Lecture 6: the Greeks and Risk-Management

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 6: the Greeks and Risk-Management Lecture 6: The Greeks and Basic Hedging Sources Avellaneda and Laurence J Hull A general approach to hedging • Suppose that an investor has a security A (or portfolio of securities) and wishes to determine the relation between the returns of security A and the returns of a given asset B (not equal to A). • We consider a stochastic linear model for the returns of A and B. The simplest model looks like rA rB rA return of asset A rB return of asset B residual, uncorrelated with rB , normalized to have mean zero. The meaning of , ErA ErB ErA ErB 2 2 2 ErArB ErB ErB ErA ErB ErB ErB Er r Er Er Corrr ,r A B A B A B 2 2 ErB ErB VarrB • Beta is the regression coefficient (with respect to the model used for the joint returns) of the returns of A on the returns of B • Hedging with a linear model corresponds to taking an offsetting position using the beta (regression coefficient). Regression of CL2 returns on CL1 returns (2003-2010) Linear model applied to (CL1,CL3) Example: Long CL2, short CL1 CL2 2.4% CL20.86CL1 0.8% Hedging option exposure against the underlying asset • Assume that you are long 1 call option on XYZ, with strike K, maturity T. • Assume that the dividend yield and interest rate are known. -- compute the implied volatility C BSCallS,T, K,r,q, CS,T, K,r,q, C C 1 2C C S t S2 ot S t 2 S 2 • The exposure to the underlying asset is represented by the first derivative with respect to price Options are non-linear functions of the underlying asset C (option C (option value) S (underlying asset value CS,T Delta = S Delta for European Call (Black & Scholes) qT rT C e SNd1 e KNd2 C d d eqT Nd eqT SN'd 1 erT KN'd 2 S 1 1 S 2 S eqT 1 eqT Nd N'd erT KN'd 1 T 1 2 S T d 2 d 2 1 2 eqT e 2 erT K e 2 eqT Nd 1 T 2 S T 2 2 d 2 d T 1 1 eqT e 2 erT K e 2 eqT Nd 1 T 2 S T 2 2 ( rq )T d 2 d1 Se 1 ln eqT e 2 erT K e 2 K eqT Nd 1 T 2 S T 2 qT e Nd1 Delta: European Call- Black-Scholes model 1 F T BSCallDelta(S,T, K,r,q, ) eqT N d eqT N ln 1 T K 2 Delta For European Put (Black-Scholes) qT rT qT P C Se Ke put call e (Put-call parity) 1 K T eqT N d - eqT eqT N ln put 1 T F 2 Gamma – the change in Delta as the stock price moves • Options are non-linear financial instruments, in the sense that they do not have a constant Delta with respect to the underlying instrument • The second derivative of the option value with respect to the underlying price is called Gamma. It represents the rate of change of Delta as the price moves. In the European B-S model, we have d 2 1 2 qT e S,T, K,r,q, e S 2T • The Gammas of a call and put with the same parameters are identical. Properties of Gamma • The option price is convex in S, so Gamma is positive for a long options position • Gamma is mostly concentrated near the strike price, i.e. Gamma is the largest for at-the-money options. OTM and ITM options have less convexity Delta and Gamma for American Options • The derivatives can be computed by finite-differences (trinomial scheme) • If we assume that the arrays are labeled C(-M to +M), S(-M to +M) for the option price and the stock price respectively, then we have 0 Option price C0 1 1 C0 C0 Delta 0 2x S0 1 C1 C 1 2C 0 C1 C 1 0 0 0 0 0 Gamma 0 2 2 (S0 ) x 2x • These values are very close to the analytic expressions for European-style Greeks for ATM options Example • A trader has a position in SPY stock and options on SPY expiring in June 2012. He is long 10,000 SPY December 105 puts. He is also delta-neutral through SPY stock. SPY=$114.25 Bid price=$3.91, Ask price=$4.00 Implied Volatility=37.7% Delta=-0.29371 Gamma= 0.02653 Option market value = 10,000*100*3.955=$3,955,000 SPY hedge= long 293,371 shares (MV= $ 33,517,337) • If SPY increases by 1 dollar, New Delta ~ -0.29371+0.02653= -0.26718 New theoretical hedge= long 267,180 shares Difference = 26,530 shares To be market-neutral, the trader would need to sell 26,530 shares at $115.25 • If SPY decreases by 1 dollar, in order to become delta-neutral, the trader would need to buy 26,530 shares at $113.25 Gamma and hedged portfolios C C 1 2C C t S S2 .... t S 2 S 2 rCt C S rSt qSt... C 1 2C C rC S 2 S (r q)t ... 2 t 2 S S C 2S 2 2C C 1 2C 2S 2 2C rC S (r q)t S 2 t ... 2 2 2 t 2 S S 2 S 2 S 2 2 2 S C S 2 2 t ... 2 S S Vega • Vega is the sensitivity of an option price to changes in implied volatility Vega eqT SN(d ) erT KN(d ) 1 2 ln(F / K) T ln(F / K) T eqT SN'(d ) erT KN'(d ) 1 2 2 2 T 2 T 2 qT e SN'(d1) T d 2 1 e 2 Vega eqT S T 2 Time-dependence • Option premia above par value decrease with time-to-maturity • Gamma increases with time to maturity (for ATM options) • Vega decreases with time-to-maturity (for ATM options) Short-term options are mostly sensitive to Gamma (frequent delta hedging needed to maintain market-neutrality) Long-term options are mostly sensitive to Vega (value is very sensitive to the implied volatility) Theta (time decay rate) • Theta is the derivative of the option value with respect to time to maturity • To get intuition for Theta, assume that r and q are zero. Then, by the Black Scholes equation C 2S 2 2C 0 t 2 S 2 C 2S 2 2C 2S 2 T 2 S 2 2 d 2 1 Se 2 2T.
Recommended publications
  • University of Illinois at Urbana-Champaign Department of Mathematics
    University of Illinois at Urbana-Champaign Department of Mathematics ASRM 410 Investments and Financial Markets Fall 2018 Chapter 5 Option Greeks and Risk Management by Alfred Chong Learning Objectives: 5.1 Option Greeks: Black-Scholes valuation formula at time t, observed values, model inputs, option characteristics, option Greeks, partial derivatives, sensitivity, change infinitesimally, Delta, Gamma, theta, Vega, rho, Psi, option Greek of portfolio, absolute change, option elasticity, percentage change, option elasticity of portfolio. 5.2 Applications of Option Greeks: risk management via hedging, immunization, adverse market changes, delta-neutrality, delta-hedging, local, re-balance, from- time-to-time, holding profit, delta-hedging, first order, prudent, delta-gamma- hedging, gamma-neutrality, option value approximation, observed values change inevitably, Taylor series expansion, second order approximation, delta-gamma- theta approximation, delta approximation, delta-gamma approximation. Further Exercises: SOA Advanced Derivatives Samples Question 9. 1 5.1 Option Greeks 5.1.1 Consider a continuous-time setting t ≥ 0. Assume that the Black-Scholes framework holds as in 4.2.2{4.2.4. 5.1.2 The time-0 Black-Scholes European call and put option valuation formula in 4.2.9 and 4.2.10 can be generalized to those at time t: −δ(T −t) −r(T −t) C (t; S; δ; r; σ; K; T ) = Se N (d1) − Ke N (d2) P = Ft;T N (d1) − PVt;T (K) N (d2); −r(T −t) −δ(T −t) P (t; S; δ; r; σ; K; T ) = Ke N (−d2) − Se N (−d1) P = PVt;T (K) N (−d2) − Ft;T N (−d1) ; where d1 and d2 are given by S 1 2 ln K + r − δ + 2 σ (T − t) d1 = p ; σ T − t S 1 2 p ln K + r − δ − 2 σ (T − t) d2 = p = d1 − σ T − t: σ T − t 5.1.3 The option value V is a function of observed values, t and S, model inputs, δ, r, and σ, as well as option characteristics, K and T .
    [Show full text]
  • More on Market-Making and Delta-Hedging
    More on Market-Making and Delta-Hedging What do market makers do to delta-hedge? • Recall that the delta-hedging strategy consists of selling one option, and buying a certain number ∆ shares • An example of Delta hedging for 2 days (daily rebalancing and mark-to-market): Day 0: Share price = $40, call price is $2.7804, and ∆ = 0.5824 Sell call written on 100 shares for $278.04, and buy 58.24 shares. Net investment: (58.24 × $40)$278.04 = $2051.56 At 8%, overnight financing charge is $0.45 = $2051.56 × (e−0.08/365 − 1) Day 1: If share price = $40.5, call price is $3.0621, and ∆ = 0.6142 Overnight profit/loss: $29.12 $28.17 $0.45 = $0.50(mark-to-market) Buy 3.18 additional shares for $128.79 to rebalance Day 2: If share price = $39.25, call price is $2.3282 • Overnight profit/loss: $76.78 + $73.39 $0.48 = $3.87(mark-to-market) What do market makers do to delta-hedge? • Recall that the delta-hedging strategy consists of selling one option, and buying a certain number ∆ shares • An example of Delta hedging for 2 days (daily rebalancing and mark-to-market): Day 0: Share price = $40, call price is $2.7804, and ∆ = 0.5824 Sell call written on 100 shares for $278.04, and buy 58.24 shares. Net investment: (58.24 × $40)$278.04 = $2051.56 At 8%, overnight financing charge is $0.45 = $2051.56 × (e−0.08/365 − 1) Day 1: If share price = $40.5, call price is $3.0621, and ∆ = 0.6142 Overnight profit/loss: $29.12 $28.17 $0.45 = $0.50(mark-to-market) Buy 3.18 additional shares for $128.79 to rebalance Day 2: If share price = $39.25, call price is $2.3282 • Overnight profit/loss: $76.78 + $73.39 $0.48 = $3.87(mark-to-market) What do market makers do to delta-hedge? • Recall that the delta-hedging strategy consists of selling one option, and buying a certain number ∆ shares • An example of Delta hedging for 2 days (daily rebalancing and mark-to-market): Day 0: Share price = $40, call price is $2.7804, and ∆ = 0.5824 Sell call written on 100 shares for $278.04, and buy 58.24 shares.
    [Show full text]
  • Ice Crude Oil
    ICE CRUDE OIL Intercontinental Exchange® (ICE®) became a center for global petroleum risk management and trading with its acquisition of the International Petroleum Exchange® (IPE®) in June 2001, which is today known as ICE Futures Europe®. IPE was established in 1980 in response to the immense volatility that resulted from the oil price shocks of the 1970s. As IPE’s short-term physical markets evolved and the need to hedge emerged, the exchange offered its first contract, Gas Oil futures. In June 1988, the exchange successfully launched the Brent Crude futures contract. Today, ICE’s FSA-regulated energy futures exchange conducts nearly half the world’s trade in crude oil futures. Along with the benchmark Brent crude oil, West Texas Intermediate (WTI) crude oil and gasoil futures contracts, ICE Futures Europe also offers a full range of futures and options contracts on emissions, U.K. natural gas, U.K power and coal. THE BRENT CRUDE MARKET Brent has served as a leading global benchmark for Atlantic Oseberg-Ekofisk family of North Sea crude oils, each of which Basin crude oils in general, and low-sulfur (“sweet”) crude has a separate delivery point. Many of the crude oils traded oils in particular, since the commercialization of the U.K. and as a basis to Brent actually are traded as a basis to Dated Norwegian sectors of the North Sea in the 1970s. These crude Brent, a cargo loading within the next 10-21 days (23 days on oils include most grades produced from Nigeria and Angola, a Friday). In a circular turn, the active cash swap market for as well as U.S.
    [Show full text]
  • Yuichi Katsura
    P&TcrvvCJ Efficient ValtmVmm-and Hedging of Structured Credit Products Yuichi Katsura A thesis submitted for the degree of Doctor of Philosophy of the University of London May 2005 Centre for Quantitative Finance Imperial College London nit~ýl. ABSTRACT Structured credit derivatives such as synthetic collateralized debt obligations (CDO) have been the principal growth engine in the fixed income market over the last few years. Val- uation and risk management of structured credit products by meads of Monte Carlo sim- ulations tend to suffer from numerical instability and heavy computational time. After a brief description of single name credit derivatives that underlie structured credit deriva- tives, the factor model is introduced as the portfolio credit derivatives pricing tool. This thesis then describes the rapid pricing and hedging of portfolio credit derivatives using the analytical approximation model and semi-analytical models under several specifications of factor models. When a full correlation structure is assumed or the pricing of exotic structure credit products with non-linear pay-offs is involved, the semi-analytical tractability is lost and we have to resort to the time-consuming Monte Carlo method. As a Monte Carlo variance reduction technique we extend the importance sampling method introduced to credit risk modelling by Joshi [2004] to the general n-factor problem. The large homogeneouspool model is also applied to the method of control variates as a new variance reduction tech- niques for pricing structured credit products. The combination of both methods is examined and it turns out to be the optimal choice. We also show how sensitivities of a CDO tranche can be computed efficiently by semi-analytical and Monte Carlo framework.
    [Show full text]
  • RT Options Scanner Guide
    RT Options Scanner Introduction Our RT Options Scanner allows you to search in real-time through all publicly traded US equities and indexes options (more than 170,000 options contracts total) for trading opportunities involving strategies like: - Naked or Covered Write Protective Purchase, etc. - Any complex multi-leg option strategy – to find the “missing leg” - Calendar Spreads Search is performed against our Options Database that is updated in real-time and driven by HyperFeed’s Ticker-Plant and our Implied Volatility Calculation Engine. We offer both 20-minute delayed and real-time modes. Unlike other search engines using real-time quotes data only our system takes advantage of individual contracts Implied Volatilities calculated in real-time using our high-performance Volatility Engine. The Scanner is universal, that is, it is not confined to any special type of option strategy. Rather, it allows determining the option you need in the following terms: – Cost – Moneyness – Expiry – Liquidity – Risk The Scanner offers Basic and Advanced Search Interfaces. Basic interface can be used to find options contracts satisfying, for example, such requirements: “I need expensive Calls for Covered Call Write Strategy. They should expire soon and be slightly out of the money. Do not care much as far as liquidity, but do not like to bear high risk.” This can be done in five seconds - set the search filters to: Cost -> Dear Moneyness -> OTM Expiry -> Short term Liquidity -> Any Risk -> Moderate and press the “Search” button. It is that easy. In fact, if your request is exactly as above, you can just press the “Search” button - these values are the default filtering criteria.
    [Show full text]
  • Arbitrage Opportunities with a Delta-Gamma Neutral Strategy in the Brazilian Options Market
    FUNDAÇÃO GETÚLIO VARGAS ESCOLA DE PÓS-GRADUAÇÃO EM ECONOMIA Lucas Duarte Processi Arbitrage Opportunities with a Delta-Gamma Neutral Strategy in the Brazilian Options Market Rio de Janeiro 2017 Lucas Duarte Processi Arbitrage Opportunities with a Delta-Gamma Neutral Strategy in the Brazilian Options Market Dissertação para obtenção do grau de mestre apresentada à Escola de Pós- Graduação em Economia Área de concentração: Finanças Orientador: André de Castro Silva Co-orientador: João Marco Braga da Cu- nha Rio de Janeiro 2017 Ficha catalográfica elaborada pela Biblioteca Mario Henrique Simonsen/FGV Processi, Lucas Duarte Arbitrage opportunities with a delta-gamma neutral strategy in the Brazilian options market / Lucas Duarte Processi. – 2017. 45 f. Dissertação (mestrado) - Fundação Getulio Vargas, Escola de Pós- Graduação em Economia. Orientador: André de Castro Silva. Coorientador: João Marco Braga da Cunha. Inclui bibliografia. 1.Finanças. 2. Mercado de opções. 3. Arbitragem. I. Silva, André de Castro. II. Cunha, João Marco Braga da. III. Fundação Getulio Vargas. Escola de Pós-Graduação em Economia. IV. Título. CDD – 332 Agradecimentos Ao meu orientador e ao meu co-orientador pelas valiosas contribuições para este trabalho. À minha família pela compreensão e suporte. À minha amada esposa pelo imenso apoio e incentivo nas incontáveis horas de estudo e pesquisa. Abstract We investigate arbitrage opportunities in the Brazilian options market. Our research consists in backtesting several delta-gamma neutral portfolios of options traded in B3 exchange to assess the possibility of obtaining systematic excess returns. Returns sum up to 400% of the daily interbank rate in Brazil (CDI), a rate viewed as risk-free.
    [Show full text]
  • Option Greeks Demystified
    Webinar Presentation Option Greeks Demystified Presented by Trading Strategy Desk 1 Fidelity Brokerage Services, Member NYSE, SIPC, 900 Salem Street, Smithfield, RI 02917. © 2016 FMR LLC. All rights reserved. 764207.1.0 Disclosures Options trading entails significant risk and is not appropriate for all investors. Certain complex options strategies carry additional risk. Before trading options, please read Characteristics and Risks of Standardized Options, and call 800-544- 5115 to be approved for options trading. Supporting documentation for any claims, if applicable, will be furnished upon request. Examples in this presentation do not include transaction costs (commissions, margin interest, fees) or tax implications, but they should be considered prior to entering into any transactions. The information in this presentation, including examples using actual securities and price data, is strictly for illustrative and educational purposes only and is not to be construed as an endorsement, recommendation. Active Trader Pro PlatformsSM is available to customers trading 36 times or more in a rolling 12-month period; customers who trade 120 times or more have access to Recognia anticipated events and Elliott Wave analysis. Greeks are mathematical calculations used to determine the effect of various factors on options. Goal of this webinar Demystify what Options Greeks are and explain how they are used in plain English. What we will cover: What the Greeks are What the Greeks tell us How the Greeks can help with planning option trades How the Greeks can help with managing option trades The Greeks What the Greeks are: • Delta • Gamma • Vega • Theta • Rho But what do they mean? Greeks What do they tell me? In simplest terms, Greeks give traders a theoretical way to judge their exposure to various options pricing inputs.
    [Show full text]
  • White Paper Volatility: Instruments and Strategies
    White Paper Volatility: Instruments and Strategies Clemens H. Glaffig Panathea Capital Partners GmbH & Co. KG, Freiburg, Germany July 30, 2019 This paper is for informational purposes only and is not intended to constitute an offer, advice, or recommendation in any way. Panathea assumes no responsibility for the content or completeness of the information contained in this document. Table of Contents 0. Introduction ......................................................................................................................................... 1 1. Ihe VIX Index .................................................................................................................................... 2 1.1 General Comments and Performance ......................................................................................... 2 What Does it mean to have a VIX of 20% .......................................................................... 2 A nerdy side note ................................................................................................................. 2 1.2 The Calculation of the VIX Index ............................................................................................. 4 1.3 Mathematical formalism: How to derive the VIX valuation formula ...................................... 5 1.4 VIX Futures .............................................................................................................................. 6 The Pricing of VIX Futures ................................................................................................
    [Show full text]
  • Straddles and Strangles to Help Manage Stock Events
    Webinar Presentation Using Straddles and Strangles to Help Manage Stock Events Presented by Trading Strategy Desk 1 Fidelity Brokerage Services LLC ("FBS"), Member NYSE, SIPC, 900 Salem Street, Smithfield, RI 02917 690099.3.0 Disclosures Options’ trading entails significant risk and is not appropriate for all investors. Certain complex options strategies carry additional risk. Before trading options, please read Characteristics and Risks of Standardized Options, and call 800-544- 5115 to be approved for options trading. Supporting documentation for any claims, if applicable, will be furnished upon request. Examples in this presentation do not include transaction costs (commissions, margin interest, fees) or tax implications, but they should be considered prior to entering into any transactions. The information in this presentation, including examples using actual securities and price data, is strictly for illustrative and educational purposes only and is not to be construed as an endorsement, or recommendation. 2 Disclosures (cont.) Greeks are mathematical calculations used to determine the effect of various factors on options. Active Trader Pro PlatformsSM is available to customers trading 36 times or more in a rolling 12-month period; customers who trade 120 times or more have access to Recognia anticipated events and Elliott Wave analysis. Technical analysis focuses on market action — specifically, volume and price. Technical analysis is only one approach to analyzing stocks. When considering which stocks to buy or sell, you should use the approach that you're most comfortable with. As with all your investments, you must make your own determination as to whether an investment in any particular security or securities is right for you based on your investment objectives, risk tolerance, and financial situation.
    [Show full text]
  • FINANCIAL RISK the GREEKS the Whole of This Presentation Is As A
    FINANCIAL RISK THE GREEKS The whole of this presentation is as a result of the collective efforts of both participants. MICHAEL AGYAPONG BOATENG Email: [email protected] MAVIS ASSIBEY-YEBOAH Email: [email protected] DECEMBER 1, 2011 Contents 1. INTRODUCTION 3 2. THE BLACK-SCHOLES MODEL 3 3. THE GREEKS 4 4. HIGHER-ORDER GREEKS 7 5. CONCLUSION 8 6. STUDY GUIDE 8 7. REFERENCES 8 2 1. INTRODUCTION The price of a single option or a position involving multiple options as the market changes is very difficult to predict. This results from the fact that price does not always move in correspondence with the price of the underlying asset. As such, it is of major interest to understand factors that contribute to the movement in price of an option, and what effect they have. Most option traders therefore turn to the Greeks which provide a means in measuring the sensitivity of an option price by quantifying the factors. The Greeks are so named because they are often denoted by Greek letters. The Greeks, as vital tools in risk management measures sensitivity of the value of the portfolio relative to a small change in a given underlying parameter. This treats accompanying risks in isolation to rebalance the portfolio accordingly so as to achieve a desirable exposure. In this project, the derivation and analysis of the Greeks will be based on the Black-Scholes model. This is because, they are easy to calculate, and are very useful for derivatives traders, especially those who seek to hedge their portfolios from adverse changes in market conditions.
    [Show full text]
  • Optimal Convergence Trade Strategies*
    Optimal Convergence Trade Strategies∗ Jun Liu† Allan Timmermann‡ UC San Diego and SAIF UC San Diego and CREATES October4,2012 Abstract Convergence trades exploit temporary mispricing by simultaneously buying relatively un- derpriced assets and selling short relatively overpriced assets. This paper studies optimal con- vergence trades under both recurring and non-recurring arbitrage opportunities represented by continuing and ‘stopped’ cointegrated price processes and considers both fixed and stochastic (Poisson) horizons. We demonstrate that conventional long-short delta neutral strategies are generally suboptimal and show that it can be optimal to simultaneously go long (or short) in two mispriced assets. We also find that the optimal portfolio holdings critically depend on whether the risky asset position is liquidated when prices converge. Our theoretical results are illustrated using parameters estimated on pairs of Chinese bank shares that are traded on both the Hong Kong and China stock exchanges. We find that the optimal convergence trade strategy can yield economically large gains compared to a delta neutral strategy. Key words: convergence trades; risky arbitrage; delta neutrality; optimal portfolio choice ∗The paper was previously circulated under the title Optimal Arbitrage Strategies. We thank the Editor, Pietro Veronesi, and an anonymous referee for detailed and constructive comments on the paper. We also thank Alberto Jurij Plazzi, Jun Pan, seminar participants at the CREATES workshop on Dynamic Asset Allocation, Blackrock, Shanghai Advanced Institute of Finance, and Remin University of China for helpful discussions and comments. Antonio Gargano provided excellent research assistance. Timmermann acknowledges support from CREATES, funded by the Danish National Research Foundation. †UCSD and Shanghai Advanced Institute of Finance (SAIF).
    [Show full text]
  • Finance II (Dirección Financiera II) Apuntes Del Material Docente
    Finance II (Dirección Financiera II) Apuntes del Material Docente Szabolcs István Blazsek-Ayala Table of contents Fixed-income securities 1 Derivatives 27 A note on traditional return and log return 78 Financial statements, financial ratios 80 Company valuation 100 Coca-Cola DCF valuation 135 Bond characteristics A bond is a security that is issued in FIXED-INCOME connection with a borrowing arrangement. SECURITIES The borrower issues (i.e. sells) a bond to the lender for some amount of cash. The arrangement obliges the issuer to make specified payments to the bondholder on specified dates. Bond characteristics Bond characteristics A typical bond obliges the issuer to make When the bond matures, the issuer repays semiannual payments of interest to the the debt by paying the bondholder the bondholder for the life of the bond. bond’s par value (or face value ). These are called coupon payments . The coupon rate of the bond serves to Most bonds have coupons that investors determine the interest payment: would clip off and present to claim the The annual payment is the coupon rate interest payment. times the bond’s par value. Bond characteristics Example The contract between the issuer and the A bond with par value EUR1000 and coupon bondholder contains: rate of 8%. 1. Coupon rate The bondholder is then entitled to a payment of 8% of EUR1000, or EUR80 per year, for the 2. Maturity date stated life of the bond, 30 years. 3. Par value The EUR80 payment typically comes in two semiannual installments of EUR40 each. At the end of the 30-year life of the bond, the issuer also pays the EUR1000 value to the bondholder.
    [Show full text]