White Pinecone Borer Moth Eucopina Tocullionana

Total Page:16

File Type:pdf, Size:1020Kb

White Pinecone Borer Moth Eucopina Tocullionana Tortricidae Eucopina tocullionana White Pinecone Borer Moth 10 9 8 n=0 • • 7 High Mt. 6 • N 5 • u 4 3 • m 2 • • • b 1 e 0 r 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 NC counties: 8 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec o 10 f 9 n=21 = Sighting or Collection 8 • 7 Low Mt. High counts of: in NC since 2001 F 6 l 5 3 - Madison - 2020-04-21 4 i 3 3 - Guilford - 2020-05-02 g 2 Status Rank h 1 2 - Madison - 2018-05-12 0 NC US NC Global t 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 D Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec a 10 10 9 9 t 8 n=8 8 n=0 e 7 Pd 7 CP s 6 6 5 5 4 4 3 3 2 2 1 1 0 0 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Three periods to each month: 1-10 / 11-20 / 21-31 FAMILY: Tortricidae SUBFAMILY: Olethreutinae TRIBE: Eucosmini TAXONOMIC_COMMENTS: FIELD GUIDE DESCRIPTIONS: Beadle and Leckie (2012) under <i>Eucosma tocullionana.</i> ONLINE PHOTOS: TECHNICAL DESCRIPTION, ADULTS: TECHNICAL DESCRIPTION, IMMATURE STAGES: de Groot, P. 1998. ID COMMENTS: The pale orange fascia in the median area is edged with silver. Also note the pale orange scales on the dorsum of the head. DISTRIBUTION: In North Carolina, <i>Pinus strobus</i> is largely restricted to the Blue Ridge and upper Piedmont, although scattered populations are known farther to the east. All of our records for <i>E. tocullionana</i> are within the general range of < i>P. strobus</i>. FLIGHT COMMENT: Adults in North Carolina have mostly been collected in late April through mid-May, during or shortly after pollen is shed. We have one record in July. This species is univoltine (de Groot, 1998). HABITAT: Eastern White Pine tolerates a wide range of site conditions and can be found in both mesic and dry forest communities. It is most frequent at low to mid-elevations in the mountains. FOOD: Although Eastern White Pine (<i>P. strobus</i>) is the primary host species, specimens have been collected outside of North Carolina from spruces (<i>Picea</i> spp.), Balsam Fir (<i>Abies balsamea</i>), Eastern Hemlock (<i>Tsuga canadensis</ i>) and Virginia Pine (<i>P. virginiana</i>). The use of these secondary hosts is questionable and might reflect misidentified specimens (de Groot, 1998). OBSERVATION_METHODS: Adults are active shortly after dark and come to lights. NATURAL HERITAGE PROGRAM RANKS: GNR [S3S5] STATE PROTECTION: Has no legal protection, although permits are required to collect it on state parks and other public lands. COMMENTS: Eastern White Pine reaches its southern limits in northern Georgia and populations of <i>E. tocullionana</i> in western North Carolina are near the southern limit of this species' range. The status of North Carolina populations is uncertain -- we have relatively few records for what should be a common species, at least based on its host plants. However, it appears to be fairly widely distributed in our Mountains and also present in the western Piedmont, indicating that it is unlikely to be limited by habitat. March 2021 The Moths of North Carolina - Early Draft 1.
Recommended publications
  • Lepidoptera of North America 5
    Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains,
    [Show full text]
  • An Annotated Checklist of the Lepidoptera of the Beaver Island Archipelago, Lake Michigan
    The Great Lakes Entomologist Volume 24 Number 2 - Summer 1991 Number 2 - Summer Article 5 1991 June 1991 An Annotated Checklist of the Lepidoptera of the Beaver Island Archipelago, Lake Michigan. Dennis Profant Central Michigan University Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Profant, Dennis 1991. "An Annotated Checklist of the Lepidoptera of the Beaver Island Archipelago, Lake Michigan.," The Great Lakes Entomologist, vol 24 (2) Available at: https://scholar.valpo.edu/tgle/vol24/iss2/5 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Profant: An Annotated Checklist of the Lepidoptera of the Beaver Island Ar 1991 THE GREAT LAKES ENTOMOLOGIST 85 AN ANNOTATED CHECKLIST OF THE LEPIDOPTERA OF THE BEAVER ISLAND ARCHIPELAGO, LAKE MICHIGAN. Dennis Profantl ABSTRACT A survey of Lepidoptera was conducted in 1987 and 1988 on Beaver Island, Lake Michigan. When combined with a 1930 survey of the Beaver Island Archipelago, 757 species from 41 families have now been recorded from these islands. Only one study has been published on the Lepidoptera of Beaver Island and the surrounding islands of Garden, High, Hog, Whiskey, Squaw, Trout, Gull, and Hat (Moore 1930). The present study has produced a more complete inventory of lepi­ dopteran species on Beaver Island. Collecting was done in a variety of habitats using several different light sources.
    [Show full text]
  • Pinus Strobus Lm Eastern White Pine Pinaceae Pine Family G
    Pinus strobus Lm Eastern White Pine Pinaceae Pine family G. W. Wendel and H. Clay Smith Eastern white pine (Pinus strobus), also called transpiration is between 430 and 710 mm (17 and 28 northern white pine, is one of the most valuable trees in), of which 56 to 68 percent occurs in the warm in eastern North America. Before the arrival of white season. There is a moisture surplus in all seasons. men, virgin stands contained an estimated 3.4 billion Average depth of frost penetration ranges from m3 (600 billion fbm) of lumber. By the late 1800’s about 25 cm (10 in) in the southern Appalachians to most of those vast stands had been logged. Because more than 178 cm (70 in) in parts of central and it is among the more rapid growing northern forest northern Minnesota. Average annual snowfall ranges conifers, it is an excellent tree for reforestation from 13 cm (5 in) in northern Georgia to more than projects, landscaping, and Christmas trees and has 254 cm (100 in) in New England and southern the distinction of having been one of the more widely Canada (51). planted American trees. Soils and Topography Habitat The major soil orders found in the white pine Native Range range are Inceptisols, Ultisols, Spodosols, Entisols, and Alfisols (14,50,66). In New England the impor- Eastern white pine (fig. 1) is found across southern tant subgroups are excessively drained or somewhat Canada from Newfoundland, Anticosti Island, and excessively drained sandy deposits or stratified sand Gasp6 peninsula of Quebec; west to central and and gravel deposits.
    [Show full text]
  • Sirex Science Advisory Panel Report January 9 & 10, 2006
    Sirex Science Advisory Panel Report January 9 & 10, 2006 Annapolis, MD 1 Members Robin Bedding – CSIRO Australia Dave Lance – USDA-APHIS-PPQ Angus Carnegie – NSW DPI, Australia Vic Mastro (chair) – USDA-APHIS-PPQ Peter de Groot, CFS Richard Reardon – USDA-FS Kevin Dodds – USDA-FS-FHP Don Rogers – NC Div. of Forest Resources Rene Germain - SUNY-ESF Nathan Schiff – USDA-FS Fred Hain – NC State Jim Tumlinson – Penn State Dennis Haugen – USDA-FS-FHP Dave Williams – USDA-APHIS-PPQ Edson T. Iede, Embrapa Florestas, Brazil 1 See Appendix 2 for C.V.s of SAP members Sirex Science Advisory Panel 10 January, 2006 Panel Recommendations to Sirex Management Team A Sirex noctilio female was found in a trap placed for exotic bark beetle in Fulton, NJ on September 7 of 2004 and identified in February of 2005. Since that time, through visual and trap-based surveys, an established population has been found in the area around Oswego and Fulton, NY. Trap catches indicate that the population may extend at least 46 miles southeast of Oswego. A total of 85 females were captured in NY. In addition, trap surveys in Canada, along the north shore of Lake Ontario and the St. Lawrence River, captured five additional females. One of these was captured as far east as the town of Prescott (Proviena). Sirex noctilio is native to EurAsian and only has become a primary pest of Pinus species when it was accidentally introduced into areas where pines are being commercially grown. It is now known to occur in New Zealand, Australia, South Africa, Brazil, Chili, and Argentina.
    [Show full text]
  • 10 Section 1 Eastern White Pine (Pinus
    SECTION 1 EASTERN WHITE PINE (PINUS STROBUS L.) 1. General Information This consensus document addresses the biology of Eastern White Pine (Pinus strobus L.), referred to hereafter simply as Eastern White Pine (pin blanc in French Canada). Eastern White Pine is one of the most valuable tree species in eastern North America where its easily machined, uniform-textured wood is unsurpassed for doors, windows, panelling, mouldings and cabinet work (Mullins and McKnight, 1981; Farrar, 1995). The species played a major role in the settlement and economic development of New England and the Atlantic Provinces as England reserved all large Eastern White Pine suitable for masts under the "Broad Arrow" policy, starting in the late 1600's (Johnson, 1986). Eastern White Pine also responds well to nursery culture and is commonly used for reforestation, urban forestry and Christmas tree plantations. The general biology of Eastern White Pine is described in the context of the species’ role in natural forests and its domestication in planted stands. Taxonomic and evolutionary relationships with other Pinus species are described. Reproductive biology is described with a focus on aspects of mating system, gene flow, seed production and natural stand establishment. The current knowledge of genetic variation within the species is reviewed, highlighting the importance of geographic variation patterns and the potential for improvement by means of recurrent selection breeding strategies. The tremendous biological diversity and the complexity of ecological interactions with higher and lower flora and fauna are discussed. While Eastern White Pine has been commonly planted within its natural range, the extent of reforestation has been limited by susceptibility to white pine weevil (Pissodes strobi) and blister rust (Cronartium ribicola).
    [Show full text]
  • Moths of the Kingston Study Area
    Moths of the Kingston Study Area Last updated 30 July 2015 by Mike Burrell This checklist contains the 783 species known to have occurred within the Kingston Study. Major data sources include KFN bioblitzes, an earlier version created by Gary Ure (2013) and the Queen’s University Biological Station list by Kit Muma (2008). For information about contributing your sightings or to download the latest version of this checklist, please visit: http://kingstonfieldnaturalists.org/moths/moths.html Contents Superfamily: Tineoidea .................................................................................................................................................... 5 Family: Tineidae ........................................................................................................................................................... 5 Subfamily: Tineinae .................................................................................................................................................. 5 Family: Psychidae ......................................................................................................................................................... 5 Subfamily: Psychinae ................................................................................................................................................ 5 Superfamily: Gracillarioidea ............................................................................................................................................. 5 Family: Gracillariidae ...................................................................................................................................................
    [Show full text]
  • A Preliminary List of the Leaf-Roller Moths (Lepidoptera: Tortricidae) of Virginia
    Banisteria, Number 38, pages 3-37 © 2011 Virginia Natural History Society A Preliminary List of the Leaf-roller Moths (Lepidoptera: Tortricidae) of Virginia Winnie H.Y. Lam Department of Biological Sciences CW 405 Biological Sciences Building University of Alberta Edmonton, Alberta, Canada T6G 2E9 (email: [email protected]) Jadranka Rota1 Department of Entomology National Museum of Natural History Smithsonian Institution Washington, DC 20013-7012, USA John W. Brown2 Systematic Entomology Laboratory U.S. Department of Agriculture, A.R.S. National Museum of Natural History P.O. Box 37012, MRC 168 Washington, DC 20013-7012, USA (email: [email protected]) ABSTRACT The microlepidopteran fauna of Virginia is poorly documented. We present an annotated checklist of 301 species of leaf-roller moths (Lepidoptera: Tortricidae) recorded from the state based on the examination of 4,207 pinned specimens deposited in institutional or university collections; the specimen database from the Essig Museum of Entomology, University of California, Berkeley (122 specimen records); and literature records. County distribution, capture dates, and host plants are presented for each species. The geographic coverage of the material examined is highly uneven, with most specimens (60%) from Fairfax County (200 species). The poor state of knowledge of the Virginia tortricid fauna is demonstrated by the lack of records for nearly one-fifth of all counties and large independent cities. Much more collecting by both amateur and professional lepidopterists, as well as a review of additional existing collections, is needed before a general understanding of the geographic and temporal distribution of Virginia’s tortricid fauna will begin to emerge.
    [Show full text]
  • Effects of White-Nose Syndrome on Bat Diets and Interspecific Competition
    Effects of White-Nose Syndrome on Bat Diets and Interspecific Competition By Derek Morningstar A Thesis presented to the University of Guelph In partial fulfilment of requirements for the degree of Masters of Science in Integrative Biology Guelph, Ontario, Canada © Derek Morningstar, January, 2017 ABSTRACT Effects of White-Nose Syndrome on Bat Diets and Interspecific Competition Derek Morningstar Advisor: University of Guelph, 2016 John Fryxell, Brock Fenton Competition is commonly invoked to explain variation in abundance, activity patterns, and resource use, but is difficult to detect in nature. Introduction of white-nose syndrome (WNS) in bats provides a natural experiment to test the impact of interspecific competition on bat communities. Acoustic monitoring at locations in Southern Ontario showed an increase in activity of Big Brown Bats (Eptesicus fuscus) and corresponding decline in the activity of Little Brown Myotis (Myotis lucifugus), following the introduction of WNS. Next generation sequencing of bat stomachs and guano in Southern Ontario before and after WNS allowed for the characterization of diet changes of these species. As a function of competitive release, E. fuscus consumed a wider breadth of prey and many of the insect species once consumed by M. lucifugus, including several pest insects. These results suggest that interspecific competition has a detectable effect on bat communities in Southern Ontario. ACKNOWLEDGEMENTS This work could not have been completed without the contributions, support and assistance from so many individuals. Most importantly, I would like to thank my family, especially my wife Vicky, my kids Owen and Mya and my parents Dave and Carol for tolerating my continued passion for research and my need to work on a “bat’s schedule” with a “bat’s stamina”.
    [Show full text]
  • PINUS STROBUS L
    Unclassified ENV/JM/MONO(2002)3 Organisation de Coopération et de Développement Economiques Organisation for Economic Co-operation and Development 08-Jan-2002 ___________________________________________________________________________________________ English - Or. English ENVIRONMENT DIRECTORATE Unclassified ENV/JM/MONO(2002)3 JOINT MEETING OF THE CHEMICALS COMMITTEE AND THE WORKING PARTY ON CHEMICALS, PESTICIDES AND BIOTECHNOLOGY Series on Harmonization of Regulatory Oversight in Biotechnology, No.22 CONSENSUS DOCUMENT ON THE BIOLOGY OF PINUS STROBUS l. (EASTERN WHITE PINE) English - Or. English JT00119080 Document complet disponible sur OLIS dans son format d’origine Complete document available on OLIS in its original format ENV/JM/MONO(2002)3 Also published in the Series on Harmonization of Regulatory Oversight in Biotechnology: No. 1, Commercialisation of Agricultural Products Derived through Modern Biotechnology: Survey Results (1995) No. 2, Analysis of Information Elements Used in the Assessment of Certain Products of Modern Biotechnology (1995) No. 3, Report of the OECD Workshop on the Commercialisation of Agricultural Products Derived through Modern Biotechnology (1995) No. 4, Industrial Products of Modern Biotechnology Intended for Release to the Environment: The Proceedings of the Fribourg Workshop (1996) No. 5, Consensus Document on General Information concerning the Biosafety of Crop Plants Made Virus Resistant through Coat Protein Gene-Mediated Protection (1996) No. 6, Consensus Document on Information Used in the Assessment of Environmental Applications Involving Pseudomonas (1997) No. 7, Consensus Document on the Biology of Brassica napus L. (Oilseed Rape) (1997) No. 8, Consensus Document on the Biology of Solanum tuberosum subsp. tuberosum (Potato) (1997) No. 9, Consensus Document on the Biology of Triticum aestivum (Bread Wheat) (1999) No.
    [Show full text]
  • Insect Fauna Associated with Eastern Hemlock, Tsuga Canadensis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Tennessee, Knoxville: Trace University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2004 Insect Fauna Associated with Eastern Hemlock, Tsuga canadensis (L.), in the Great Smoky Mountains National Park Stanley Earl Buck III University of Tennessee - Knoxville Recommended Citation Buck, Stanley Earl III, "Insect Fauna Associated with Eastern Hemlock, Tsuga canadensis (L.), in the Great Smoky Mountains National Park. " Master's Thesis, University of Tennessee, 2004. https://trace.tennessee.edu/utk_gradthes/1877 This Thesis is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Stanley Earl Buck III entitled "Insect Fauna Associated with Eastern Hemlock, Tsuga canadensis (L.), in the Great Smoky Mountains National Park." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Entomology and Plant Pathology. Paris Lambdin, Major Professor We have read this thesis and recommend its acceptance: Jerome Grant, John Skinner,
    [Show full text]
  • Interactions Among Moths, Crossbills, Squirrels, and Lodgepole Pine in a Geographic Selection Mosaic
    Evolution, 58(1), 2004, pp. 95±101 INTERACTIONS AMONG MOTHS, CROSSBILLS, SQUIRRELS, AND LODGEPOLE PINE IN A GEOGRAPHIC SELECTION MOSAIC ADAM M. SIEPIELSKI1 AND CRAIG W. BENKMAN1,2 1Department of Biology, MSC 3AF, New Mexico State University, Las Cruces, New Mexico 88003-8001 2E-mail: [email protected] Abstract. Repeated patterns among biological communities suggest similar evolutionary and ecological forces are acting on the communities. Conversely, the lack of such patterns suggests that similar forces are absent or additional ones are present. Coevolution between a seed predator, the red crossbill (Loxia curvirostra complex), and lodgepole pine (Pinus contorta var. latifolia) exempli®es the ecological and evolutionary predictions for coevolving systems. In the absence of another seed predator and preemptive competitor (pine squirrels Tamiasciurus hudsonicus), natural selection by crossbills results in the evolution of larger cones with thicker distal scales, while relaxation of selection by squirrels results in the evolution of cones with more seeds and a greater ratio of seed mass to cone mass. However, in one range, the Little Rocky Mountains, distal scale thickness has diverged as expected but cone size has not. In these mountains seed predation by lodgepole pine cone borer moths (Eucosma recissoriana) was about 10 times greater than in other ranges lacking squirrels. We quanti®ed moth predation and cone traits and found that moths select for smaller cones with fewer seeds. Thus, selection by moths in the Little Rocky Mountains counters both selection by crossbills for large cone size and relaxation of selection by squirrels favoring more seeds per cone and accounts for the relatively small and few-seeded cones in these mountains.
    [Show full text]
  • Tortricidae) William E
    ÀaSVfttv # United States Department of Agriculture Guide to the Forest Service Olethreutine IVIoths of Agriculture Handbook 660 Midland North a-? America (Tortricidae) William E. Miller mLJ^ -o r mmm^ f o. ' ' i ' c . •■« ,, :-i) C --aQ3 ^Jl:> CO BQ^25^ United States Department of Agriculture Forest Service Agriculture Handbook 660 Guide to the Olethreutine Moths of Midland North America (Tortricidae) William E. Miller Formerly, Chief Insect Ecologist US. Department of Agriculture, Forest Service North Central Forest Experiment Station St. Paul, MN Currently, Adjunct Professor Department of Entomology University of Minnesota — St. Paul July 1987 To three pioneering tortricidologists: James Brackenridge Clemens, 18297-1867 Thomas de Grey Walsingham, Sixth Earl, 1843-1919 Carl Heinrich, 1880-1955 Contents Page Introduction 1 Vegetation of the Region 3 Subfamily Olethreutinae: Definition and Diagnosis 4 Structural Characters 5 Both Sexes 5 Male 6 Female "^ Generic Diagnosis 8 Keys to Genera 9 Males 9 Females 11 Species Diagnosis 13 Systematics 14 Tribe Olethreutini 14 Genus Episimus 14 Genus Bactra 14 Genus Endopiza 15 Genus Lobesia 1'^ Genus Endothenia 1'^ Genus Aterpia 19 Genus Eumarozia 19 Genus Zomaria 20 Genus Apotomis 21 Genus Pseudosciaphila 22 Genus Orthotaenia 23 Genus Phaecasiophora 24 Genus Olethreutes 25 Genus Hedya 35 Genus Evora ^'^ Tribe Eucosmini ^'^ Genus Rhyacionia 37 Genus Retinia ^9 Genus Barbara 40 Genus Spilonota 41 Genus Phaneta 41 Genus Eucosma 48 Genus Pelochrista ^4 Genus Epiblema ^^ Genus Notocelia "^ Genus Suleima
    [Show full text]