A Mathematical Art Exhibit at the 1065 AMS Meeting
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Feasibility Study for Teaching Geometry and Other Topics Using Three-Dimensional Printers
Feasibility Study For Teaching Geometry and Other Topics Using Three-Dimensional Printers Elizabeth Ann Slavkovsky A Thesis in the Field of Mathematics for Teaching for the Degree of Master of Liberal Arts in Extension Studies Harvard University October 2012 Abstract Since 2003, 3D printer technology has shown explosive growth, and has become significantly less expensive and more available. 3D printers at a hobbyist level are available for as little as $550, putting them in reach of individuals and schools. In addition, there are many “pay by the part” 3D printing services available to anyone who can design in three dimensions. 3D graphics programs are also widely available; where 10 years ago few could afford the technology to design in three dimensions, now anyone with a computer can download Google SketchUp or Blender for free. Many jobs now require more 3D skills, including medical, mining, video game design, and countless other fields. Because of this, the 3D printer has found its way into the classroom, particularly for STEM (science, technology, engineering, and math) programs in all grade levels. However, most of these programs focus mainly on the design and engineering possibilities for students. This thesis project was to explore the difficulty and benefits of the technology in the mathematics classroom. For this thesis project we researched the technology available and purchased a hobby-level 3D printer to see how well it might work for someone without extensive technology background. We sent designed parts away. In addition, we tried out Google SketchUp, Blender, Mathematica, and other programs for designing parts. We came up with several lessons and demos around the printer design. -
Möbius Bridges
{ Final version for JMA - Nov 2, 2017 } Möbius Bridges Carlo H. Séquin CS Division, University of California, Berkeley E-mail: [email protected] Abstract Key concepts and geometrical constraints are discussed that allow the construction of a usable bridge that is topological equivalent to a Möbius band. A multi-year search in publications and on the internet for real-world bridges that meet these requirements has not identified a single clean construction that warrants the designation “Möbius bridge,” but a few promising designs can be found. Several simple but practical designs are presented here. 1. Introduction July 2017 marks the twentieth installment of the annual Bridges conference [1], which elucidates the connections between mathematics and art, music, architecture, and many other cultural venues. This year the conference has been held in Waterloo, Canada. In its twenty-year history it has visited many places around the globe, including Seoul in South Korea, Coimbra in Portugal, Pécz in Hungary, and Leeuwarden in the Netherlands, the hometown of M.C. Escher. This conference series got started by Reza Sarhangi [2] at Southwestern College in Winfield, Kansas. After a few occurrences at this initial location, Reza Sarhangi and other core members of this conference started discussing the possibility of establishing some kind of a commemorative entity of the conference on the Winfield campus. Since Escher, Möbius, and Klein are among the heroes of this Math-Art community, suggestions included an Escher Garden, a Möbius Bridge, or a Klein Bottle House. This prompted me to study the feasibility of such entities; and over the following year, I developed some practical designs for bridges and buildings that follow the geometry of a Möbius band [3]. -
Bridges: a World Community for Mathematical Art
Accepted manuscript for The Mathematical Intelligencer, ISSN: 0343-6993 (print version) ISSN: 1866-7414 (electronic version) The final publication is available at Springer via http://link.springer.com/article/10.1007/s00283-016-9630-9 DOI 10.1007/s00283-016-9630-9 Bridges: A World Community for Mathematical Art Kristóf Fenyvesi Mathematical Art Reborn: Academic Gathering or Festival of the Arts? This is not the first time the Mathematical Communities column has featured the Bridges Organization: the 2005 conference1, in the breathtaking Canadian Rocky Mountains at Banff, was described in these pages by Doris Schattschneider [Schattschneider, 2006], a regular Bridges participant and Escher-specialist. The 2005 conference saw the debut of Delicious Rivers, Ellen Maddow’s play on the life of Robert Ammann, a postal worker who discovered a number of aperiodic tilings.2 Marjorie Senechal, The Mathematical Intelligencer’s current editor-in-chief, served as Maddow's consultant.3 A theatre premiér at a conference on mathematics? A production performed by mathematicians, moonlighting as actors? But this is Bridges. A quick look at the 2005 conference relays the “essence” of this scientific and artistic “happening” resembling a first-rate festival of the arts. True to its title, Renaissance Banff, the 2005 Bridges gave all members of its community, whether based in the sciences or the arts, the feeling that they had helped bring about a genuine rebirth. I use “community” in its most complete sense—including adults, children, artists, university professors, art lovers and local people—for the wealth of conference activities could only be accomplished through the participation of each and every individual present. -
Art Curriculum 1
Ogdensburg School Visual Arts Curriculum Adopted 2/23/10 Revised 5/1/12, Born on: 11/3/15, Revised 2017 , Adopted December 4, 2018 Rationale Grades K – 8 By encouraging creativity and personal expression, the Ogdensburg School District provides students in grades one to eight with a visual arts experience that facilitates personal, intellectual, social, and human growth. The Visual Arts Curriculum is structured as a discipline based art education program aligned with both the National Visual Arts Standards and the New Jersey Core Curriculum Content Standards for the Visual and Performing Arts. Students will increase their understanding of the creative process, the history of arts and culture, performance, aesthetic awareness, and critique methodologies. The arts are deeply embedded in our lives shaping our daily experiences. The arts challenge old perspectives while connecting each new generation from those in the past. They have served as a visual means of communication which have described, defined, and deepened our experiences. An education in the arts fosters a learning community that demonstrates an understanding of the elements and principles that promote creation, the influence of the visual arts throughout history and across cultures, the technologies appropriate for creating, the study of aesthetics, and critique methodologies. The arts are a valuable tool that enhances learning st across all disciplines, augments the quality of life, and possesses technical skills essential in the 21 century. The arts serve as a visual means of communication. Through the arts, students have the ability to express feelings and ideas contributing to the healthy development of children’s minds. These unique forms of expression and communication encourage students into various ways of thinking and understanding. -
Science • Art • Technology
SCIENCE • ART • TECHNOLOGY 24 JULY THROUGH 10 AUGUST 2008 < Rinus Roelofs, PROGRAMME OF EVENTS new design for artwork consisting of a single 24 JULY – 10 AUGUST, 2008 continuous surface! (Location: Boer) BRIDGES, an annual conference founded in 1998 and serving since then 4 metres long, 2.5 metres high, as an international platform for artists, scientists and scholars working on corten steel the interface of science, art and technology will be held this year in Leeuwarden, The Netherlands from 24 - 29 July 2008. The approximately 200 visitors to the conference from 25 different countries will be coming to Leeuwarden to participate in a broad program of mathematical connections in art, music, architecture and science. Associated with the conference is a highly varied programme Gerard Caris > Polyhedral Net of cultural activities open to the general public that will run through Structure # 1, 10 August 2008. During the Open Day held on 29 July 2008, you can 160 x 95 x 95 cm become acquainted with a number of scientists and artists whilst young and old can participate in various workshops on Grote Kerkstraat in Exhibitions in churches Leeuwarden. The winners of the Gateways to Fryslân Competition will be announced during the conference. The artists exhibiting their work have come from abstract mathematical backgrounds to create many different visual products. Some artists, such as Gerard Caris (1925), limit their oeuvre to a single theme. In his case, this is the pentagon. In the village of Zweins, this artist will be showing a selection of his work including his ‘Polyhedral Net Structure # 1’. -
Report on Bridges 2016—In Memory of Our Founder, Reza Sarhangi (1952–2016)
COMMUNICATION Report on Bridges 2016—In Memory of Our Founder, Reza Sarhangi (1952–2016) Carlo H. Séquin For the last decade, the international Bridges conference has showcased mathematical connections in art, ar- chitecture, music, and many other cultural domains. It regularly attracts a few hundred participants—artists, mathematicians, computer scientists, teachers, etc.—from dozens of coun- tries. Sample Annual Bridges Conference Sites 2014 Seoul, South Korea 2011 Coimbra, Portugal 2010 Pécs, Hungary 2009 Banff, Canada 2008 Leeuwarden, Netherlands 2006 London, United Kingdom 2003 Granada, Spain Founder Reza Sarhangi at the CrossBorderScience 2012 Conference in Kaposvár. (The photo was first published in an article by Dirk This year the annual Bridges conference Huylebrouck, “Is mathematics ‘halal’?” in the Dutch popular science was held at the beautiful University of magazine Eos, www.kennislink.nl/publicaties/is-wiskunde-halal.) Jyväskylä in Finland. The conference comprised four days of talks and in- teractions plus an optional excursion day. The formal, refereed part of the conference entailed ten plenary pre- sentations, forty regular papers, six- ty-one short papers, and seventeen “hands-on” workshops. There was also a curated art exhibition, a festi- val of short mathematical movies, a session of mathematical poetry, and an informal theatre event performed by conference participants. More- Carlo H. Séquin is a professor in the grad- uate school, EECS Computer Science, UC Berkeley. His e-mail address is sequin@ berkeley.edu. For permission to reprint this article, please Henry Segerman and his Prizewinner Judy Holdener contact: 4π camera. discussing “Immersion.” [email protected]. DOI: http://dx.doi.org/10.1090/noti1471 152 NOTICES OF THE AMS VOLUME 64, NUMBER 2 COMMUNICATION about the role of this college in the the front, from one side, and from hills above Asheville, North Caro- the bottom with two suitably placed lina, promoting a spirit and interac- mirrors. -
Current Practices in Quantitative Literacy © 2006 by the Mathematical Association of America (Incorporated)
Current Practices in Quantitative Literacy © 2006 by The Mathematical Association of America (Incorporated) Library of Congress Catalog Card Number 2005937262 Print edition ISBN: 978-0-88385-180-7 Electronic edition ISBN: 978-0-88385-978-0 Printed in the United States of America Current Printing (last digit): 10 9 8 7 6 5 4 3 2 1 Current Practices in Quantitative Literacy edited by Rick Gillman Valparaiso University Published and Distributed by The Mathematical Association of America The MAA Notes Series, started in 1982, addresses a broad range of topics and themes of interest to all who are in- volved with undergraduate mathematics. The volumes in this series are readable, informative, and useful, and help the mathematical community keep up with developments of importance to mathematics. Council on Publications Roger Nelsen, Chair Notes Editorial Board Sr. Barbara E. Reynolds, Editor Stephen B Maurer, Editor-Elect Paul E. Fishback, Associate Editor Jack Bookman Annalisa Crannell Rosalie Dance William E. Fenton Michael K. May Mark Parker Susan F. Pustejovsky Sharon C. Ross David J. Sprows Andrius Tamulis MAA Notes 14. Mathematical Writing, by Donald E. Knuth, Tracy Larrabee, and Paul M. Roberts. 16. Using Writing to Teach Mathematics, Andrew Sterrett, Editor. 17. Priming the Calculus Pump: Innovations and Resources, Committee on Calculus Reform and the First Two Years, a subcomit- tee of the Committee on the Undergraduate Program in Mathematics, Thomas W. Tucker, Editor. 18. Models for Undergraduate Research in Mathematics, Lester Senechal, Editor. 19. Visualization in Teaching and Learning Mathematics, Committee on Computers in Mathematics Education, Steve Cunningham and Walter S. -
PROJECT DESCRIPTIONS — MATHCAMP 2016 Contents Assaf's
PROJECT DESCRIPTIONS | MATHCAMP 2016 Contents Assaf's Projects 2 Board Game Design/Analysis 2 Covering Spaces 2 Differential Geometry 3 Chris's Projects 3 Π1 of Campus 3 Don's Projects 3 Analytics of Football Drafts 3 Open Problems in Knowledge Puzzles 4 Finite Topological Spaces 4 David's Projects 4 p-adics in Sage 4 Gloria's Projects 5 Mathematical Crochet and Knitting 5 Jackie's Projects 5 Hanabi AI 5 Jane's Projects 6 Art Gallery Problems 6 Fractal Art 6 Jeff's Projects 6 Building a Radio 6 Games with Graphs 7 Lines and Knots 7 Knots in the Campus 7 Cities and Graphs 8 Mark's Projects 8 Knight's Tours 8 Period of the Fibonacci sequence modulo n 9 Misha's Projects 9 How to Write a Cryptic Crossword 9 How to Write an Olympiad Problem 10 Nic's Projects 10 Algebraic Geometry Reading Group 10 1 MC2016 ◦ Project Descriptions 2 Ray Tracing 10 Non-Euclidean Video Games 11 Nic + Chris's Projects 11 Non-Euclidean Video Games 11 Pesto's Projects 11 Graph Minors Research 11 Linguistics Problem Writing 12 Models of Computation Similar to Programming 12 Sachi's Projects 13 Arduino 13 Sam's Projects 13 History of Math 13 Modellin' Stuff (Statistically!) 13 Reading Cauchy's Cours d'Analyse 13 Zach's Projects 14 Build a Geometric Sculpture 14 Design an Origami Model 14 Assaf's Projects Board Game Design/Analysis. (Assaf) Description: I'd like to think about and design a board game or a card game that has interesting math, but can still be played by a non-mathematician. -
Bridges 2021 Mathematics・Art・Music・Architecture・Culture Conference Proceedings
Bridges 2021 Mathematics・Art・Music・Architecture・Culture Conference Proceedings Editors Program Chair David Swart Miovision, Inc. Waterloo, Ontario, Canada Short Papers Chair Workshop Papers Chair Frank Farris Eve Torrence Santa Clara University Mathematics Department Santa Clara, California, USA Randolph-Macon College Ashland, Virginia, USA Production Chair Craig S. Kaplan Cheriton School of Computer Science University of Waterloo Waterloo, Ontario, Canada Bridges 2021 Conference Proceedings (www.bridgesmathart.org). All rights reserved. General permission is granted to the public for non-commercial reproduction, in limited quantities, of individual articles, provided authorization is obtained from individual authors and a complete reference is given for the source. All copyrights and responsibilities for individual articles in the 2021 Conference Proceedings remain under the control of the original authors. ISBN: 978-1-938664-39-7 ISSN: 1099-6702 Published by Tessellations Publishing, Phoenix, Arizona, USA (© 2021 Tessellations) Distributed by MathArtFun.com (mathartfun.com). Cover design: Uyen Nguyen, New York City, New York, USA. Image credits: David Swart; H. A. Verrill; Anduriel Widmark; Jin Yamauchi and Chamberlain Fong; Robert Bosch and Zejian Huang; Loe Feijs; Carlo H. Séquin; Roger Antonsen and Laura Taalman; Stefan Pautze; Chirag Mehta; Ulrich Reitenbuch, Martin Skrodzki, and Konrad Polthier; Frank A. Farris; John Berglund and Craig S. Kaplan. Bridges Board of Directors Susan Goldstine George Hart Department of Mathematics and -
Math Morphing Proximate and Evolutionary Mechanisms
Curriculum Units by Fellows of the Yale-New Haven Teachers Institute 2009 Volume V: Evolutionary Medicine Math Morphing Proximate and Evolutionary Mechanisms Curriculum Unit 09.05.09 by Kenneth William Spinka Introduction Background Essential Questions Lesson Plans Website Student Resources Glossary Of Terms Bibliography Appendix Introduction An important theoretical development was Nikolaas Tinbergen's distinction made originally in ethology between evolutionary and proximate mechanisms; Randolph M. Nesse and George C. Williams summarize its relevance to medicine: All biological traits need two kinds of explanation: proximate and evolutionary. The proximate explanation for a disease describes what is wrong in the bodily mechanism of individuals affected Curriculum Unit 09.05.09 1 of 27 by it. An evolutionary explanation is completely different. Instead of explaining why people are different, it explains why we are all the same in ways that leave us vulnerable to disease. Why do we all have wisdom teeth, an appendix, and cells that if triggered can rampantly multiply out of control? [1] A fractal is generally "a rough or fragmented geometric shape that can be split into parts, each of which is (at least approximately) a reduced-size copy of the whole," a property called self-similarity. The term was coined by Beno?t Mandelbrot in 1975 and was derived from the Latin fractus meaning "broken" or "fractured." A mathematical fractal is based on an equation that undergoes iteration, a form of feedback based on recursion. http://www.kwsi.com/ynhti2009/image01.html A fractal often has the following features: 1. It has a fine structure at arbitrarily small scales. -
Guidelines for the Production of Technical Reports, Functionalities of the Website Providing Work Space to the Different Groups, Dissemination of Products, Etc
world road Association piarc activity report 2004-2007 From the Durban Congress october 2003 to the Paris Congress september 2007 www.piarc.org General Activity Report of the World Road Association CONTENTS 1. Foreword.......................................................................................................................................... 3 2. Goals And Activities Consistent with needs............................................................................. 5 2.1. History and role of the Association ........................................................................................................ 5 2.2. 2004-2007 Strategic Plan .................................................................................................................... 6 2.2.1. PIARC’s Mission, Values and Vision............................................................................................... 6 2.2.2. Strategic Objectives ...................................................................................................................... 7 3. PIARC’s Structure .......................................................................................................................... 8 3.1. Council of the World Road Association.................................................................................................. 9 3.2. Executive Committee ........................................................................................................................ 10 3.3. Commissions .................................................................................................................................. -
Armed with a Knack for Patterns and Symmetry, Mathematical Sculptors Create Compelling Forms
SCIENCE AND CULTURE Armedwithaknackforpatternsandsymmetry, mathematical sculptors create compelling forms SCIENCE AND CULTURE Stephen Ornes, Science Writer When he was growing up in the 1940s and 1950s, be difficult for mathematicians to communicate to out- teachers and parents told Helaman Ferguson he would siders, says Ferguson. “It isn’t something you can tell have to choose between art and science. The two fields somebody about on the street,” he says. “But if I hand inhabited different realms, and doing one left no room them a sculpture, they’re immediately relating to it.” for the other. “If you can do science and have a lick of Sculpture, he says, can tell a story about math in an sense, you’d better,” he recalled being told, in a accessible language. 2010 essay in the Notices of the American Mathemat- Bridges between art and science no longer seem ical Society (1). “Artists starve.” outlandish nor impossible, says Ferguson. Mathematical Ferguson, who holds a doctorate in mathematics, sculptors like him mount shows, give lectures, even never chose between art and science: now nearly make a living. They teach, build, collaborate, explore, 77 years old, he’s a mathematical sculptor. Working in and push the limits of 3D printing. They invoke stone and bronze, Ferguson creates sculptures, often mathematics not only for its elegant abstractions but placed on college campuses, that turn deep mathemat- also in hopes of speaking to the ways math underlies ical ideas into solid objects that anyone—seasoned the world, often in hidden ways. professors, curious children, wayward mathophobes— can experience for themselves.