation of the quantile of the profit and loss distribution. Empiric results by other authors suggest the use of a Cornish-Fisher expansion. The delta-gamma method when using a Cornish-Fisher expansion provides an approximation which is close to the results calculated by Monte Carlo Simulation methods but is computationally more efficient. Index words: Value at Risk, Variance-Covariance approach, Delta-Normal approach, Delta-Gamma approach, Market Risk, Derivatives, Taylor series expansion. Value at Risk for Linear and Non-Linear Derivatives by Clemens U. Frei Vordiplom, University of Bielefeld, Germany, 2000 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree Master of Arts Athens, Georgia 2003 °c 2003 Clemens U. Frei All Rights Reserved Value at Risk for Linear and Non-Linear Derivatives by Clemens U.
    [Show full text]
  • The Performance of Smile-Implied Delta Hedging
    The Institute have the financial support of l’Autorité des marchés financiers and the Ministère des Finances du Québec Technical note TN 17-01 The Performance of Smile-Implied Delta Hedging January 2017 This technical note has been written by Lina Attie, HEC Montreal Under the supervision of Pascal François, HEC Montreal Opinion expressed in this publication are solely those of the author(s). Furthermore Canadian Derivatives Institute is not taking any responsibility regarding damage or financial consequences in regard with information used in this technical note. The Performance of Smile-Implied Delta Hedging Lina Attie Under the supervision of Pascal François January 2017 1 Introduction Delta hedging is an important subject in financial engineering and more specifically risk management. By definition, delta hedging is the practice of neutralizing risks of adverse movements in an option’s underlying stock price. Multiple types of risks arise on financial markets and the need for hedging is vast in order to reduce potential losses. Delta hedging is one of the most popular hedging methods for option sellers. So far, there has been a lot of theoretical work done on the subject. However, there has been very little discussion and research involving real market data. Hence, this subject has been chosen to shed some light on the practical aspect of delta hedging. More specifically, we focus on smile-implied delta hedging since it represents more accurately what actually happens on financial markets as opposed to the Black-Scholes model that assumes the option’s volatility to be constant. In theory, delta hedging implies perfect hedging if the volatility associated with the option is non stochastic, there are no transaction costs and the hedging is done continuously.
    [Show full text]
  • The Greek Letters
    The Greek Letters Chapter 17 1 Example (Page 365) l A bank has sold for $300,000 a European call option on 100,000 shares of a non-dividend-paying stock (the price of the option per share, “textbook style”, is therefore $3.00). l S0 = 49, K = 50, r = 5%, s = 20%, T = 20 weeks, µ = 13% l (Note that even though the price of the option does not depend on µ, we list it here because it can impact the effectiveness of the hedge) l The Black-Scholes-Merton value of the option is $240,000 (or $2.40 for an option on one share of the underlying stock). l How does the bank hedge its risk? 2 Naked & Covered Positions l Naked position: l One strategy is to simply do nothing: taking no action and remaining exposed to the option risk. l In this example, since the firm wrote/sold the call option, it hopes that the stock remains below the strike price ($50) so that the option doesn’t get exercised by the other party and the firm keeps the premium (price of the call it received originally) in full. l But if the stock rises to, say, $60, the firm loses (60-50)x100,000: a loss of $1,000,000 is much more than the $300,000 received before. l Covered position: l The firm can instead buy 100,000 shares today in anticipation of having to deliver them in the future if the stock rises. l If the stock declines, however, the option is not exercised but the stock position is hurt: if the stock goes down to $40, the loss is (49-40)x100,000 = $900,000.
    [Show full text]
  • Delta Gamma Hedging and the Black-Scholes Partial Differential Equation (PDE)
    JOURNAL OF ECONOMICS AND FINANCE EDUCATION • Volume 11 • Number 2 • Winter 2012 Delta Gamma Hedging and the Black-Scholes Partial Differential Equation (PDE) Sudhakar Raju1 Abstract The objective of this paper is to examine the notion of delta-gamma hedging using simple stylized examples. Even though the delta-gamma hedging concept is among the most challenging concepts in derivatives, standard textbook exposition of delta-gamma hedging usually does not proceed beyond a perfunctory mathematical presentation. Issues such as contrasting call delta hedging with put delta hedging, gamma properties of call versus put delta hedges, etc., are usually not treated in sufficient detail. This paper examines these issues and then places them within the context of a fundamental result in derivatives theory - the Black-Scholes partial differential equation. Many of these concepts are presented using Excel and a simple diagrammatic framework that reinforces the underlying mathematical intuition. Introduction The notion of delta hedging is a fundamental idea in derivatives portfolio management. The simplest notion of delta hedging refers to a strategy whereby the risk of a long or short stock position is offset by taking an offsetting option position in the underlying stock. The nature and extent of the option position is dictated by the underlying sensitivity of the option’s value to a movement in the underlying stock price (i.e. option delta). Since the delta of an option is a local first order measure, delta hedging protects portfolios only against small movements in the underlying stock price. For larger movements in the underlying price, effective risk management requires the use of both first order and second order hedging or delta-gamma hedging.
    [Show full text]
  • Multi Lecture 10: Multi Period Model Period Model Options
    Fin 501:Asset Pricing I Lecture 10: Multi -period Model Options – BlackBlack--ScholesScholes--MertonMerton model Prof. Markus K. Brunnermeier 1 Fin 501:Asset Pricing I Binomial Option Pricing • Consider a European call option maturing at time T wihith strike K: CT=max(ST‐K0)K,0), no cash flows in between • NtNot able to sttilltatically replica te this payoff using jtjust the stock and risk‐free bond • Need to dynamically hedge – required stock position changes for each period until maturity – static hedge for forward, using put‐call parity • Replication strategy depends on specified random process of stock price – need to know how price evolves over time. Binomial (Cox‐Ross‐Rubinstein) model is canonical Fin 501:Asset Pricing I Assumptions • Assumptions: – Stoc k whic h pays no div iden d – Over each period of time, stock price moves from S to either uS or dS, i.i.d. over time, so that final distribution of ST is binomial uS S dS – Suppose length of period is h and risk‐free rate is given by R = erh – No arbitrage: u > R > d – Note: simplistic model, but as we will see, with enough periods begins to look more realistic Fin 501:Asset Pricing I A One‐Period Binomial Tree • Example of a single‐period model – S=50, u = 2, d= 0.5, R=1.25 100 50 25 – What is value of a European call option with K=50? – Option payoff: max(ST‐K,0) 50 C = ? 0 – Use replication to price Fin 501:Asset Pricing I Single‐period replication • Consider a long position of ∆ in the stock and B dollars in bond • Payoff from portfolio: ∆uS+RB=100 ∆+1.25B ∆ S+B=50 ∆+B ∆dS+RB=25 ∆+1.25B • Define Cu as option payoff in up state and Cd as option payoff in down state (Cu=50,Cd=0 here) • Replicating strategy must match payoffs: Cu=∆uS+RB Cd=∆dS+RB Fin 501:Asset Pricing I Single‐period replication • Solving these equations yields: C − C Δ = u d S(u − d) uC − dC B = d u R(u − d) • In previous example, ∆=2/3 and B=‐13.33 , so the option value is C = ∆S+B = 20 • Interpretation of ∆: sensitivity of call price to a change in the stock price.
    [Show full text]
  • The Black-Scholes Model
    IEOR E4706: Foundations of Financial Engineering c 2016 by Martin Haugh The Black-Scholes Model In these notes we will use It^o'sLemma and a replicating argument to derive the famous Black-Scholes formula for European options. We will also discuss the weaknesses of the Black-Scholes model and geometric Brownian motion, and this leads us directly to the concept of the volatility surface which we will discuss in some detail. We will also derive and study the Black-Scholes Greeks and discuss how they are used in practice to hedge option portfolios. 1 The Black-Scholes Model We are now able to derive the Black-Scholes PDE for a call-option on a non-dividend paying stock with strike K and maturity T . We assume that the stock price follows a geometric Brownian motion so that dSt = µSt dt + σSt dWt (1) where Wt is a standard Brownian motion. We also assume that interest rates are constant so that 1 unit of currency invested in the cash account at time 0 will be worth Bt := exp(rt) at time t. We will denote by C(S; t) the value of the call option at time t. By It^o'slemma we know that @C @C 1 @2C @C dC(S; t) = µS + + σ2S2 dt + σS dW (2) t @S @t 2 @S2 t @S t Let us now consider a self-financing trading strategy where at each time t we hold xt units of the cash account and yt units of the stock. Then Pt, the time t value of this strategy satisfies Pt = xtBt + ytSt: (3) We will choose xt and yt in such a way that the strategy replicates the value of the option.
    [Show full text]
  • Euronext Tcs Trading Manual - Optiq®
    Document title EURONEXT TCS TRADING MANUAL - OPTIQ® Date Published: 22 June 2018 Entry into force: 25 June 2018 Number of pages Author 14 Euronext TCS Trading Manual TABLE OF CONTENTS 1. INTRODUCTION.............................................................................................................................................. 3 1.1 TERMS & ABBREVIATIONS .................................................................................................................................... 3 1.2 GENERAL FEATURES OF TCS ................................................................................................................................. 4 1.2.1 OPENING HOURS .......................................................................................................................................... 4 1.2.2 “IN-SESSION” AND “OUT-SESSION” (“After hours”) STATUS ........................................................................ 4 1.2.3 EXCEPTIONS LINKED TO THE STATUS OF THE SECURITY IN THE EURONEXT OPTIQ® SYSTEM ..................... 4 1.2.4 TRADE REJECTION ......................................................................................................................................... 5 1.2.5 TRADE CANCELLATION ................................................................................................................................. 5 1.2.6 MIFID II RELATED DATA INSTRUCTIONS ....................................................................................................... 5 2. TRADE TYPES SUPPORTED
    [Show full text]
  • Institutional Finance Lecture 10: Dynamic Arbitrage to Replicate Non‐Linear Payoffs
    Institutional Finance Lecture 10: Dynamic Arbitrage to Replicate non‐linear Payoffs Markus K. Brunnermeier Preceptor: Dong Beom Choi Princeton University 1 BINOMIAL OPTION PRICING Consider a European call option maturing at time T wiihth strike K: CT=max(ST‐KK0),0), no cash flows in between Is there a way to statically replicate this payoff? • Not using just the stock and risk‐free bdbond – required stock position changes for each period until maturity (as we will see) • Need to dynamically hedge –compare with static hedge such as hedging a forward, or hedge using put‐call parity Replication strategy depends on specified random process of stock price – need to know how price evolves over time. Binomial (Cox‐Rubinstein‐Ross) model is canonical ASSUMPTIONS Assumptions: • Stock which pays no divid end • Over each period of time, stock price moves from S to either uS or dS, i.i.d. over time, so that final distribution of ST is binomial uS S dS • Suppose length of period is h and risk‐free rate is given by R = erh • No arbitrage: u > R > d • Note: simplistic model, but as we will see, with enough periods begins to look more realistic A ONE‐PERIOD BINOMIAL TREE Example of a single‐period model • S=50, u = 2, d= 0.5, R=1.25 100 50 25 • What is value of a European call option with K=50? • Option payoff: max(ST‐K,0) 50 C = ? 0 • Use replication to price SINGLE‐PERIOD REPLICATION Consider a long position of ∆ in the stock and B ddllollars in bbdond Payoff from portfolio: ∆uS+RB=100 ∆+1.25B ∆ S+B=50 ∆+B ∆dS+RB=25 ∆+1.25B Define Cu as option payoff in up state and Cd as option payoff in down state (Cu=50,Cd=0 here) RliiReplicating strategy must match payoffs: Cu=∆uS+RB Cd=∆dS+RB SINGLE‐PERIOD REPLICATION Solving these equations yields: C − C Δ = u d S(u − d) uC − dC B = d u R(u − d) In previous example, ∆=2/3 and B=‐13.33 , so the option value is C = ∆SSB+B = 20 Interpretation of ∆: sensitivity of call price to a change in the stock price.
    [Show full text]