Multi Lecture 10: Multi Period Model Period Model Options
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
More on Market-Making and Delta-Hedging
More on Market-Making and Delta-Hedging What do market makers do to delta-hedge? • Recall that the delta-hedging strategy consists of selling one option, and buying a certain number ∆ shares • An example of Delta hedging for 2 days (daily rebalancing and mark-to-market): Day 0: Share price = $40, call price is $2.7804, and ∆ = 0.5824 Sell call written on 100 shares for $278.04, and buy 58.24 shares. Net investment: (58.24 × $40)$278.04 = $2051.56 At 8%, overnight financing charge is $0.45 = $2051.56 × (e−0.08/365 − 1) Day 1: If share price = $40.5, call price is $3.0621, and ∆ = 0.6142 Overnight profit/loss: $29.12 $28.17 $0.45 = $0.50(mark-to-market) Buy 3.18 additional shares for $128.79 to rebalance Day 2: If share price = $39.25, call price is $2.3282 • Overnight profit/loss: $76.78 + $73.39 $0.48 = $3.87(mark-to-market) What do market makers do to delta-hedge? • Recall that the delta-hedging strategy consists of selling one option, and buying a certain number ∆ shares • An example of Delta hedging for 2 days (daily rebalancing and mark-to-market): Day 0: Share price = $40, call price is $2.7804, and ∆ = 0.5824 Sell call written on 100 shares for $278.04, and buy 58.24 shares. Net investment: (58.24 × $40)$278.04 = $2051.56 At 8%, overnight financing charge is $0.45 = $2051.56 × (e−0.08/365 − 1) Day 1: If share price = $40.5, call price is $3.0621, and ∆ = 0.6142 Overnight profit/loss: $29.12 $28.17 $0.45 = $0.50(mark-to-market) Buy 3.18 additional shares for $128.79 to rebalance Day 2: If share price = $39.25, call price is $2.3282 • Overnight profit/loss: $76.78 + $73.39 $0.48 = $3.87(mark-to-market) What do market makers do to delta-hedge? • Recall that the delta-hedging strategy consists of selling one option, and buying a certain number ∆ shares • An example of Delta hedging for 2 days (daily rebalancing and mark-to-market): Day 0: Share price = $40, call price is $2.7804, and ∆ = 0.5824 Sell call written on 100 shares for $278.04, and buy 58.24 shares. -
Implied Volatility Modeling
Implied Volatility Modeling Sarves Verma, Gunhan Mehmet Ertosun, Wei Wang, Benjamin Ambruster, Kay Giesecke I Introduction Although Black-Scholes formula is very popular among market practitioners, when applied to call and put options, it often reduces to a means of quoting options in terms of another parameter, the implied volatility. Further, the function σ BS TK ),(: ⎯⎯→ σ BS TK ),( t t ………………………………(1) is called the implied volatility surface. Two significant features of the surface is worth mentioning”: a) the non-flat profile of the surface which is often called the ‘smile’or the ‘skew’ suggests that the Black-Scholes formula is inefficient to price options b) the level of implied volatilities changes with time thus deforming it continuously. Since, the black- scholes model fails to model volatility, modeling implied volatility has become an active area of research. At present, volatility is modeled in primarily four different ways which are : a) The stochastic volatility model which assumes a stochastic nature of volatility [1]. The problem with this approach often lies in finding the market price of volatility risk which can’t be observed in the market. b) The deterministic volatility function (DVF) which assumes that volatility is a function of time alone and is completely deterministic [2,3]. This fails because as mentioned before the implied volatility surface changes with time continuously and is unpredictable at a given point of time. Ergo, the lattice model [2] & the Dupire approach [3] often fail[4] c) a factor based approach which assumes that implied volatility can be constructed by forming basis vectors. Further, one can use implied volatility as a mean reverting Ornstein-Ulhenbeck process for estimating implied volatility[5]. -
Managed Futures and Long Volatility by Anders Kulp, Daniel Djupsjöbacka, Martin Estlander, Er Capital Management Research
Disclaimer: This article appeared in the AIMA Journal (Feb 2005), which is published by The Alternative Investment Management Association Limited (AIMA). No quotation or reproduction is permitted without the express written permission of The Alternative Investment Management Association Limited (AIMA) and the author. The content of this article does not necessarily reflect the opinions of the AIMA Membership and AIMA does not accept responsibility for any statements herein. Managed Futures and Long Volatility By Anders Kulp, Daniel Djupsjöbacka, Martin Estlander, er Capital Management Research Introduction and background The buyer of an option straddle pays the implied volatility to get exposure to realized volatility during the lifetime of the option straddle. Fung and Hsieh (1997b) found that the return of trend following strategies show option like characteristics, because the returns tend to be large and positive during the best and worst performing months of the world equity markets. Fung and Hsieh used lookback straddles to replicate a trend following strategy. However, the standard way to obtain exposure to volatility is to buy an at-the-money straddle. Here, we will use standard option straddles with a dynamic updating methodology and flexible maturity rollover rules to match the characteristics of a trend follower. The lookback straddle captures only one trend during its maturity, but with an effective systematic updating method the simple option straddle captures more than one trend. It is generally accepted that when implementing an options strategy, it is crucial to minimize trading, because the liquidity in the options markets are far from perfect. Compared to the lookback straddle model, the trading frequency for the simple straddle model is lower. -
Arbitrage Opportunities with a Delta-Gamma Neutral Strategy in the Brazilian Options Market
FUNDAÇÃO GETÚLIO VARGAS ESCOLA DE PÓS-GRADUAÇÃO EM ECONOMIA Lucas Duarte Processi Arbitrage Opportunities with a Delta-Gamma Neutral Strategy in the Brazilian Options Market Rio de Janeiro 2017 Lucas Duarte Processi Arbitrage Opportunities with a Delta-Gamma Neutral Strategy in the Brazilian Options Market Dissertação para obtenção do grau de mestre apresentada à Escola de Pós- Graduação em Economia Área de concentração: Finanças Orientador: André de Castro Silva Co-orientador: João Marco Braga da Cu- nha Rio de Janeiro 2017 Ficha catalográfica elaborada pela Biblioteca Mario Henrique Simonsen/FGV Processi, Lucas Duarte Arbitrage opportunities with a delta-gamma neutral strategy in the Brazilian options market / Lucas Duarte Processi. – 2017. 45 f. Dissertação (mestrado) - Fundação Getulio Vargas, Escola de Pós- Graduação em Economia. Orientador: André de Castro Silva. Coorientador: João Marco Braga da Cunha. Inclui bibliografia. 1.Finanças. 2. Mercado de opções. 3. Arbitragem. I. Silva, André de Castro. II. Cunha, João Marco Braga da. III. Fundação Getulio Vargas. Escola de Pós-Graduação em Economia. IV. Título. CDD – 332 Agradecimentos Ao meu orientador e ao meu co-orientador pelas valiosas contribuições para este trabalho. À minha família pela compreensão e suporte. À minha amada esposa pelo imenso apoio e incentivo nas incontáveis horas de estudo e pesquisa. Abstract We investigate arbitrage opportunities in the Brazilian options market. Our research consists in backtesting several delta-gamma neutral portfolios of options traded in B3 exchange to assess the possibility of obtaining systematic excess returns. Returns sum up to 400% of the daily interbank rate in Brazil (CDI), a rate viewed as risk-free. -
White Paper Volatility: Instruments and Strategies
White Paper Volatility: Instruments and Strategies Clemens H. Glaffig Panathea Capital Partners GmbH & Co. KG, Freiburg, Germany July 30, 2019 This paper is for informational purposes only and is not intended to constitute an offer, advice, or recommendation in any way. Panathea assumes no responsibility for the content or completeness of the information contained in this document. Table of Contents 0. Introduction ......................................................................................................................................... 1 1. Ihe VIX Index .................................................................................................................................... 2 1.1 General Comments and Performance ......................................................................................... 2 What Does it mean to have a VIX of 20% .......................................................................... 2 A nerdy side note ................................................................................................................. 2 1.2 The Calculation of the VIX Index ............................................................................................. 4 1.3 Mathematical formalism: How to derive the VIX valuation formula ...................................... 5 1.4 VIX Futures .............................................................................................................................. 6 The Pricing of VIX Futures ................................................................................................ -
Futures & Options on the VIX® Index
Futures & Options on the VIX® Index Turn Volatility to Your Advantage U.S. Futures and Options The Cboe Volatility Index® (VIX® Index) is a leading measure of market expectations of near-term volatility conveyed by S&P 500 Index® (SPX) option prices. Since its introduction in 1993, the VIX® Index has been considered by many to be the world’s premier barometer of investor sentiment and market volatility. To learn more, visit cboe.com/VIX. VIX Futures and Options Strategies VIX futures and options have unique characteristics and behave differently than other financial-based commodity or equity products. Understanding these traits and their implications is important. VIX options and futures enable investors to trade volatility independent of the direction or the level of stock prices. Whether an investor’s outlook on the market is bullish, bearish or somewhere in-between, VIX futures and options can provide the ability to diversify a portfolio as well as hedge, mitigate or capitalize on broad market volatility. Portfolio Hedging One of the biggest risks to an equity portfolio is a broad market decline. The VIX Index has had a historically strong inverse relationship with the S&P 500® Index. Consequently, a long exposure to volatility may offset an adverse impact of falling stock prices. Market participants should consider the time frame and characteristics associated with VIX futures and options to determine the utility of such a hedge. Risk Premium Yield Over long periods, index options have tended to price in slightly more uncertainty than the market ultimately realizes. Specifically, the expected volatility implied by SPX option prices tends to trade at a premium relative to subsequent realized volatility in the S&P 500 Index. -
Option Prices Under Bayesian Learning: Implied Volatility Dynamics and Predictive Densities∗
Option Prices under Bayesian Learning: Implied Volatility Dynamics and Predictive Densities∗ Massimo Guidolin† Allan Timmermann University of Virginia University of California, San Diego JEL codes: G12, D83. Abstract This paper shows that many of the empirical biases of the Black and Scholes option pricing model can be explained by Bayesian learning effects. In the context of an equilibrium model where dividend news evolve on a binomial lattice with unknown but recursively updated probabilities we derive closed-form pricing formulas for European options. Learning is found to generate asymmetric skews in the implied volatility surface and systematic patterns in the term structure of option prices. Data on S&P 500 index option prices is used to back out the parameters of the underlying learning process and to predict the evolution in the cross-section of option prices. The proposed model leads to lower out-of- sample forecast errors and smaller hedging errors than a variety of alternative option pricing models, including Black-Scholes and a GARCH model. ∗We wish to thank four anonymous referees for their extensive and thoughtful comments that greatly improved the paper. We also thank Alexander David, Jos´e Campa, Bernard Dumas, Wake Epps, Stewart Hodges, Claudio Michelacci, Enrique Sentana and seminar participants at Bocconi University, CEMFI, University of Copenhagen, Econometric Society World Congress in Seattle, August 2000, the North American Summer meetings of the Econometric Society in College Park, June 2001, the European Finance Association meetings in Barcelona, August 2001, Federal Reserve Bank of St. Louis, INSEAD, McGill, UCSD, Universit´edeMontreal,andUniversity of Virginia for discussions and helpful comments. -
Optimal Convergence Trade Strategies*
Optimal Convergence Trade Strategies∗ Jun Liu† Allan Timmermann‡ UC San Diego and SAIF UC San Diego and CREATES October4,2012 Abstract Convergence trades exploit temporary mispricing by simultaneously buying relatively un- derpriced assets and selling short relatively overpriced assets. This paper studies optimal con- vergence trades under both recurring and non-recurring arbitrage opportunities represented by continuing and ‘stopped’ cointegrated price processes and considers both fixed and stochastic (Poisson) horizons. We demonstrate that conventional long-short delta neutral strategies are generally suboptimal and show that it can be optimal to simultaneously go long (or short) in two mispriced assets. We also find that the optimal portfolio holdings critically depend on whether the risky asset position is liquidated when prices converge. Our theoretical results are illustrated using parameters estimated on pairs of Chinese bank shares that are traded on both the Hong Kong and China stock exchanges. We find that the optimal convergence trade strategy can yield economically large gains compared to a delta neutral strategy. Key words: convergence trades; risky arbitrage; delta neutrality; optimal portfolio choice ∗The paper was previously circulated under the title Optimal Arbitrage Strategies. We thank the Editor, Pietro Veronesi, and an anonymous referee for detailed and constructive comments on the paper. We also thank Alberto Jurij Plazzi, Jun Pan, seminar participants at the CREATES workshop on Dynamic Asset Allocation, Blackrock, Shanghai Advanced Institute of Finance, and Remin University of China for helpful discussions and comments. Antonio Gargano provided excellent research assistance. Timmermann acknowledges support from CREATES, funded by the Danish National Research Foundation. †UCSD and Shanghai Advanced Institute of Finance (SAIF). -
Finance II (Dirección Financiera II) Apuntes Del Material Docente
Finance II (Dirección Financiera II) Apuntes del Material Docente Szabolcs István Blazsek-Ayala Table of contents Fixed-income securities 1 Derivatives 27 A note on traditional return and log return 78 Financial statements, financial ratios 80 Company valuation 100 Coca-Cola DCF valuation 135 Bond characteristics A bond is a security that is issued in FIXED-INCOME connection with a borrowing arrangement. SECURITIES The borrower issues (i.e. sells) a bond to the lender for some amount of cash. The arrangement obliges the issuer to make specified payments to the bondholder on specified dates. Bond characteristics Bond characteristics A typical bond obliges the issuer to make When the bond matures, the issuer repays semiannual payments of interest to the the debt by paying the bondholder the bondholder for the life of the bond. bond’s par value (or face value ). These are called coupon payments . The coupon rate of the bond serves to Most bonds have coupons that investors determine the interest payment: would clip off and present to claim the The annual payment is the coupon rate interest payment. times the bond’s par value. Bond characteristics Example The contract between the issuer and the A bond with par value EUR1000 and coupon bondholder contains: rate of 8%. 1. Coupon rate The bondholder is then entitled to a payment of 8% of EUR1000, or EUR80 per year, for the 2. Maturity date stated life of the bond, 30 years. 3. Par value The EUR80 payment typically comes in two semiannual installments of EUR40 each. At the end of the 30-year life of the bond, the issuer also pays the EUR1000 value to the bondholder. -
The Impact of Implied Volatility Fluctuations on Vertical Spread Option Strategies: the Case of WTI Crude Oil Market
energies Article The Impact of Implied Volatility Fluctuations on Vertical Spread Option Strategies: The Case of WTI Crude Oil Market Bartosz Łamasz * and Natalia Iwaszczuk Faculty of Management, AGH University of Science and Technology, 30-059 Cracow, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-696-668-417 Received: 31 July 2020; Accepted: 7 October 2020; Published: 13 October 2020 Abstract: This paper aims to analyze the impact of implied volatility on the costs, break-even points (BEPs), and the final results of the vertical spread option strategies (vertical spreads). We considered two main groups of vertical spreads: with limited and unlimited profits. The strategy with limited profits was divided into net credit spread and net debit spread. The analysis takes into account West Texas Intermediate (WTI) crude oil options listed on New York Mercantile Exchange (NYMEX) from 17 November 2008 to 15 April 2020. Our findings suggest that the unlimited vertical spreads were executed with profits less frequently than the limited vertical spreads in each of the considered categories of implied volatility. Nonetheless, the advantage of unlimited strategies was observed for substantial oil price movements (above 10%) when the rates of return on these strategies were higher than for limited strategies. With small price movements (lower than 5%), the net credit spread strategies were by far the best choice and generated profits in the widest price ranges in each category of implied volatility. This study bridges the gap between option strategies trading, implied volatility and WTI crude oil market. The obtained results may be a source of information in hedging against oil price fluctuations. -
Value at Risk for Linear and Non-Linear Derivatives
Value at Risk for Linear and Non-Linear Derivatives by Clemens U. Frei (Under the direction of John T. Scruggs) Abstract This paper examines the question whether standard parametric Value at Risk approaches, such as the delta-normal and the delta-gamma approach and their assumptions are appropriate for derivative positions such as forward and option contracts. The delta-normal and delta-gamma approaches are both methods based on a first-order or on a second-order Taylor series expansion. We will see that the delta-normal method is reliable for linear derivatives although it can lead to signif- icant approximation errors in the case of non-linearity. The delta-gamma method provides a better approximation because this method includes second order-effects. The main problem with delta-gamma methods is the estimation of the quantile of the profit and loss distribution. Empiric results by other authors suggest the use of a Cornish-Fisher expansion. The delta-gamma method when using a Cornish-Fisher expansion provides an approximation which is close to the results calculated by Monte Carlo Simulation methods but is computationally more efficient. Index words: Value at Risk, Variance-Covariance approach, Delta-Normal approach, Delta-Gamma approach, Market Risk, Derivatives, Taylor series expansion. Value at Risk for Linear and Non-Linear Derivatives by Clemens U. Frei Vordiplom, University of Bielefeld, Germany, 2000 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree Master of Arts Athens, Georgia 2003 °c 2003 Clemens U. Frei All Rights Reserved Value at Risk for Linear and Non-Linear Derivatives by Clemens U. -
The Performance of Smile-Implied Delta Hedging
The Institute have the financial support of l’Autorité des marchés financiers and the Ministère des Finances du Québec Technical note TN 17-01 The Performance of Smile-Implied Delta Hedging January 2017 This technical note has been written by Lina Attie, HEC Montreal Under the supervision of Pascal François, HEC Montreal Opinion expressed in this publication are solely those of the author(s). Furthermore Canadian Derivatives Institute is not taking any responsibility regarding damage or financial consequences in regard with information used in this technical note. The Performance of Smile-Implied Delta Hedging Lina Attie Under the supervision of Pascal François January 2017 1 Introduction Delta hedging is an important subject in financial engineering and more specifically risk management. By definition, delta hedging is the practice of neutralizing risks of adverse movements in an option’s underlying stock price. Multiple types of risks arise on financial markets and the need for hedging is vast in order to reduce potential losses. Delta hedging is one of the most popular hedging methods for option sellers. So far, there has been a lot of theoretical work done on the subject. However, there has been very little discussion and research involving real market data. Hence, this subject has been chosen to shed some light on the practical aspect of delta hedging. More specifically, we focus on smile-implied delta hedging since it represents more accurately what actually happens on financial markets as opposed to the Black-Scholes model that assumes the option’s volatility to be constant. In theory, delta hedging implies perfect hedging if the volatility associated with the option is non stochastic, there are no transaction costs and the hedging is done continuously.