HYPERSEEING the Publication of the International Society of the Arts, Mathematics, and Architecture MAR-APR 2008

Total Page:16

File Type:pdf, Size:1020Kb

HYPERSEEING the Publication of the International Society of the Arts, Mathematics, and Architecture MAR-APR 2008 HYPERSEEING The Publication of the International Society of the Arts, Mathematics, and Architecture MAR-APR 2008 www.isama.org Articles Exhibits Resources Cartoons Books News IIlustrations Announcements Communications HYPERSEEING Editors. Ergun Akleman, Nat Friedman. Associate Editors. Javier Barrallo, Anna Campbell Bliss, Claude Bruter, Benigna Chilla, Michael Field, Slavik Jablan, Steve Luecking, John Sullivan, Elizabeth Whiteley. Page Layout. Ranjith Perumalil MAR-APR, 2008 Cover Photo: Water Holes Canyon Photo by Robert Fathauer Articles News Article Submission Water Holes Canyon: For inclusion in Hyperseeing, au- Form, Space, Light, and Color Cartoons thors are invited to email articles for by Nat Friedman & Robert Fathauer the preceding categories to: Knot Theory [email protected] IV: Crossfield Geometry/ by Ergun Akleman Gridfield Space Period (1989-1964) Articles should be a maximum of by Douglas Peden eight pages. Illustrations Opening Out & Closing In by Pau Atela & Nat Friedman Illustrations by Robert Kauffmann Greg Johns: Sculptures Enclosing Space by Nat Friedman Book Reviews Charles Ginnever: Two Piece Giant Steps Resources by Nat Friedman Announcements WATER HOLES CANYON: NAT FRIEDMAN & FORM, Space, LIGHT, AND COLOR ROBERT FATHAUER About fifteen minutes ago I opened a result of erosion, primarily due to space, light, and color, and I have my email and there were these won- flash floods in which water carrying found them very inspirational. Note derful images of Water Holes Can- sand and rocks rushes through the that this is sculpture that you can yon that is just south of Page, Ari- narrow passageways. The chaotic experience by walking through the zona, sent to me by Rob Fathauer. nature of this process leads to com- space of the canyon. Thus the sculp- Water Holes has dramatic Navajo plex forms. The section of narrows tural experience is both visual and sandstone narrows similar to those shown in most of the images below bodily, as discussed in [1], where of the more visited, more photo- is roughly 20 feet deep and a 2-6 Richard Serra’s torqued ellipses and graphed, and more famous Antelope feet wide. torqued spirals are considered. Ser- Canyon. Both lie within the Navajo ra’s sculptures are large steel shells Nation and are tributaries of Glen These slot canyons are the ultimate that you experience by walking Canyon. These sandstone forms are natural sculpture relating form, around them both inside and out- Robert Fathauer, Water Holes Canyon , Image 1 Robert Fathauer, Water Holes Canyon, Image 2 Robert Fathauer, Water Holes Canyon, Image 3 side. I had thought about the slot were taken with an Olympus FE- References canyons at the time and how much 280 compact electronic camera, more interesting they are since the while the last was taken with an forms, spaces, light and color, are Apple iPhone. Adjustments to the [1] Nat Friedman, Space, Hyper- so impressive. Here are a selection raw images were made using Pho- seeing, November, 2006, www. of Rob’s images. The first 9 images toShop. isama.org/hyperseeing/ Robert Fathauer, Water Holes Canyon, Image 4 Robert Fathauer, Water Holes Canyon, Image 5 Robert Fathauer, Water Holes Canyon, Image 6 Robert Fathauer, Water Holes Canyon, Image 7 Robert Fathauer, Water Holes Canyon, Image 8 Robert Fathauer, Water Holes Canyon, Image 9 Robert Fathauer, Water Holes Canyon, Image 10 IV: CROSSFIELD GEOMETry/ GRIDFIELD Space PERIOD DOUGLAS PEDEN 1989-1964 Figure 1: #156: Symphony #1: Transcendent Figure (1991) 42X89” “The only real voyage of discov- under “GridField Painting,” and I the April 2007 issue of Hypersee- ery consists not in seeking new refer the interested reader to that ing. The first discussed was Cross- landscapes, but in having new issue for details. The dynamics of field (or Crossphase) Geometry; eyes.” — Marcel Proust, using GFG as the foundation of the second, discovered later, was French novelist (1871-1922). my painting was far reaching when labeled Interfield (or Interphase) compared to the possibilities of the Geometry, and its artistic merit will The evolution of my painting style Cartesian approach. However, at be explored in my next article in at this time of my life was a sur- this point, I feel the necessity to Hyperseeing, outlining my V Peri- prise, not only in art, but an un- interject a personal, and hopefully od. The Cartesian grid and Euclid- expected joy in reintroducing me helpful, observation. My invention/ ean space are really one aspect, or to the world of mathematics. By discovery of GFG occurred at the variation, of GFG. With the intro- some epiphany, I made a seren- not so tender age of 56 (I am told duction of GridField Geometry, I dipitous observation that I could go that we do our best creative work, had a much more dynamic system beyond Euclidean space geometry especially in mathematics, before at my disposal, with countless geo- and the time honored straight line our 30th year); therefore, a note metric patterns; which, as of now, Cartesian grid and coordinate sys- to my colleagues who might think I have only explored a few of its tem to a totally curvilinear grid and their best days are over — as the mathematical and artistic possi- coordinate system. This new geo- old song goes, “It ain’t necessarily bilities. In this period of my artis- metric, spatial approach I have la- so.” With this introductory fanfare, tic evolution, I introduced, what I beled GridField Geometry (GFG). let’s proceed with some exam- call, a narrative approach, as hinted The basics of GFG, i.e., its struc- ples and discussion of this period. at in my previous article in Hyper- ture, were briefly explained in the Two primary geometries were es- seeing, with regards to my painting April 2007 issue of Hyperseeing tablished in GFG as presented in Dragon Wars, where my interlock- Figure 2: # 150: Sun Song (1990) 40X61” ing dragons, i.e., mouth to mouth one’s attention, on the lower left of the autobiographical; without going figuration, would seem to imply painting. This is conceived as the intro- into the personal details, which a battle scene and story. How- duction of our shape theme – leitmotif, are by no means evident in the ever, the abstract narrative needs if you wish. If we read, episodically, like piece, it is a painting, which is in a little more explaining. For this, following stepping stones, from left to the magnitude of its size, sym- refer to my Symphony #1, Fig 1, right, our figure branches into two paths, phonic pretentions, and story in- Transcendent Figure. If we “read” one vertical and other horizontal, going tent, attempting to express a per- this painting, from left to right, through various transformations, and fi- sonal triumph. However, please a clearly defined black figure nally ending up as a single bird-like figure feel free to dispute or ignore my (described by some as a witch- in the upper right. For what it’s worth, basic design and personal inten- like figure) stands out, to attract the painting itself, is indeed somewhat tion and look at it from other Figure 3: #152: Dream Song: Metamorphose (1990) 24X61” Figure4: #157: 3 Part Invention-Agitato/Crescendo/Diminuendo 12X89” (1991) Figure 5: #146: Rhapsody for 9 Notes (1990) 24X61” viewpoints. For example, why its Development, which consists of vironment of color, space, line, and not read the painting from right a fragmentation of the thematic ma- rhythm. I think of my paintings as to left? Or, take it in as a whole terial and its subsequent recombin- visual music in the sense of tone po- and just enjoy it as pure abstrac- ing into the concluding figure(s) in ems that make use of mathematical tion. You might also note that the the Recapitulation and Conclusion. and esthetic relationships to inspire basic structure of the painting is Indeed, the narrative approach and/ a sense of sound, time, mood, and somewhat analogous to that of or the classical sonata division are life. However, at this point, having the sonata form in classical mu- used to inspire the structural basis discussed to some extent the impli- sic; that is, the composition can for my painting. In any case, I try to cations of sound and time, let me be divided into an Introduction or give the thematic material a life of briefly discuss the expressive factor Exposition of thematic material, its own, by interacting with its en- of mood. Here we have some analo- Figure 6: #163: Behold, I Do A New Thing (1991) 24X60” Figure 7: #154: Halloween (1990) 40X61” gies to music. For example, loud or with the intention to calm the male be deemed as a rather romantic pe- soft sounds in music used to bol- psyche. However, this ploy doesn’t riod — Transcendent Figure would ster a mood would be analogous to always work, sometimes what I certainly fit the category. And, if we bright or subdued color intensities think I am expressing isn’t quite look at another example of this pe- in painting; and, the close spac- interpreted as such; in other words, riod, Figure 3, #155, Dream Song: ing of lines or shapes might evoke the final interpretation is, of course, Metamorphose, a precursor to Tran- a sense of speed or activity as in always in the eyes/mind of the be- scendent Figure (#156), we find a sound events per unit of time com- holder. For example, I painted Sun similar link with its lush colors and pared to visual events per unit of Song, Figure 2, in the key of orange languid rhythms, and the same bird- space — all of which can contrib- to simply express the physical plea- ute to the dynamic sense of mood.
Recommended publications
  • Feasibility Study for Teaching Geometry and Other Topics Using Three-Dimensional Printers
    Feasibility Study For Teaching Geometry and Other Topics Using Three-Dimensional Printers Elizabeth Ann Slavkovsky A Thesis in the Field of Mathematics for Teaching for the Degree of Master of Liberal Arts in Extension Studies Harvard University October 2012 Abstract Since 2003, 3D printer technology has shown explosive growth, and has become significantly less expensive and more available. 3D printers at a hobbyist level are available for as little as $550, putting them in reach of individuals and schools. In addition, there are many “pay by the part” 3D printing services available to anyone who can design in three dimensions. 3D graphics programs are also widely available; where 10 years ago few could afford the technology to design in three dimensions, now anyone with a computer can download Google SketchUp or Blender for free. Many jobs now require more 3D skills, including medical, mining, video game design, and countless other fields. Because of this, the 3D printer has found its way into the classroom, particularly for STEM (science, technology, engineering, and math) programs in all grade levels. However, most of these programs focus mainly on the design and engineering possibilities for students. This thesis project was to explore the difficulty and benefits of the technology in the mathematics classroom. For this thesis project we researched the technology available and purchased a hobby-level 3D printer to see how well it might work for someone without extensive technology background. We sent designed parts away. In addition, we tried out Google SketchUp, Blender, Mathematica, and other programs for designing parts. We came up with several lessons and demos around the printer design.
    [Show full text]
  • Art Curriculum 1
    Ogdensburg School Visual Arts Curriculum Adopted 2/23/10 Revised 5/1/12, Born on: 11/3/15, Revised 2017 ​, Adopted December 4, 2018 Rationale Grades K – 8 By encouraging creativity and personal expression, the Ogdensburg School District provides students in grades one to eight with a visual arts experience that facilitates personal, intellectual, social, and human growth. The Visual Arts Curriculum is structured as a discipline based art education program aligned with both the National Visual Arts Standards and the New Jersey Core Curriculum Content Standards for the Visual and Performing Arts. Students will increase their understanding of the creative process, the history of arts and culture, performance, aesthetic awareness, and critique methodologies. The arts are deeply embedded in our lives shaping our daily experiences. The arts challenge old perspectives while connecting each new generation from those in the past. They have served as a visual means of communication which have described, defined, and deepened our experiences. An education in the arts fosters a learning community that demonstrates an understanding of the elements and principles that promote creation, the influence of the visual arts throughout history and across cultures, the technologies appropriate for creating, the study of aesthetics, and critique methodologies. The arts are a valuable tool that enhances learning st across all disciplines, augments the quality of life, and possesses technical skills essential in the 21 ​ century. ​ The arts serve as a visual means of communication. Through the arts, students have the ability to express feelings and ideas contributing to the healthy development of children’s minds. These unique forms of expression and communication encourage students into various ways of thinking and understanding.
    [Show full text]
  • PROJECT DESCRIPTIONS — MATHCAMP 2016 Contents Assaf's
    PROJECT DESCRIPTIONS | MATHCAMP 2016 Contents Assaf's Projects 2 Board Game Design/Analysis 2 Covering Spaces 2 Differential Geometry 3 Chris's Projects 3 Π1 of Campus 3 Don's Projects 3 Analytics of Football Drafts 3 Open Problems in Knowledge Puzzles 4 Finite Topological Spaces 4 David's Projects 4 p-adics in Sage 4 Gloria's Projects 5 Mathematical Crochet and Knitting 5 Jackie's Projects 5 Hanabi AI 5 Jane's Projects 6 Art Gallery Problems 6 Fractal Art 6 Jeff's Projects 6 Building a Radio 6 Games with Graphs 7 Lines and Knots 7 Knots in the Campus 7 Cities and Graphs 8 Mark's Projects 8 Knight's Tours 8 Period of the Fibonacci sequence modulo n 9 Misha's Projects 9 How to Write a Cryptic Crossword 9 How to Write an Olympiad Problem 10 Nic's Projects 10 Algebraic Geometry Reading Group 10 1 MC2016 ◦ Project Descriptions 2 Ray Tracing 10 Non-Euclidean Video Games 11 Nic + Chris's Projects 11 Non-Euclidean Video Games 11 Pesto's Projects 11 Graph Minors Research 11 Linguistics Problem Writing 12 Models of Computation Similar to Programming 12 Sachi's Projects 13 Arduino 13 Sam's Projects 13 History of Math 13 Modellin' Stuff (Statistically!) 13 Reading Cauchy's Cours d'Analyse 13 Zach's Projects 14 Build a Geometric Sculpture 14 Design an Origami Model 14 Assaf's Projects Board Game Design/Analysis. (Assaf) Description: I'd like to think about and design a board game or a card game that has interesting math, but can still be played by a non-mathematician.
    [Show full text]
  • Math Morphing Proximate and Evolutionary Mechanisms
    Curriculum Units by Fellows of the Yale-New Haven Teachers Institute 2009 Volume V: Evolutionary Medicine Math Morphing Proximate and Evolutionary Mechanisms Curriculum Unit 09.05.09 by Kenneth William Spinka Introduction Background Essential Questions Lesson Plans Website Student Resources Glossary Of Terms Bibliography Appendix Introduction An important theoretical development was Nikolaas Tinbergen's distinction made originally in ethology between evolutionary and proximate mechanisms; Randolph M. Nesse and George C. Williams summarize its relevance to medicine: All biological traits need two kinds of explanation: proximate and evolutionary. The proximate explanation for a disease describes what is wrong in the bodily mechanism of individuals affected Curriculum Unit 09.05.09 1 of 27 by it. An evolutionary explanation is completely different. Instead of explaining why people are different, it explains why we are all the same in ways that leave us vulnerable to disease. Why do we all have wisdom teeth, an appendix, and cells that if triggered can rampantly multiply out of control? [1] A fractal is generally "a rough or fragmented geometric shape that can be split into parts, each of which is (at least approximately) a reduced-size copy of the whole," a property called self-similarity. The term was coined by Beno?t Mandelbrot in 1975 and was derived from the Latin fractus meaning "broken" or "fractured." A mathematical fractal is based on an equation that undergoes iteration, a form of feedback based on recursion. http://www.kwsi.com/ynhti2009/image01.html A fractal often has the following features: 1. It has a fine structure at arbitrarily small scales.
    [Show full text]
  • Armed with a Knack for Patterns and Symmetry, Mathematical Sculptors Create Compelling Forms
    SCIENCE AND CULTURE Armedwithaknackforpatternsandsymmetry, mathematical sculptors create compelling forms SCIENCE AND CULTURE Stephen Ornes, Science Writer When he was growing up in the 1940s and 1950s, be difficult for mathematicians to communicate to out- teachers and parents told Helaman Ferguson he would siders, says Ferguson. “It isn’t something you can tell have to choose between art and science. The two fields somebody about on the street,” he says. “But if I hand inhabited different realms, and doing one left no room them a sculpture, they’re immediately relating to it.” for the other. “If you can do science and have a lick of Sculpture, he says, can tell a story about math in an sense, you’d better,” he recalled being told, in a accessible language. 2010 essay in the Notices of the American Mathemat- Bridges between art and science no longer seem ical Society (1). “Artists starve.” outlandish nor impossible, says Ferguson. Mathematical Ferguson, who holds a doctorate in mathematics, sculptors like him mount shows, give lectures, even never chose between art and science: now nearly make a living. They teach, build, collaborate, explore, 77 years old, he’s a mathematical sculptor. Working in and push the limits of 3D printing. They invoke stone and bronze, Ferguson creates sculptures, often mathematics not only for its elegant abstractions but placed on college campuses, that turn deep mathemat- also in hopes of speaking to the ways math underlies ical ideas into solid objects that anyone—seasoned the world, often in hidden ways. professors, curious children, wayward mathophobes— can experience for themselves.
    [Show full text]
  • Math Encounters Is Here!
    February 2011 News! Math Encounters is Here! The Museum of Mathematics and the Simons Foundation are proud to announce the launch of Math Encounters, a new monthly public presentation series celebrating the spectacular world of mathematics. In keeping with its mission to communicate the richness of math to the public, the Museum has created Math Encounters to foster and support amateur mathematics. Each month, an expert speaker will present a talk with broad appeal on a topic related to mathematics. The talks are free to the public and are filling fast! For more information or to register, please visit mathencounters.org. Upcoming presentations: Thursday, March 3rd at 7:00 p.m. & Friday, March 4th at 6:00 p.m. Erik Demaine presents The Geometry of Origami from Science to Sculpture Thursday, April 7th at 4:30 p.m. & 7:00 p.m. Scott Kim presents Symmetry, Art, and Illusion: Amazing Symmetrical Patterns in Music, Drawing, and Dance Wednesday, May 4th at 7:00 p.m. Paul Hoffman presents The Man Who Loved Only Numbers: The Story of Paul Erdȍs; workshop by Joel Spencer Putting the “M” in “STEM” In recognition of the need for more mathematics content in the world of informal science education, MoMath is currently seeking funding to create and prototype a small, informal math experience called Math Midway 2 Go (MM2GO). With the assistance of the Science Festival Alliance, MM2GO would debut at six science festivals over the next two years. MM2GO would be the first museum-style exhibit to travel to multiple festival sites over a prolonged period of time.
    [Show full text]
  • Pleasing Shapes for Topological Objects
    Pleasing Shapes for Topological Objects John M. Sullivan Technische Universitat¨ Berlin [email protected] http://www.isama.org/jms/ Topology is the study of deformable shapes; to draw a picture of a topological object one must choose a particular geometric shape. One strategy is to minimize a geometric energy, of the type that also arises in many physical situations. The energy minimizers or optimal shapes are also often aesthetically pleasing. This article first appeared translated into Italian [Sul11]. I. INTRODUCTION Topology, the branch of mathematics sometimes described as “rubber-sheet geometry”, is the study of those properties of shapes that don’t change under continuous deformations. As an example, the classification of surfaces in space says that each closed surface is topologically a sphere with a cer- tain number of handles. A surface with one handle is called a torus, and might be an inner tube or a donut or a coffee cup (with a handle, of course): the indentation that actually holds the coffee doesn’t matter topologically. Similarly a topologi- cal sphere might not be round: it could be a cube (or indeed any convex shape) or the surface of a cup with no handle. Since there is so much freedom to deform a topological ob- ject, it is sometimes hard to know how to draw a picture of it. We might agree that the round sphere is the nicest example of a topological sphere – indeed it is the most symmetric. It is also the solution to many different geometric optimization problems. For instance, it can be characterized by its intrin- sic geometry: it is the unique surface in space with constant (positive) Gauss curvature.
    [Show full text]
  • A Mathematical Art Exhibit at the 1065 AMS Meeting
    th A Mathematical Art Exhibit at the 1065 AMS Meeting The 1065th AMS Meeting was held at the University of Richmond, Virginia, is a private liberal arts institution with approximately 4,000 undergraduate and graduate students in five schools. The campus consists of attractive red brick buildings in a collegiate gothic style set around shared open lawns that are connected by brick sidewalks. Westhampton Lake, at the center of the campus, completes the beauty of this university. More than 250 mathematicians from around the world attended this meeting and presented their new findings through fourteen Special Sessions. Mathematics and the Arts was one of the sessions that has organized by Michael J. Field (who was also a conference keynote speaker) from the University of Houston, Gary Greenfield (who is the Editor of the Journal of Mathematics and the Arts, Taylor & Francis) from the host university, and Reza Sarhangi, the author, from Towson University, Maryland. Because of this session it was possible for the organizers to take one more step and organize a mathematical art exhibit for the duration of the conference. The mathematical art exhibit consisted of the artworks donated to the Bridges Organization by the artists that participated in past Bridges conferences. The Bridges Organization is a non-profit organization that oversees the annual international conference of Bridges: Mathematical Connections in Art, Music, and Science (www.BridgesMathArt.org). It was very nice of AMS and the conference organizers, especially Lester Caudill from the host university, to facilitate the existence of this exhibit. The AMS Book Exhibit and Registration was located at the lobby of the Gottwald Science Center.
    [Show full text]
  • Geometry Ascending a Staircase George Hart Stony Brook University Stony Brook, NY, USA [email protected]
    Geometry Ascending a Staircase George Hart Stony Brook University Stony Brook, NY, USA [email protected] Abstract A large metal sculpture, consisting of four orbs, commissioned for the stairway atrium of the Fitzpatrick CIEMAS Engineering Building at Duke University embodies the important idea that Science, Technology, Engineering, Mathematics and Art are closely connected. Made from hundreds of pounds of powder-coated, laser-cut aluminum, with an underlying geometric design, it was assembled at a four-hour “sculpture barn raising” open to the entire academic community. Titled “Geometry Ascending a Staircase,” this project illustrates how STEM education efforts can be extended to the growing movement of STEAM, which puts the Arts into STEM education. Introduction Figure 1 shows the four orbs that make up my sculpture called Geometry Ascending a Staircase, hanging in the atrium of the Fitzpatrick CIEMAS Engineering building at Duke University. The low red one is 4 feet in diameter. The higher orange ones are 5, then 6 feet in diameter, up to the highest, yellow one, which is 7 feet in diameter. It is hard to get a photo of all four orbs because of the way they fill the 75- foot tall atrium, but the rendering in Figure 2 gives a sense of the overall design. The low red orb catches your eye when you walk in the ground floor of the building. Then as you walk up and around the stairs you get many views from below, around, and above the individual orbs. Figure 1: Geometry Ascending a Staircase. Figure 2: Rendering of the four orbs in the atrium.
    [Show full text]
  • Bridges Donostia Mathematics, Music, Art, Architecture, Culture
    Bridges Donostia Mathematics, Music, Art, Architecture, Culture 2007 Celebrate the Tenth Annual Bridges Conference BRIDGES DONOSTIA Mathematics, Music, Art, Architecture, Culture http://www.BridgesMathArt.Org School of Architecture The University of the Basque Country San Sebastian (Donostia), Spain Conference Proceedings 2007 Reza Sarhangi and Javier Barrallo, Editors Tarquin publications Bridges Donostia Scientific Organizers Javier Barrallo Reza Sarhangi School of Architecture Department of Mathematics The University of the Basque Country Towson University San Sebastian, Spain Towson, Maryland, USA Local Organizers Angel Fernandez Luis Martin Department of Mathematics Department of Mathematics School of Architecture School of Architecture The University of the Basque Country, Spain The University of the Basque Country, Spain Santiago Sanchez Alberto Zulueta Department of Physics Department of Physics School of Architecture School of Architecture The University of the Basque Country, Spain The University of the Basque Country, Spain Bridges for Teachers, Teachers for Bridges Mara Alagic Paul Gailiunas Department of Curriculum and Instruction Newcastle, England Wichita State University Wichita, Kansas, USA Bridges Visual Art Exhibit Robert W. Fathauer Ann Burns Nat Friedman Department of Mathematics, Long Department of Mathematics and Tessellations Company Phoenix, Arizona, USA Island University, New York, USA Statistics, University at Albany New York, Albany, USA Conference Website and Electronic Correspondence George W. Hart Craig
    [Show full text]
  • What Is Mathematics, Really? Reuben Hersh Oxford University Press New
    What Is Mathematics, Really? Reuben Hersh Oxford University Press New York Oxford -iii- Oxford University Press Oxford New York Athens Auckland Bangkok Bogotá Buenos Aires Calcutta Cape Town Chennai Dar es Salaam Delhi Florence Hong Kong Istanbul Karachi Kuala Lumpur Madrid Melbourne Mexico City Mumbai Nairobi Paris São Paolo Singapore Taipei Tokyo Toronto Warsaw and associated companies in Berlin Ibadan Copyright © 1997 by Reuben Hersh First published by Oxford University Press, Inc., 1997 First issued as an Oxford University Press paperback, 1999 Oxford is a registered trademark of Oxford University Press All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of Oxford University Press. Cataloging-in-Publication Data Hersh, Reuben, 1927- What is mathematics, really? / by Reuben Hersh. p. cm. Includes bibliographical references and index. ISBN 0-19-511368-3 (cloth) / 0-19-513087-1 (pbk.) 1. Mathematics--Philosophy. I. Title. QA8.4.H47 1997 510 ′.1-dc20 96-38483 Illustration on dust jacket and p. vi "Arabesque XXIX" courtesy of Robert Longhurst. The sculpture depicts a "minimal Surface" named after the German geometer A. Enneper. Longhurst made the sculpture from a photograph taken from a computer-generated movie produced by differential geometer David Hoffman and computer graphics virtuoso Jim Hoffman. Thanks to Nat Friedman for putting me in touch with Longhurst, and to Bob Osserman for mathematical instruction. The "Mathematical Notes and Comments" has a section with more information about minimal surfaces. Figures 1 and 2 were derived from Ascher and Brooks, Ethnomathematics , Santa Rosa, CA.: Cole Publishing Co., 1991; and figures 6-17 from Davis, Hersh, and Marchisotto, The Companion Guide to the Mathematical Experience , Cambridge, Ma.: Birkhauser, 1995.
    [Show full text]
  • HYPERSEEING the Publication of the International Society of the Arts, Mathematics, and Architecture SUMMER 2020 ISBN 978-0-359-71699-9 90000
    The Proceedings of the SMI 2020 In Cooperation with ISAMA Fabrication & Sculpting Event (FASE) HYPERSEEING The Publication of the International Society of the Arts, Mathematics, and Architecture SUMMER 2020 ISBN 978-0-359-71699-9 90000 www.isama.org 9 780359 716999 The Proceedings of the SMI 2020 FASE Paper Chairs: Fabrication & Sculpting Event (FASE) Oleg Fryazinov Melina Skouras Shinjiro Sueda Proceedings Editor: Ergun Akleman Front Page Sculpture: Steve Reinmuth Carlo H. Séquin Back Page Sculpture: Carlo H. Séquin Cover Design: Ergun Akleman Special Issue on Shape Modeling International 2020 2-4 June 2020 Strasbourg France 1 2 HYPERSEEING Special Issue on SMI 2020 Shape Modeling International 2020 Fabrication and Sculpting Event Nineteenth Interdisciplinary Conference of the International Society of the Arts, Mathematics, and Architecture Strasbourg, France June 2-4, 2020 SMI Conference Chairs Loïc Barthe (University of Toulouse, France) Frédéric Cordier (University of Haute-Alsace, France) Hui Huang (Shenzhen University, China) FASE Paper Chairs Oleg Fryazinov (Bournemouth University) Melina Skouras (Inria, Grenoble) Shinjiro Sueda (Texas A&M University) Steering Committee: Ergun Akleman, Loic Barthe, Karina Rodriguez Echavarria, Negar Kalantar, Guiseppe Patane, Konrad Polthier, Vinayak Krishnamurthy, Carlo Sequin, Courtney Starrett, Wei Yan 3 4 FASE Program Committee Valery Adzhiev Bournemouth University Abel Gomes University of Beira Interior Ergun Akleman Texas A&M University Robert Krawczyk Illinois Institute of Technology Loic Barthe IRIT - Université de Toulouse Xin Li Louisiana State University Michael Birsak King Abdullah University of Science and James Mallos Technology Sculptor Adrien Bousseau Marcel Morales INRIA Univ. Grenoble Alpes Vladimir Bulatov Alexander Pasko Shapeways, Inc Bournemouth University, UK Daniela Cabiddu Giuseppe Patanè CNR IMATI CNR-IMATI Nathan Carr Helmut Pottmann Adobe Systems Inc.
    [Show full text]