Native Plant Species Common to Creeks

Total Page:16

File Type:pdf, Size:1020Kb

Native Plant Species Common to Creeks NATIVE PLANT SPECIES COMMON TO OAKLANDÕS CREEKS Plant at the Plant in the Plant at the Common Name Scientific Name Top of Bank Middle of Bank Bottom of Bank TREES Big Leaf Maple Acer macrophyllum ü ü California Buckeye Aesculus californica ü ü White Alder Alnus rhombifolia ü Red Alder Alnus oregana ü Oregon Ash Fraxinus latifolia ü Fremont Cottonwood Populus fremontii ü ü Coast Live Oak Quercus agrifolia ü Red Willow Salix laevigata ü Yellow Tree Willow Salix lasiandra ü Arroyo Willow Salix lasiolepis ü Coast Redwood Sequoia sempervirens ü ü ü California Bay Umbellularia californica ü ü City of Oakland PUBLIC WORKS AGENCY, ENVIRONMENTAL SERVICES DIVISION page 1 of 3 NATIVE PLANT SPECIES COMMON TO OAKLANDÕS CREEKS Plant at the Plant in the Plant at the Common Name Scientific Name Top of Bank Middle of Bank Bottom of Bank SHRUBS/ WOODY GROUNDCOVERS California Blackberry Rubus ursinus (vitifolius) ü California Coffeeberry Rhamnus californica ÔEve CaseÕ ü ü California Wild Rose Rosa californica ü Chain Fern Woodwardia fimbriata ü ü Common Snowberry Symphoricarpos rivularis ü Coyote Brush Baccharis pilularis ü Dogwood Cornus stolonifera ü ü Mule Fat Baccharis viminea ü ü Ninebark Physocarpus capitatus ü ü Poison Oak Toxicodendron diversilobum ü ü Sticky Monkey Flower Diplacus aurantiacus ü ü Toyon Heteromeles arbutifolia ü Western Swordfern Polystichum munitum ü ü City of Oakland PUBLIC WORKS AGENCY, ENVIRONMENTAL SERVICES DIVISION page 2 of 3 NATIVE PLANT SPECIES COMMON TO OAKLANDÕS CREEKS Plant at the Plant in the Plant at the Common Name Scientific Name Top of Bank Middle of Bank Bottom of Bank VINES Wild Grape Vitis californica ü HERBACEOUS GROUNDCOVERS California Poppy Eschscholzia californica ü ü Wild Iris Iris douglasiana Ôpacific coastÕ ü ü Alum Root Heuchera micrantha ÔpacificaÕ ü Western Bleeding Heart Dicentra formosa ü ü Redwood Sorrel Oxalis oregana ü ü Wild Ginger Asarum caudatum ü ü City of Oakland PUBLIC WORKS AGENCY, ENVIRONMENTAL SERVICES DIVISION page 3 of 3.
Recommended publications
  • Scientific Name Species Common Name Abies Lasiocarpa FIR Subalpine Acacia Macracantha ACACIA Long-Spine
    Scientific Name Species Common Name Abies lasiocarpa FIR Subalpine Acacia macracantha ACACIA Long-spine Acacia roemeriana CATCLAW Roemer Acer grandidentatum MAPLE Canyon Acer nigrum MAPLE Black Acer platanoides MAPLE Norway Acer saccharinum MAPLE Silver Aesculus pavia BUCKEYE Red Aesculus sylvatica BUCKEYE Painted Ailanthus altissima AILANTHUS Tree-of-heaven Albizia julibrissin SILKTREE Mimosa Albizia lebbek LEBBEK Lebbek Alnus iridis ssp. sinuata ALDER Sitka Alnus maritima ALDER Seaside Alvaradoa amorphoides ALVARADOA Mexican Amelanchier laevis SERVICEBERRY Allegheny Amyris balsamifera TORCHWOOD Balsam Annona squamosa SUGAR-APPLE NA Araucaria cunninghamii ARAUCARIA Cunningham Arctostaphylos glauca MANZANITA Bigberry Asimina obovata PAWPAW Bigflower Bourreria radula STRONGBACK Rough Brasiliopuntia brasiliensis PRICKLY-PEAR Brazilian Bursera simaruba GUMBO-LIMBO NA Caesalpinia pulcherrima FLOWERFENCE NA Capparis flexuosa CAPERTREE Limber CRUCIFIXION- Castela emoryi THORN NA Casuarina equisetifolia CASUARINA Horsetail Ceanothus arboreus CEANOTHUS Feltleaf Ceanothus spinosus CEANOTHUS Greenbark Celtis lindheimeri HACKBERRY Lindheimer Celtis occidentalis HACKBERRY Common Cephalanthus occidentalis BUTTONBUSH Common Cercis canadensis REDBUD Eastern Cercocarpus traskiae CERCOCARPUS Catalina Chrysophyllum oliviforme SATINLEAF NA Citharexylum berlandieri FIDDLEWOOD Berlandier Citrus aurantifolia LIME NA Citrus sinensis ORANGE Orange Coccoloba uvifera SEAGRAPE NA Colubrina arborescens COLUBRINA Coffee Colubrina cubensis COLUBRINA Cuba Condalia globosa
    [Show full text]
  • B. BIOLOGICAL RESOURCES the Parks in the Study Area Are Home to a Wide Range of Biological Habitats and Species
    L S A A S S O C I A T E S , I N C . E B R P D W I L D F I R E H A Z A R D R E D U C T I O N A N D R E S O U R C E M A N A G E M E N T P L A N E I R J U L Y 2 0 0 9 I V . S E T T I N G , I M P A C T S , A N D M I T I G A T I O N B . B I O L O G I C A L R E S O U R C E S B. BIOLOGICAL RESOURCES The parks in the Study Area are home to a wide range of biological habitats and species. This EIR section (1) describes the setting section for biological resources within the Study Area, (2) evaluates the potential impacts to biological resources related to implementation of the Wildfire Hazard Reduction and Resource Management Plan (the proposed project), and recommends appropriate mitigation measures where necessary. The reader should note that this section focuses on biological resources and conditions that are particularly relevant to the issue of wildfire hazard reduction. In the following developed shoreline parks, wildfire hazards are very low and fuel modification activities are not expected to be undertaken: Point Isabel; Middle Harbor Shoreline Park; Robert W. Crown Memorial State Beach; and Martin Luther King Jr. Regional Shoreline. Vegetation in these shoreline parks is confined to irrigated landscaping, coastal strand, or coastal salt marsh which do not provide highly combustible fuels nor would they be subject to wildfire conditions.
    [Show full text]
  • The Coastal Scrub and Chaparral Bird Conservation Plan
    The Coastal Scrub and Chaparral Bird Conservation Plan A Strategy for Protecting and Managing Coastal Scrub and Chaparral Habitats and Associated Birds in California A Project of California Partners in Flight and PRBO Conservation Science The Coastal Scrub and Chaparral Bird Conservation Plan A Strategy for Protecting and Managing Coastal Scrub and Chaparral Habitats and Associated Birds in California Version 2.0 2004 Conservation Plan Authors Grant Ballard, PRBO Conservation Science Mary K. Chase, PRBO Conservation Science Tom Gardali, PRBO Conservation Science Geoffrey R. Geupel, PRBO Conservation Science Tonya Haff, PRBO Conservation Science (Currently at Museum of Natural History Collections, Environmental Studies Dept., University of CA) Aaron Holmes, PRBO Conservation Science Diana Humple, PRBO Conservation Science John C. Lovio, Naval Facilities Engineering Command, U.S. Navy (Currently at TAIC, San Diego) Mike Lynes, PRBO Conservation Science (Currently at Hastings University) Sandy Scoggin, PRBO Conservation Science (Currently at San Francisco Bay Joint Venture) Christopher Solek, Cal Poly Ponoma (Currently at UC Berkeley) Diana Stralberg, PRBO Conservation Science Species Account Authors Completed Accounts Mountain Quail - Kirsten Winter, Cleveland National Forest. Greater Roadrunner - Pete Famolaro, Sweetwater Authority Water District. Coastal Cactus Wren - Laszlo Szijj and Chris Solek, Cal Poly Pomona. Wrentit - Geoff Geupel, Grant Ballard, and Mary K. Chase, PRBO Conservation Science. Gray Vireo - Kirsten Winter, Cleveland National Forest. Black-chinned Sparrow - Kirsten Winter, Cleveland National Forest. Costa's Hummingbird (coastal) - Kirsten Winter, Cleveland National Forest. Sage Sparrow - Barbara A. Carlson, UC-Riverside Reserve System, and Mary K. Chase. California Gnatcatcher - Patrick Mock, URS Consultants (San Diego). Accounts in Progress Rufous-crowned Sparrow - Scott Morrison, The Nature Conservancy (San Diego).
    [Show full text]
  • CDFG Natural Communities List
    Department of Fish and Game Biogeographic Data Branch The Vegetation Classification and Mapping Program List of California Terrestrial Natural Communities Recognized by The California Natural Diversity Database September 2003 Edition Introduction: This document supersedes all other lists of terrestrial natural communities developed by the Natural Diversity Database (CNDDB). It is based on the classification put forth in “A Manual of California Vegetation” (Sawyer and Keeler-Wolf 1995 and upcoming new edition). However, it is structured to be compatible with previous CNDDB lists (e.g., Holland 1986). For those familiar with the Holland numerical coding system you will see a general similarity in the upper levels of the hierarchy. You will also see a greater detail at the lower levels of the hierarchy. The numbering system has been modified to incorporate this richer detail. Decimal points have been added to separate major groupings and two additional digits have been added to encompass the finest hierarchal detail. One of the objectives of the Manual of California Vegetation (MCV) was to apply a uniform hierarchical structure to the State’s vegetation types. Quantifiable classification rules were established to define the major floristic groups, called alliances and associations in the National Vegetation Classification (Grossman et al. 1998). In this document, the alliance level is denoted in the center triplet of the coding system and the associations in the right hand pair of numbers to the left of the final decimal. The numbers of the alliance in the center triplet attempt to denote relationships in floristic similarity. For example, the Chamise-Eastwood Manzanita alliance (37.106.00) is more closely related to the Chamise- Cupleaf Ceanothus alliance (37.105.00) than it is to the Chaparral Whitethorn alliance (37.205.00).
    [Show full text]
  • Histopathology and Host Range Studies of the Redwood Nematode Rhizonema Sequoiae 1
    68 Journal of Nematology, Volume 16, No. 1, January 1984 Nova '76 all supported nematode repro- 2. Barat, H., M. Delsassus, and Huu-Hai-Vuong. duction. However, symptoms of nematode 1969. The geographical distribution of white tip dis- ease of rice in tropical Africa and Madagascar. In damage, under the greenhouse conditions Nematodes of tropical crops. Tech. Commun. Com- of this test, were apparent only on Melrose monu. Bureau Helminth. 40:269-273. and Nova '76 and were expressed as tat- 3. Hoff, B. J., M. C. Rush, W. O. McIllrath, M. tered leaf tips and unfilled grain. Ahmad, Z. Harahap, and T. Massajo. 1975. Rice disease nurseries. Pp. 142-180 in 67th Ann. Prog. Results of this study suggest that a ma- Rept. Rice Exp. Stn., Crowley, LA. jority of the rice cultivars presently grown 4. Huang, Y. P. 1959. White tip disease of rice in in Louisiana do not support white-tip nem- Taiwan. Plant Prot. Bull., Taiwan 1 (4): 1-4. atode reproduction. However, recovery of 5. Iyatomi, K., and T. Nishizawa. 1954. Artificial A. besseyi from 5% of the seed lots sampled, culture of the strawberry nematode, Aphelenehoides fragariae, and the rice white-tip nematode, Aphelen- some of which may have been exposed to choides besseyi. Jap. J. Appl. Zool. 19:8-15 (Jap.). the effects of Phostoxin, coupled with the 6. Kakuta, T. 1915. On black grain disease of rice. greenhouse data, especially with regard to J. Plant Prot., Tokyo 2:214-218 (Jap.). the cultivars Saturn, Melrose, and Nova 7. McGawley, E, C. 1980.
    [Show full text]
  • CHARACTERISTICS of CALIFORNIA ANNUAL GRASSLANDS VEGETATION SERIES on TSR
    CHARACTERISTICS OF CALIFORNIA ANNUAL GRASSLANDS VEGETATION SERIES on TSR DOMINANT SPECIES IN CALIFORNIA GRASSLAND SERIES Holcus Lanatus Velvet Grass Introduced Anthoxanthum odoratum Sweet Vernal Grass Introduced Briza Maxima Rattlesnake Grass Introduced Danthonia sp. Oat Grasses Native Deschampsia sp. Hair Grasses Native COMMONLY ASSOCIATED SPECIES by vegetation types TREES Rare, usually as isolated seedlings SHRUBS Isolated, transitioning Baccharis pilularis Coyote brush Rhamnus californica Coffee berry Lupinus arborescens Yellow or blue lupine Yellow Introduced HERBS AND GRASSES Eschscholzia californica California poppy, coastal (yellow petals) Iris douglasiana Douglas iris Sisyrinchium bellum Yellow-eyed grass Various genera Thistles Introduced CHARACTERISTICS OF PACIFIC REEDGRASS VEGETATION SERIES DOMINANT SPECIES IN PACIFIC REED GRASS SERIES Calimagrostis nutkaensis Pacific Reed Grass COMMONLY ASSOCIATED SPECIES listed by vegetation types TREES None SHRUBS Myrica californica Wax Myrtle Rosa sp Wild Rose HERBS AND GRASSES Rubus ursinus California blackberry Holcus Lanatus Velvet Grass Pteridium aquilinum Bracken Juncus and Carex sp Rushes and Sedgees Veratrum fimbriatum Corn Lily CHARACTERISTICS OF COYOTE BRUSH VEGETATION SERIES DOMINANT SPECIES Baccharis pilularis Coyote brush COMMONLY ASSOCIATED SPECIES listed by vegetation types TREES Occasional as emerging forest Pseutotsuga menziesii Douglas fir Pinus muricata Bishop Pine SHRUBS Rubus ursinus California blackberry Myrica californica Wax myrtle Toxicodendron diversiloba Poison
    [Show full text]
  • Persea Species Restoration in Laurel Wilt Epidemic Areas
    Persea Species Restoration in Laurel Wilt Epidemic Areas Photo: Chip Bates Photo: LeRoy Rodgers Melbourne, Florida Ambrosia beetles are typically harmless But, some are causing mass tree mortality Xyleborus glabratus – redbay ambrosia beetle Clonal symbiosis! Raffaelea lauricola - Ophiostomatales Lauraceae are dominant canopy species throughout the tropics • Over 3000 species so taxonomy is poorly understood • Important essential oils: repel insects, perfumes, spices, fragrant wood and www.mobot.org medicine • Agriculturally important: avocado and spices Non-native Lauraceae susceptibility to Raffaelea lauricola Cinnamomum pedunculatum (Japanese cinnamon) Lindera megaphylla 30 days PI (Asia) wilt some, then stop 20 days PI overall tolerant but not resistant Persea podadenia (Mexico) overall susceptible 30 days PI ~35 more species to test Known hosts in the USA Persea borbonia - Redbay Persea palustris – Swamp bay Persea humilis - Silkbay Persea americana - Avocado *Persea indica Cinnamomum camphora – Camphor tree AGprofessional.com Sassafras albidum - Sassafras *Umbellularia californica – California bay laurel Laurus nobilis – European bay laurel *Lindera benzoin - Northern spicebush en.wikipedia.org/ aLindera melissifolia - Pondberry wiki/Sassafras aLitsea aestivalis - Pondspice *Licaria triandra - Gulf licaria *Ocotea coriacea - Lancewood *Persea mexicana – Mexican redbay *artificial fungal inoculation a threatened or endangered Palamedes swallowtail (Papilio palamedes) Laurel Wilt Disease-Widespread and High Mortality Percent redbay
    [Show full text]
  • Conifer Communities of the Santa Cruz Mountains and Interpretive
    UNIVERSITY OF CALIFORNIA, SANTA CRUZ CALIFORNIA CONIFERS: CONIFER COMMUNITIES OF THE SANTA CRUZ MOUNTAINS AND INTERPRETIVE SIGNAGE FOR THE UCSC ARBORETUM AND BOTANIC GARDEN A senior internship project in partial satisfaction of the requirements for the degree of BACHELOR OF ARTS in ENVIRONMENTAL STUDIES by Erika Lougee December 2019 ADVISOR(S): Karen Holl, Environmental Studies; Brett Hall, UCSC Arboretum ABSTRACT: There are 52 species of conifers native to the state of California, 14 of which are endemic to the state, far more than any other state or region of its size. There are eight species of coniferous trees native to the Santa Cruz Mountains, but most people can only name a few. For my senior internship I made a set of ten interpretive signs to be installed in front of California native conifers at the UCSC Arboretum and wrote an associated paper describing the coniferous forests of the Santa Cruz Mountains. Signs were made using the Arboretum’s laser engraver and contain identification and collection information, habitat, associated species, where to see local stands, and a fun fact or two. While the physical signs remain a more accessible, kid-friendly format, the paper, which will be available on the Arboretum website, will be more scientific with more detailed information. The paper will summarize information on each of the eight conifers native to the Santa Cruz Mountains including localized range, ecology, associated species, and topics pertaining to the species in current literature. KEYWORDS: Santa Cruz, California native plants, plant communities, vegetation types, conifers, gymnosperms, environmental interpretation, UCSC Arboretum and Botanic Garden I claim the copyright to this document but give permission for the Environmental Studies department at UCSC to share it with the UCSC community.
    [Show full text]
  • Sanhedrin Chapter Newsletter Fall 2014
    California Native Plant Society - Sanhedrin Chapter Newsletter Fall 2014 Sanhedrin Chapter Fall Presentation - October 16th at 7 pm Ken Montgomery: Native Plant Gardening for the Drought Ukiah Garden Club House, 1203 W. Clay St. Ukiah Free and open to all Ken Montgomery is the longtime owner of the Anderson Valley Nursery in Boonville, specializing in California native plants. He is a delightful, enthusiastic and knowledgeable presenter. Ken brings a wealth of practical knowledge in all aspects of gardening, including native plants. He has spoken with other groups and has been instrumental in restoration work, including involving students in these projects. In this time of drought and lawns drying up, come find out how native plants can save on water use, be low maintenance and enhance our environment. Hedgerow uses will also be discussed. Fall Events Potter Valley Oak Restoration; Public Workshop, September 20 The workshop will highlight the protection and restoration of oaks in Potter Valley, a topic pertinent to all of Mendocino County. Interested residents, especially from Potter Valley, are cordially invited to this free event. Speakers will discuss the status of oaks in California and in Potter Valley followed by a fun and beautiful presentation about wildlife in the oaks, a story of incredible productivity and diversity. Park Steiner (463-4265) or Jackson Ford (463-4622) * Mendocino Co. DOT. Orr Creek Clean-up, Saturday, September 20 Love your rivers? The Russian and its many tributaries such as Orr Creek are in need of help. This is a good time to get involved in one of the many river clean-ups scheduled this fall.
    [Show full text]
  • Phylogeny and Historical Biogeography of Lauraceae
    PHYLOGENY Andre'S. Chanderbali,2'3Henk van der AND HISTORICAL Werff,3 and Susanne S. Renner3 BIOGEOGRAPHY OF LAURACEAE: EVIDENCE FROM THE CHLOROPLAST AND NUCLEAR GENOMES1 ABSTRACT Phylogenetic relationships among 122 species of Lauraceae representing 44 of the 55 currentlyrecognized genera are inferredfrom sequence variation in the chloroplast and nuclear genomes. The trnL-trnF,trnT-trnL, psbA-trnH, and rpll6 regions of cpDNA, and the 5' end of 26S rDNA resolved major lineages, while the ITS/5.8S region of rDNA resolved a large terminal lade. The phylogenetic estimate is used to assess morphology-based views of relationships and, with a temporal dimension added, to reconstructthe biogeographic historyof the family.Results suggest Lauraceae radiated when trans-Tethyeanmigration was relatively easy, and basal lineages are established on either Gondwanan or Laurasian terrains by the Late Cretaceous. Most genera with Gondwanan histories place in Cryptocaryeae, but a small group of South American genera, the Chlorocardium-Mezilauruls lade, represent a separate Gondwanan lineage. Caryodaphnopsis and Neocinnamomum may be the only extant representatives of the ancient Lauraceae flora docu- mented in Mid- to Late Cretaceous Laurasian strata. Remaining genera place in a terminal Perseeae-Laureae lade that radiated in Early Eocene Laurasia. Therein, non-cupulate genera associate as the Persea group, and cupuliferous genera sort to Laureae of most classifications or Cinnamomeae sensu Kostermans. Laureae are Laurasian relicts in Asia. The Persea group
    [Show full text]
  • Vegetation Mapping of Eastman and Hensley Lakes and Environs, Southern Sierra Nevada Foothills, California
    Vegetation Mapping of Eastman and Hensley Lakes and Environs, Southern Sierra Nevada Foothills, California By Sara Taylor, Daniel Hastings, Jaime Ratchford, Julie Evens, and Kendra Sikes of the 2707 K Street, Suite 1 Sacramento CA, 95816 2014 ACKNOWLEDGEMENTS To Those Who Generously Provided Support and Guidance: Many groups and individuals assisted us in completing this report and the supporting vegetation map/data. First, we expressly thank an anonymous donor who provided financial support in 2010 for this project’s fieldwork and mapping in the southern foothills of the Sierra Nevada. We also are thankful of the generous support from California Department of Fish and Wildlife (CDFW, previously Department of Fish and Game) in funding 2008 field survey work in the region. We are indebted to the following additional staff and volunteers of the California Native Plant Society who provided us with field surveying, mission planning, technical GIS, and other input to accomplish this project: Jennifer Buck, Andra Forney, Andrew Georgeades, Brett Hall, Betsy Harbert, Kate Huxster, Theresa Johnson, Claire Muerdter, Eric Peterson, Stu Richardson, Lisa Stelzner, and Aaron Wentzel. To Those Who Provided Land Access: Angela Bradley, Ranger, Eastman Lake, U.S. Army Corps of Engineers Bridget Fithian, Mariposa Program Manager, Sierra Foothill Conservancy Chuck Peck, Founder, Sierra Foothill Conservancy Diana Singleton, private landowner Diane Bohna, private landowner Duane Furman, private landowner Jeannette Tuitele-Lewis, Executive Director, Sierra Foothill Conservancy Kristen Boysen, Conservation Project Manager, Sierra Foothill Conservancy Park staff at Hensley Lake, U.S. Army Corps of Engineers i This page has been intentionally left blank. ii TABLE OF CONTENTS Section Page I.
    [Show full text]
  • Corridors, Corridors, Everywhere
    Plant Communities and Corridors Plants in Nature and Plants in Gardens What are native plants? What are endemic plants? Arctostaphylos mewukka Indian Manzanita, an example of endemism California Floristic Province Ecological Hotspot Criteria: • Over 1500 species of irreplaceable endemic vascular plants CA has over 2100 • Less than 30% of original vegetation CA has 24% • 35 hotspots in the world • Cover just 2.3% of Earth’s land surface • Support more than 50% of plant species • California is one of just 5 Mediterranean hotspots Geology and topography help determine what grows where: Soils from ocean sediment, uplift, glaciation, volcanoes… Plants evolved on varied substrates They’re evolving while we speak! Plants in nature don’t use fertilizer Organic matter: leaves, stems, animal manure, dead things… Soil biota: decomposers (fungi, bacteria) and ‘soil animals’ (protozoa, nematodes) Decomposition by microbes is extremely complex. They decompose and build new organic Nutrient exchanges compounds. Soil interacts with the compounds. Native plants drive ecosystems via evolutionary interdependencies Each member provides ecosystem services There are multiple nutrition strategies Plants tend to congregate in overlapping Plant Communities Examples: • Oak Woodland • Chaparral • Dry Perennial/Scrub • Grassland • Riparian * These are just the main plant communities around Placerville and Cameron Park Oak Woodland Community 5 main oak species (Blue, Valley, Interior, Canyon, and Black oak) Grey pine Toyon Mexican elderberry California bay California
    [Show full text]