Pinus Strobus Lm Eastern White Pine Pinaceae Pine Family G
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effectiveness of Pheromone Mating Disruption for the Ponderosa
AN ABSTRACT OF THE THESIS OF Christine G. Niwa for the degree of Doctor of Philosophy in Entomologypresented on October 24, 1988 Title: Effectiveness of Pheromone Mating Disruption for the Ponderosa Pine Tip Moth, Rhyacionia zozana (Kearfott) (Lepidoptera: Tortricidae), and its Influence on the Associated Parasite Complex Abstract approved: Redacted for Privacy ____(Garyy,w;Aterman Redacted for Privacy Tim DSchowalter The importance of pheromones in insect control relies both on their ability to reduce pest populations and on their relatively benign effects on nontarget organisms.This study was conducted to test the effectiveness of a pheromone application for mating disruption of the ponderosa pine tip moth, Rhyacionia zozana (Kearfott), and to determine if this treatment had any affect on the abundance or structure of the associated parasite complex. Chemical analyses, electroantennograms, and field bioassays showed that the most abundant pheromone component for R. zozana was E-9-dodecenyl acetate with a lesser amount of E-9-dodecenol also present. Acetate/alcohol ratios averaged 70:30 in gland washes; male moths were most attracted to sticky traps with synthetic baits containing ratios ranging from 70:30 to 95:5. Sixteen hymenopteran and one dipteran species of parasites were recovered from R. zozana larvae and pupae collected in Calif. and Oreg. Total percentage parasitism was high, averaging 47.2%. The ichneumonid, Glypta zozanae Walley and Barron, was the most abundant parasite, attacking over 30% of the hosts collected. Mastrus aciculatus (Provancher) was second in abundance, accounting for less than 4% parasitism. Hercon laminated-tape dispensers containing synthetic sex pheromone (a 95:5 mixture of E-9-dodecenyl acetate and E-9-dodecenol) were manually applied on 57 ha of ponderosa pine plantations in southern Oreg. -
Cinara Cupressivora W Atson & Voegtlin, 1999 Other Scientific Names: Order and Family: Hemiptera: Aphididae Common Names: Giant Cypress Aphid; Cypress Aphid
O R E ST E ST PE C IE S R O FIL E F P S P November 2007 Cinara cupressivora W atson & Voegtlin, 1999 Other scientific names: Order and Family: Hemiptera: Aphididae Common names: giant cypress aphid; cypress aphid Cinara cupressivora is a significant pest of Cupressaceae species and has caused serious damage to naturally regenerating and planted forests in Africa, Europe, Latin America and the Caribbean and the Near East. It is believed to have originated on Cupressus sempervirens from eastern Greece to just south of the Caspian Sea (Watson et al., 1999). This pest has been recognized as a separate species for only a short time (Watson et al., 1999) and much of the information on its biology and ecology has been reported under the name Cinara cupressi. Cypress aphids (Photos: Bugwood.org – W .M . Ciesla, Forest Health M anagement International (left, centre); J.D. W ard, USDA Forest Service (right)) DISTRIBUTION Native: eastern Greece to just south of the Caspian Sea Introduced: Africa: Burundi (1988), Democratic Republic of Congo, Ethiopia (2004), Kenya (1990), Malawi (1986), Mauritius (1999), Morocco, Rwanda (1989), South Africa (1993), Uganda (1989), United Republic of Tanzania (1988), Zambia (1985), Zimbabwe (1989) Europe: France, Italy, Spain, United Kingdom Latin America and Caribbean: Chile (2003), Colombia Near East: Jordan, Syria, Turkey, Yemen IDENTIFICATION Giant conifer aphid adults are typically 2-5 mm in length, dark brown in colour with long legs (Ciesla, 2003a). Their bodies are sometimes covered with a powdery wax. They typically occur in colonies of 20-80 adults and nymphs on the branches of host trees (Ciesla, 1991). -
Scientific Name Species Common Name Abies Lasiocarpa FIR Subalpine Acacia Macracantha ACACIA Long-Spine
Scientific Name Species Common Name Abies lasiocarpa FIR Subalpine Acacia macracantha ACACIA Long-spine Acacia roemeriana CATCLAW Roemer Acer grandidentatum MAPLE Canyon Acer nigrum MAPLE Black Acer platanoides MAPLE Norway Acer saccharinum MAPLE Silver Aesculus pavia BUCKEYE Red Aesculus sylvatica BUCKEYE Painted Ailanthus altissima AILANTHUS Tree-of-heaven Albizia julibrissin SILKTREE Mimosa Albizia lebbek LEBBEK Lebbek Alnus iridis ssp. sinuata ALDER Sitka Alnus maritima ALDER Seaside Alvaradoa amorphoides ALVARADOA Mexican Amelanchier laevis SERVICEBERRY Allegheny Amyris balsamifera TORCHWOOD Balsam Annona squamosa SUGAR-APPLE NA Araucaria cunninghamii ARAUCARIA Cunningham Arctostaphylos glauca MANZANITA Bigberry Asimina obovata PAWPAW Bigflower Bourreria radula STRONGBACK Rough Brasiliopuntia brasiliensis PRICKLY-PEAR Brazilian Bursera simaruba GUMBO-LIMBO NA Caesalpinia pulcherrima FLOWERFENCE NA Capparis flexuosa CAPERTREE Limber CRUCIFIXION- Castela emoryi THORN NA Casuarina equisetifolia CASUARINA Horsetail Ceanothus arboreus CEANOTHUS Feltleaf Ceanothus spinosus CEANOTHUS Greenbark Celtis lindheimeri HACKBERRY Lindheimer Celtis occidentalis HACKBERRY Common Cephalanthus occidentalis BUTTONBUSH Common Cercis canadensis REDBUD Eastern Cercocarpus traskiae CERCOCARPUS Catalina Chrysophyllum oliviforme SATINLEAF NA Citharexylum berlandieri FIDDLEWOOD Berlandier Citrus aurantifolia LIME NA Citrus sinensis ORANGE Orange Coccoloba uvifera SEAGRAPE NA Colubrina arborescens COLUBRINA Coffee Colubrina cubensis COLUBRINA Cuba Condalia globosa -
Lepidoptera of North America 5
Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains, -
Cinara Cupressivora
62 Global review of forest pests and diseases Cinara cupressivora Order and Family: Hemiptera: Aphididae Common names: giant cypress aphid; cypress aphid Cinara cupressivora Watson & Voegtlin, 1999 is a significant pest of Cupressaceae species and has caused serious damage to naturally regenerated and planted forests in Africa, Europe, Latin America and the Caribbean and the Near East. It is believed to have originated on Cupressus sempervirens from eastern Greece to just south of the Caspian Sea (Watson et al., 1999). This pest has been recognized as a separate species for only a short time (Watson et al., 1999) and much of the information on its biology and ecology has been reported under the name Cinara cupressi. BUGWOOD.ORG/W.M. CIESLA/3948001 BUGWOOD.ORG/W.M. CIESLA/3948002 BUGWOOD.ORG/W.M. BUGWOOD.ORG/J.D. WARD/2912011 Cypress aphids DISTRIBUTION Native: Europe and the Near East: eastern Greece to Islamic Republic of Iran Introduced: Africa: Burundi (1988), Democratic Republic of Congo, Ethiopia (2004), Kenya (1990), Malawi (1986), Mauritius (1999), Morocco, Rwanda (1989), South Africa (1993), Uganda (1989), United Republic of Tanzania (1988), Zambia (1985), Zimbabwe (1989) Europe: France, Italy, Spain, United Kingdom Latin America and Caribbean: Chile (2003), Colombia Near East: Jordan, the Syrian Arab Republic, Turkey, Yemen IDENTIFICATION Giant conifer aphid adults are typically 2 to 5 mm in length, dark brown in colour with long legs (Ciesla, 2003a). Their bodies are sometimes covered with a powdery wax. They typically occur in colonies of 20 to 80 adults and nymphs on the branches of host trees (Ciesla, 1991). -
Home, Yard Garden Pest
UNIVERSITY OF ILLINOIS EXTENSION HOME, Yard Garden Pest College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign &Illinois Natural History Survey, Champaign NEWSLETTER No. 14 • August 6, 2008 Cedar–Quince Rust Affects Hawthorn Each spring we discuss cedar–apple and related rusts. In PLANT DISEASES________ the landscape, we are especially concerned with control- Diplodia of Pine Prevalent ling cedar–quince rust on hawthorn (issue no. 3, 2008) Diplodia tip blight is prevalent in much of Illinois this because it causes stem cankers and fruit infection. The summer. Take a look around your town, and you likely cankers cause stem tips to die. The fruit infection is at- will see many pines with brown needles at the tips of tractive only to a plant pathologist. Repeated rain events branches. Entire needles are brown, not just tips of nee- this spring allowed repeated waves of spore movement dles as might occur with scorch, salt injury, or transplant and germination from the alternate host (junipers) to shock. Look more closely at the needles, and you may the susceptible hawthorns. Secondary spread is by myce- see fungal fruiting bodies. They are often most prevalent lia only, and that growth is very limited. In many cases, at the base of needles. If fruiting bodies are not visible, hawthorn fruits have been covered with the aecial fruit- place the needles in a plastic bag with some moist (not ing bodies of this fungus. You can see the aecial spores dripping wet) paper toweling; blow some air into the which have washed or blown onto the foliage. -
Section 2. Jack Pine (Pinus Banksiana)
SECTION 2. JACK PINE - 57 Section 2. Jack pine (Pinus banksiana) 1. Taxonomy and use 1.1. Taxonomy The largest genus in the family Pinaceae, Pinus L., which consists of about 110 pine species, occurs naturally through much of the Northern Hemisphere, from the far north to the cooler montane tropics (Peterson, 1980; Richardson, 1998). Two subgenera are usually recognised: hard pines (generally with much resin, wood close-grained, sheath of a leaf fascicle persistent, two fibrovascular bundles per needle — the diploxylon pines); and soft, or white pines (generally little resin, wood coarse-grained, sheath sheds early, one fibrovascular bundle in a needle — the haploxylon pines). These subgenera are called respectively subg. Pinus and subg. Strobus (Little and Critchfield, 1969; Price et al., 1998). Occasionally, one to about half the species (20 spp.) in subg. Strobus are classified instead in a variable subg. Ducampopinus. Jack pine (Pinus banksiana Lamb.) and its close relative lodgepole pine (Pinus contorta Dougl. Ex Loud.) are in subg. Pinus, subsection Contortae, which is classified either in section Trifoliis or a larger section Pinus (Little and Critchfield, 1969; Price et al., 1998). Additionally, subsect. Contortae usually includes Virginia pine (P. virginiana) and sand pine (P. clausa), which are in southeastern USA. Jack pine has two quite short (2-5 cm) stiff needles per fascicle (cluster) and lopsided (asymmetric) cones that curve toward the branch tip, and the cone scales often have a tiny prickle at each tip (Kral, 1993). Non-taxonomic ecological or biological variants of jack pine have been described, including dwarf, pendulous, and prostrate forms, having variegated needle colouration, and with unusual branching habits (Rudolph and Yeatman, 1982). -
Canopy Arthropod Community Structure and Herbivory in Old-Growth and Regenerating Forests in Western Oregon
318 Canopy arthropod community structure and herbivory in old-growth and regenerating forests in western Oregon T. D. SCHOWALTER Department of Entomology, Oregon State University, Corvallis, OR 97331-2907, UtS.A. Received June 30, 1988 Accepted October 19, 1988 SCHOWALTER, T. D. 1989. Canopy arthropod community structure and herbivory in old-growth and regenerating forests in western Oregon. Can. J. For. Res. 19: 318-322. This paper describes differences in canopy arthropod community structure and herbivory between old-growth and regenerating coniferous forests at the H. 3. Andrews Experimental Forest in western Oregon. Species diversity and functional diversity were much higher in canopies of old-growth trees compared with those of young trees. Aphid bio- mass in young stands was elevated an order of magnitude over biomass in old-growth stands. This study indicated a shift in the defoliator/sap-sucker ratio resulting from forest conversion, as have earlier studies at Coweeta Hydrologic Laboratory, North Carolina. These data indicated that the taxonomically distinct western coniferous and eastern deciduous forests show similar trends in functional organization of their canopy arthropod communities. SCHOWALTER, T. D. 1989. Canopy arthropod community structure and herbivory in old-growth and regenerating forests in western Oregon. Can. J. For. Res. 19 : 318-322. Cet article expose les differences observees dans la structure communautaire des arthropodes du couvert foliace et des herbivores entre des forets de coniferes de premiere venue et en regeneration a la Foret experimentale H. J. Andrews dans louest de lOregon. La diversit y des especes ainsi que la diversit y fonctionnelle etaient beaucoup plus grandes dans les couverts foliaces des vieux arbres que dans ceux des jeunes arbres. -
Dry White Pine (Hemlock) Oak Forest
Dry white pine (hemlock) oak forest This community type occurs on fairly dry sites, often with 25% or more of the forest floor covered by rocks, boulders and/or exposed bedrock. The canopy may be somewhat open and tree growth somewhat suppressed. The tree stratum is dominated by a mixture of Pinus strobus (eastern white pine), or occasionally Tsuga canadensis (eastern hemlock), and a mixture of dry-site hardwoods, predominantly oaks. On most sites, the conifer and the hardwood component both range between 25% and 75% of the canopy. The oak species most often associated with this type are Quercus montana (chestnut oak), and Q. alba (white oak), although Q. velutina (black oak), Q. coccinea (scarlet oak), or Q. rubra (northern red oak) may also occur. Other associated trees include Nyssa sylvatica (black-gum), Betula lenta (sweet birch), Fraxinus americana (white ash), Prunus serotina (wild black cherry), and Castanea dentata (American chestnut) sprouts. There is often a heath-dominated shrub layer with Kalmia latifolia (mountain laurel) being especially important; Gaylussacia baccata (black huckleberry), Vaccinium spp. (blueberries), and Kalmia angustifolia (sheep laurel) are also common. Other shrubs, like Cornus florida (flowering dogwood), Hamamelis virginiana (witch-hazel), Viburnum acerifolium (maple-leaved viburnum) may also occur on less acidic sites. There is typically a sparse herbaceous layer with a northern affinity; Aralia nudicaulis (wild sarsaparilla), Pteridium aquilinum (bracken fern), Maianthemum canadense (Canada mayflower), Gaultheria procumbens (teaberry), Trientalis borealis (star-flower), and Medeola virginiana (Indian cumber-root) are typical. The successional status of this type seems variable, in some cases, especially on harsher sites, it appears relatively stable, in other cases it appears to be transitional. -
Specializing in Rare and Unique Trees 2015 Catalogue
Whistling Gardens 698 Concession 3, Wilsonville, ON N0E 1Z0 Phone- 519-443-5773 Fax- 519-443-4141 Specializing in Rare and Unique Trees 2015 Catalogue Pot sizes: The number represents the size of the pot ie. #1= 1 gallon, #10 = 10 gallon #1 potted conifers are usually 3-5years old. #10 potted conifers dwarf conifers are between 10 and 15 years old #1 trees= usually seedlings #10 trees= can be several years old anywhere from 5 to 10' tall depending on species and variety. Please ask us on sizes and varieties you are not sure about. Many plants are limited to 1specimen. To reserve your plant(s) a 25% is required. Plants should be picked up by June 15th. Most plants arrive at the gardens by May 10th. Guarantee: We cannot control the weather (good or bad), rodents (big or small), pests (teenie, tiny), poor siting, soil types, lawnmovers, snowplows etc. Plants we carry are expected to grow within the parameters of normal weather conditons. All woody plant purchases are guaranteed from time of purchase to December 1st of current year Any plant not performing or dying in current season will be happily replaced or credited towards a new plant. Please email us if possible with any info needed about our plants. We do not have a phone in the garden centre and I'm rarely in the office. It is very helpful to copy and paste the botanical name of the plant into your Google browser, in most cases, a d Order Item Size Price Description of Pot European White Fir Zone 5 Abies alba Barabit's Spreader 25-30cm #3 $100.00 Abies alba Barabit's Spreader 40cm -
Pheromone-Based Disruption of Eucosma Sonomana and Rhyacionia Zozana (Lepidoptera: Tortricidae) Using Aerially Applied Microencapsulated Pheromone1
361 Pheromone-based disruption of Eucosma sonomana and Rhyacionia zozana (Lepidoptera: Tortricidae) using aerially applied microencapsulated pheromone1 Nancy E. Gillette, John D. Stein, Donald R. Owen, Jeffrey N. Webster, and Sylvia R. Mori Abstract: Two aerial applications of microencapsulated pheromone were conducted on five 20.2 ha plots to disrupt western pine shoot borer (Eucosma sonomana Kearfott) and ponderosa pine tip moth (Rhyacionia zozana (Kearfott); Lepidoptera: Tortricidae) orientation to pheromones and oviposition in ponderosa pine plantations in 2002 and 2004. The first application was made at 29.6 g active ingredient (AI)/ha, and the second at 59.3 g AI/ha. Baited sentinel traps were used to assess disruption of orientation by both moth species toward pheromones, and E. sonomana infes- tation levels were tallied from 2001 to 2004. Treatments disrupted orientation by both species for several weeks, with the first lasting 35 days and the second for 75 days. Both applications reduced infestation by E. sonomana,but the lower application rate provided greater absolute reduction, perhaps because prior infestation levels were higher in 2002 than in 2004. Infestations in treated plots were reduced by two-thirds in both years, suggesting that while increas- ing the application rate may prolong disruption, it may not provide greater proportional efficacy in terms of tree pro- tection. The incidence of infestations even in plots with complete disruption suggests that treatments missed some early emerging females or that mated females immigrated into treated plots; thus operational testing should be timed earlier in the season and should comprise much larger plots. In both years, moths emerged earlier than reported pre- viously, indicating that disruption programs should account for warmer climates in timing of applications. -
Supplementary Materials Neodiprion Sawflies
Supplementary Materials Neodiprion sawflies: life history description and utility as a model for parent-offspring conflict To provide context for our comparative analysis of Neodiprion clutch-size traits, we provide relevant life history details (reviewed in Coppel and Benjamin 1965; Knerer and Atwood 1973; Wilson et al. 1992; Knerer 1993). Adult females emerge from cocoons with a full complement of mature eggs, find a suitable host, and attract males via a powerful pheromone. Shortly after mating, females use their saw-like ovipositors to embed their eggs within pine needles. While females of some species tend to lay their full complement of eggs on a single branch terminus, females of other species seek out multiple branches or trees for oviposition. Overall, female oviposition behavior is highly species-specific and, in some cases, diagnostic (Ghent 1959). Adult Neodiprion are non-feeding and short-lived (~2-4 days), dying soon after mating and oviposition. After hatching from eggs, Neodiprion larvae of many species form feeding aggregations that remain intact to varying degrees across 4-7 feeding instars, depending on the sex and the species. As larvae defoliate pine branches, they migrate to new branches and sometimes to new host trees (Benjamin 1955, Smirnoff 1960). During these migrations, colonies may undergo fission and fusion events (Codella and Raffa 1993, Codella and Raffa 1995, Costa and Loque 2001). Thus, while initial colony size corresponds closely to egg-clutch size, larvae are highly mobile and their dispersal behavior has the potential to substantially alter colony size (Codella and Raffa 1995). Beyond having a variable and well-documented natural history, Neodiprion provides an excellent test case for examining coevolution of female egg-laying and larval grouping behaviors because, as is likely the case for many insects, feeding in groups could confer both costs and benefits to the larvae (Codella and Raffa 1995, Heitland and Pschorn-Walcher 1993).